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Abstract

When excess returns are used to estimate linear stochastic discount factor (SDF)
models, researchers often adopt a normalization of the SDF that sets its mean to 1, or
one that sets its intercept to 1. These normalizations are often treated as equivalent,
but they are subtly di↵erent both in population, and in finite samples. Standard
asymptotic inference relies on rank conditions that di↵er across the two normalizations,
and which can fail to di↵ering degrees. I first establish that failure of the rank conditions
is a genuine concern for many well known SDF models in the literature. I also describe
how failure of the rank conditions can a↵ect inference, both in population and in finite
samples. I propose using tests of the rank conditions not only as a diagnostic device,
but also for model reduction. I show that this model reduction procedure has desirable
properties in a Monte Carlo experiment with a calibrated model.
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Standard asset pricing theory implies that if there are no arbitrage opportunities available

in a set of assets, then there exists a stochastic discount factor (SDF), m, such that

E(Re
m) = 0, (1)

where R

e is an n⇥ 1 vector of excess returns on the assets.

In empirical asset pricing, a common approach is to specify the SDF as a linear function

of a k ⇥ 1 vector of risk factors, f , with k < n. To take an example, suppose that we write

m = 1� (f � µf )0�, where µf = E(f) and � is a conformable vector of parameters. Notice

that with this specification of the SDF we can rewrite equation (1) as

E(Re) = cov(Re
, f)�. (2)

Since E(Re
f

0) = cov(Re
, f) + E(Re)µ0

f we can also rewrite equation (1) as

E(Re) = E(Re
f

0)� with � ⌘ �

1 + µ

0
f�

. (3)

Another way we can get to equation (3) directly is to start by writing the SDF as m = 1�f

0
�

and then substitute this expression into equation (1).

The simple transformation involved in moving from equation (2) to equation (3) seems

innocuous. However, there are important issues involving model validity and identification

that emerge upon closer inspection. These arise in population, and have non-trivial conse-

quences for estimation and inference.

To highlight the issues, consider a candidate model with a scalar risk factor, f . Suppose

that E(Re) 6= 0 and cov(Re
, f) = 0. Clearly, there is no value of � such that equation (2)

holds. Put di↵erently, not only does the candidate model appear to be false, by reference

to equation (2), but the parameter � is also not identified by equation (2). At the same

time, E(Re
f) = E(Re)µf , so, as long as µf 6= 0, there is a simple solution to equation (3):

� = 1/µf . In this case, the candidate model appears to be valid, by reference to equation

(3), and the parameter � is well identified.

The scalar example is also useful for illustrating the symmetric case where E(Re
f) = 0,

combined with E(Re) 6= 0. Here, there is no value of � such that equation (3) holds. Put

di↵erently, not only does the candidate model appear to be false, by reference to equation (3),

but the parameter � is also not identified by equation (3). At the same time, cov(Re
, f) =

�E(Re)µf and, as long as µf 6= 0, there is a simple solution to equation (2): � = �1/µf .
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In this case, the candidate model appears to be valid, by reference to equation (2), and the

parameter � is well identified.

An obvious question arises in these examples. Is the model valid or not? In each case there

is one representation of the model that correctly assigns a zero price to the vector Re. For

this reason, we will say that, strictly speaking, these representations are valid. Nonetheless,

it is worth digging a little deeper. At first there appears to be perfect symmetry between

the two cases, but there is at least one dimension in which the symmetry is imperfect. In

the second example, with E(Re
f) = 0, the solution to equation (2) implies an SDF with a

positive (unit) mean, m = f/µf , that has non-zero covariance with the return vector. On

the other hand, in the first example, with cov(Re
, f) = 0 the solution to equation (3) implies

an SDF, m = 1� f/µf , with mean zero and no covariance with the return vector. There are

at least three reasons a researcher may find the zero-mean SDF dissatisfying:

1. Because cov(Re
,m) = 0 the aggregate measure of risk has a relationship with returns

that is arguably devoid of economic interpretation.

2. Although equation (1) makes reference to excess returns, it is clear that an SDF with a

zero mean cannot price a risk free asset correctly. Therefore, if it prices excess returns

correctly it will price all gross returns incorrectly. This flaw cannot be remedied by a

linear transformation of the SDF since only a proportional transformation would keep

equation (1) intact, and would not change the mean of the SDF.

3. When the SDF is mean zero it implicitly assigns zero or negative prices to contingent

claims on some–presumably many–states of the world. Although these claims may not

be available to agents, this does raise issues as to whether the SDF can accurately

price assets not included in the vector being studied by the researcher. Hansen and

Jagannathan (1997) o↵er a similar reason for sometimes imposing the restriction that

the SDF is nonnegative everywhere.

A central question in this paper is: If we want to exclude (reject) models of this type, how

might we do so?

When f is a vector we have the more general case. Standard methods of estimating and

evaluating linear SDF models rely on cov(Re
, f) and E(Re

f

0) having full column rank; i.e.

rank k. When cov(Re
, f) has rank less than k, � is not identified, and estimators based on
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(2) have nonstandard asymptotic distributions. When E(Re
f

0) has rank less than k, � is not

identified, and estimators based on (3) have nonstandard asymptotic distributions.

Analogous to the scalar case discussed above, when rank[cov(Re
, f)] < rank[E(Re

f

0)] I

prove that there is no solution to (2) but, as in the scalar case, there is always at least one

solution to equation (3). Any such solution has the property that E(m) = 0. Additionally,

m is a linear combination of f that has no covariance with R

e.

In the symmetric case where rank[cov(Re
, f)] > rank[E(Re

f

0)] I prove that there is no

solution to (3) but there is a always a solution to (2) that, as in the scalar case, corresponds

to an SDF with no intercept and a unit mean.

To show that failure of the rank conditions is not simply a theoretical curiosity, but is a

practical reality, I use rank tests proposed by Cragg and Donald (1997) [discussed in Wright

(2003)] and Kleibergen and Paap (2006). Consider Table 1, which shows the results of rank

tests for several well-known models in the literature. For the CAPM and Fama and French

(1993) three factor model, the null hypothesis of reduced rank is strongly rejected. However,

for models with macroeconomic factors, the null hypothesis of reduced rank is not rejected

in many cases. This suggests, at a minimum, that these models are poorly identified. But

it is also noteworthy that in several cases the rank of cov(Re
, f) appears to be less than

the rank of E(Re
f

0). For example, consider the model from Yogo (2006). This model

includes three factors, but the tests hint that rank[cov(Re
, f)] = 1 and rank[E(Re

f

0)] = 2.

For the Lustig and Verdelhan (2007) model, which also has three factors, the tests hint

that rank[cov(Re
, f)] = 0 and rank[E(Re

f

0)] = 1. This evidence suggests that if there are

parameterizations of these models that correctly price the assets, it is only because they put

all of their emphasis on linear combinations of the risk factors that are uncorrelated with

returns.

In Section 5 I use Monte Carlo evidence to show that rank tests can be an e↵ective

diagnostic.1 In my calibrated models, the null hypothesis that rank[cov(Re
, f)] is less than

its true rank is always rejected. On the other hand, the null hypothesis that rank[cov(Re
, f)]

is equal to its true rank is rejected with a probability that converges, as the sample size

grows, to the size of the test. The latter finding is simply confirmation of known properties

of these tests.
1Equivalently, Kan and Zhang (1999b) suggest that researchers should test for significant spread among

the factor betas, cov(Re
, f)⌃�1

f . They point out that while Chen, Roll, and Ross (1986) and Ferson and
Harvey (1993) performed such tests, relatively few researchers do so.
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But what should an applied researcher do if the diagnostics suggest that rank[cov(Re
, f)] <

k or rank[E(Re
f

0)] < k? Is it preferable to use the mean-normalization over the intercept-

normalization? My Monte-Carlo evidence suggests no simple advice of this type. Inference

with either normalization is a↵ected by identification problems, although often in di↵erent

ways. Instead of favoring one normalization over another, I propose using rank tests as part of

a model reduction procedure. This procedure is designed to eliminate models dominated by

“useless” factors. Described intuitively, if a rank test suggests that rank[cov(Re
, f)] = r < k,

the procedure finds r linear combinations of the factors, denoted f̃r, for which the columns

of cov(Re
, f̃r) come closest to spanning the columns of cov(Re

, f). The appropriate linear

combinations are a by-product of the Kleibergen and Paap (2006) rank test. The model

is estimated and tested using the vector f̃r as risk factors. The economic meaning of the

resulting parameter estimates can easily be recovered using the linear transformation that

maps from f to f̃r. My Monte Carlo evidence suggests that this procedure does not induce

a significant size distortion when testing valid models.

An extensive literature, related to this paper, examines the properties of asset pricing tests

in the presence of spurious risk factors; i.e. factors that are uncorrelated with the returns.

Kan and Zhang (1999a) examine the behavior of GMM estimators, when the estimated SDF

includes a spurious factor. In some cases, this factor is added to the true model. In other

cases, it is added to a model that includes only some or none of the true risk factors. Their

results relate to mine for the mean-normalization, because they study risk factors that are

mean zero by construction. Kan and Zhang (1999b) study similar issues in the context of

the two-pass approach to model evaluation. Kleibergen (2009) finds that standard inference

based on the Fama and MacBeth (1973) and GLS two-pass regression methods is inadequate

under partial or weak identification of a factor model. He suggests adoption of alternative

statistics that lead to inference that is centered around the maximum likelihood estimator

of Gibbons (1982). Kleibergen (2009) shows that the basic problem with the traditional

methods is the dependence across the moment conditions that identify the betas and the

moment conditions that identify risk premia. By rewriting the model in terms of betas of

returns relative to a benchmark asset, he gets rid of this dependence, which leads to improved

statistical performance. Kleibergen and Zhan (2013) use these novel statistics to show that

the confidence sets for a number of models based on macroeconomic factors are, e↵ectively,

unbounded. The method proposed here, by contrast, stays within the realm of traditional
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methods by eliminating spurious linear combinations of factors from the model.

Another closely related paper is Kan and Robotti (2008). They examine the behavior

of the Hansen and Jagannathan (1997) (HJ) distance measure under the two model nor-

malizations discussed here. They show that the traditional HJ statistic can be manipulated

by a�ne transformations of the factors when the intercept-normalization is adopted. They

suggest a modified statistic that imposes the mean-normalization, and uses the covariance

matrix of returns, not the cross moment matrix, as the weighting matrix. They also dis-

cuss how estimation of the SDF representation is a↵ected by the choice of normalization,

including a discussion of misspecification, but their analysis presumes the model is identi-

fied. Related papers by Gospodinov, Kan, and Robotti (2012) and Gospodinov, Kan, and

Robotti (2013a) develop a unified framework for model estimation, evaluation and model

comparison based on the unconstrained HJ-distance. The e↵ects of model misspecification

on estimation and inference are also discussed by Hou and Kimmel (2006), Shanken and

Zhou (2007), Kan and Robotti (2009), and Kan, Robotti, and Shanken (2013). Some of this

literature proposes using misspecification-robust inference. However, this approach assumes

that models are properly identified. Gospodinov, Kan, and Robotti (2013b) extends the

results regarding HJ distance into the realm of under-identified models. They also propose

a sequential model selection device where individual factors are dropped sequentially based

on robust t-statistics. Bryzgalova (2014) proposes a shrinkage-based framework for elimi-

nating individual (or multiple) spurious factors. In her framework, estimation and model

reduction is done in one step, rather than sequentially. In contrast to these two papers, the

method proposed here focuses on problematic linear combinations of the factors. Gospodi-

nov, Kan, and Robotti (2014) is also related, in that the authors relate model validity and

rank conditions.

The paper is organized as follows. Section 1 uses a simple example with one risk factor

and one asset to lay the groundwork for the rest of the paper. Section 2 discusses issues

of SDF model validity, identification, and misspecification and derives the main theoretical

results. Section 3 discusses the approaches I use to estimate the two model normalizations,

to test for their identification, and to potentially reduce the dimension of the model. Section

4 discusses empirical findings for some models in the literature and links di↵erences (across

normalizations) in qualitative findings to failure of rank conditions. Section 5 performs a

series of Monte Carlo simulation exercises that demonstrate the consequences of failure of
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the rank conditions in samples similar in size to those being studied in the literature. I

discuss the behavior of parameter estimates, OIR tests, and my model selection procedure.

Section 6 concludes.

1 An Illustrative Scalar Example

Many of the issues discussed in this paper can be understood via the following simple ex-

ample. In this example, a researcher’s goal is to find an SDF for the excess return on some

asset, denoted R

e. To make things concrete, we will assume that E(Re) > 0 for this single

asset. The researcher proposes the following model of the SDF:

m = a� fb, (4)

where a and b are scalars and f is a scalar risk factor. The proposed SDF prices the asset if

E(Re
m) = E[Re(a� fb)] = 0. (5)

Clearly, any (a, b) on the locus

E(Re
f)b = E(Re)a, (6)

works. I refer to this locus as the pricing locus. I also refer to any SDF corresponding to a

pair (a, b) on this locus as valid.

Figures 1–4 illustrate this example under di↵erent assumptions about the joint behavior of

f and R

e.2 Each figure illustrates possible parameter pairs (a, b) 2 R2. The parameter space

is divided, for illustration, into two regions. The non-shaded region corresponds to those

values of (a, b) such that E(m) > 0, which we denote M+. The shaded region corresponds

to those values of (a, b) such that E(m) < 0, which we denote M�. Finally, the boundary

between the regions is the locus a = bµf . On this locus, which we denote M0, E(m) = 0.

Every example assumes that µf > 0 so that this locus is the upward sloping line b = a/µf .

I consider two generic and two special cases of the pricing locus, which is illustrated in

each figure as a solid line:

1. E(Re)/E(Re
f) < 1/µf . In this case, the pricing locus is either upward sloping, but

with a smaller slope than the boundary, or it is downward sloping. The distinction

between these cases is not important, so Figure 1 uses the latter case for clarity.

2Related graphs appear in the appendix of Peñaranda and Sentana (2015).
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2. E(Re)/E(Re
f) > 1/µf . In this case, the pricing locus is upward sloping and steeper

than the boundary. This case is illustrated in Figure 2.

3. The knife-edge case where E(Re)/E(Re
f) = 1/µf . This case occurs if cov(Re

, f) = 0,

and implies that the pricing locus and the boundary coincide. This case is illustrated

in Figure 3.

4. Another interesting knife-edge case happens when E(Re
f) = 0. This means the pricing

locus is vertical at a = 0. This case is illustrated in Figure 4.

Given that the pricing locus is not a single point, our researcher adopts a normalization

of the SDF. There are two commonly used alternatives. The first of these, the intercept-

normalization, assumes that a = 1. To illustrate this normalization, each figure includes a

dashed line corresponding to the locus (1, b). Alternatively, the mean-normalization assumes

that the mean of the SDF is 1. Consistent with this, each figure includes a dotted line

b = (a � 1)/µf along which all candidate SDFs have a unit mean. This line is parallel to

the boundary. Having adopted one or other of these normalizations, there is at most one

solution to the pricing equation.

Case 1. In Figure 1, the pricing line crosses both the dashed and dotted lines (at A and

B). Therefore, there exist valid unit-intercept and unit-mean SDFs, and both lie in M+.

This is a favorable case, for several reasons. In both cases, the model is identified. When we

turn to finite sample estimation, inference functions as intended. Parameter estimates are

consistent and have standard asymptotic distributions. If multiple assets are available, the

OIR test functions as intended. And the SDFs at A and B are proportional by a positive

constant.

Case 2. In Figure 2 we see that both normalizations are identified. The pricing line crosses

the dotted line (at B), so there exists a valid unit-mean SDF in M+. It crosses the dashed

line (at A), so the unique valid unit-intercept SDF lies in M�.

While, strictly speaking, the SDF at A is valid, because it solves the pricing equation, it

has three potentially undesirable features. First, because it implies E(m) < 0 it obviously

prices risk free assets incorrectly. Second, since the mean of m is negative, this implies that

there are states of the world to which this SDF assigns negative state prices. Third, the

relationship between m and f is positive (b > 0) whereas b < 0 for all valid SDFs that lie
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in M+. Obviously a researcher paying attention to the fact that E(m) < 0 could flip the

sign of this SDF, and resolve all of these issues. Of course, doing so would, in e↵ect, imply

adopting a di↵erent normalization.

Case 3. When cov(Re
, f) = 0 we have Figure 3. Here, the pricing line is the same as

the boundary, M0. Therefore, there are no valid (a, b) pairs in M+ nor in M� . The

pricing line is parallel to the dotted line, so there exists no valid unit-mean SDF in this

case. The pricing/boundary line crosses the dashed line at A (where b = 1/µf ) so the valid

unit-intercept SDF has a zero mean.

The fact that there is no solution to the pricing equation for the mean-normalization

means that the model is not identified. In population the researcher would be able to reject

the model, since nonexistence is an analytic result. However, the identification problem

manifests itself in non-standard inference in finite samples, even asymptotically.

On the other hand, if the researcher adopts the intercept-normalization, the model is

identified, in the sense that there is a unique solution to the pricing equation. Parameter

estimates are consistent and have standard asymptotic distributions. If multiple assets are

used to test the model, it is rejected with probability equal to the size of the test. In other

words, the model is likely to end up being validated by standard inference.

Should the model be rejected in Case 3? This is a matter of interpretation. Clearly,

the model at A is potentially problematic. It implies E(m) = 0, so it prices risk free assets

incorrectly, and must assign negative state-prices to some states of the world. There is also

a sense in which it is economically uninteresting, since it implies zero covariance between the

measure of aggregate risk, m, and the returns being priced. At the same time, the model at

A does price R

e correctly.

Case 4. When E(Re
f) = 0 the pricing equation is the vertical line a = 0, as illustrated in

Figure 4. The pricing line crosses the dotted line at B (where b = �1/µf ), so there exists

a valid unit-mean SDF. The pricing line does not cross the dashed line, so there is no valid

unit-intercept SDF.

Econometrically, Case 4 is symmetric to Case 3 with, in this case, point B being defined,

but point A not being defined. In other words, one normalization (in this case the mean-

normalization) is identified, while the other (the intercept-normalization) is not.

However, Case 4 is economically di↵erent from Case 3. In Case 4, the identified model
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at B has a positive mean, whereas, in Case 3 the model at A does not. The model at B

in Case 4 does have one perplexing property. Peñaranda and Sentana (2015) argue that an

“SDF that is exactly proportional to an orthogonal factor is not very attractive from an

economic point of view”. They argue that this is because the projection of f onto R

e with

no constant—in other words, the uncentered factor mimicking portfolio—is constant and

equal to 0. This property follows from equation (5) because a = 0 and m = �fb, implying

that E(Re
f) = 0. This property of the SDF may be unattractive, but it must be kept in

mind that in every case described above (i.e. cases 1—4), the SDF is orthogonal to R

e so

an uncentered SDF -mimicking portfolio is always constant and equal to 0.3 Additionally,

if the feature that E(Re
f) = 0 is viewed as problematic, it can be remedied by a linear

transformation. On the other hand, in Case 3, linear transformation of the factor cannot

change the fact that the covariance between the factor and the return is zero.

Cases 1—4 illustrate many of the issues dealt with later in this paper, however, the more

general setting of a multi-factor model is more complicated. In a setting with k factors,

the intercept and mean-normalizations are identified if, respectively, rank[E(Re
f

0)] = k and

rank[cov(Re
, f)] = k. If both these rank conditions hold, we have a situation analogous to

Cases 1 and 2. When rank[E(Re
f

0)] = k and rank[cov(Re
, f)] = k � 1 we have a situation

analogous to Case 3. When rank[E(Re
f

0)] = k � 1 and rank[cov(Re
, f)] = k we have a

situation analogous to Case 4. But we also have an additional possibility that both models are

under-identified. This possibility can only arise in the scalar case if we have cov(Re
, f) = 0

and µf = 0, in which case we also have E(Re
f) = 0.

2 Validity, Misspecification and Identification

Let Re
t be an n ⇥ 1 vector whose ith element, Re

it, is the excess return at time t to asset i

defined as the di↵erence between the return on asset i and the risk free rate. For notational

convenience I suppress time subscripts unless they are strictly needed.

3I am grateful to Francisco Peñaranda for pointing out the following fact. It is always possible to
mechanically construct an SDF or risk factor as the residual of the least squares projection of any random
variable x onto Re (without a constant). In fact, any such residual will satisfy the pricing equation for returns.
I would argue that this is not a problem with the mean-normalization, per se. Rather, it is a problem endemic
to working with excess returns. It also does not imply that every factor for which E(Re

f

0) = 0 is constructed
in an economically meaningless way, because E(Re

m) = 0 holds for any valid SDF.
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Assumption 1. At least one element of the return vector has a non-zero mean; that is

E(Re) 6= 0.

Under the assumption of no-arbitrage there exists a strictly positive random variable, m,

such that

E(Re
m) = 0. (7)

We consider candidate models of the SDF, m, that take the following form:

m = a� f

0
b, (8)

where f is a k ⇥ 1 vector of risk factors, a is a scalar constant and b is a k ⇥ 1 vector of

parameters. We will assume, throughout, that n � k. Given the vector of risk factors, we let

M denote the set of all m of the form given in equation (8). We let M+ = {m 2 M|E(m) >

0}, M� = {m 2 M|E(m) < 0}, and M0 = {m 2 M|E(m) = 0}.

2.1 Valid Models of the SDF

Definition 1. m is a valid SDF if equation (7) holds for at least one (a, b).

Clearly, if m is valid for some (a, b) so is m for any scalar, , since this transformation

preserves that equation (7) holds. Thus, validity of the SDF does not uniquely determine

(a, b). For this reason, it is common to adopt a normalization of the SDF that reduces the

dimension of the parameter space. We consider two normalizations that appear frequently

in the literature.

To arrive at the first normalization we rewrite equation (8) as

m = a(1� f

0
�),

with � = b/a. I refer to

m

� ⌘ 1� f

0
�, (9)

as the intercept-normalization of m since it is a scaled version of m with a unit intercept.

Clearly, equation (7) implies that

E(Re) = E(Re
f

0)� or µR = D�. (10)

where µR ⌘ E(Re) and D ⌘ E(Re
f

0). Given definition 1, m� is a valid SDF if equation (10)

holds for at least one �.
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Alternatively (8) can be rewritten as

m = ⇠[1� (f � µf )
0
�],

where µf = E(f), ⇠ = a� µ

0
fb, and � = b/⇠. I refer to

m

� ⌘ 1� (f � µf )
0
�, (11)

as the mean-normalization since it is a scaled version of m with a unit mean. Given this

normalization equation (7) implies that

E(Re) = E[Re(f � µf )
0]� or µR = C�, (12)

where C ⌘ E[Re(f � µf )0] = cov(Re
, f). Given definition 1, m� is a valid SDF if equation

(12) holds for at least one �.

2.2 Misspecified Models of the SDF

A model, m, is misspecified if there is no (a, b) such that (7) holds. Because the two nor-

malizations, m� and m

�, are nested within m, it follows that

m

� misspecified (= mmisspecified =) m

� misspecified.

Notice that the arrows only run in one direction. Case 3, above, is an example in which m

�

is misspecified, but m and m

� are valid. Similarly, Case 4, above, is an example in which m

�

is misspecified, but m and m

� are valid.

When a model is misspecified, it is useful to consider linear combinations of the moment

restrictions that appear in equations (10) and (12). In particular, we consider the following

equations

D

0
W

�[E(Re)� E(Re
f

0)�] = 0, or D

0
W

�(µR �D�) = 0, (13)

C

0
W

�{E(Re)� E[Re(f � µf )
0]�} = 0, or C

0
W

�(µR � C�) = 0. (14)

Here, W � and W

� are assumed to be n⇥ n positive definite symmetric matrices. Equations

(13) and (14) are of interest because they are population equivalents of the equations we

use below to define GMM estimators of � and �. Solutions to these equations exist even if

solutions to equations (10) and (12) do not, but they may or may not be unique.
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2.3 Rank Conditions and Identification

In this section, we establish important relationships between identification, which is stated

in terms of the ranks of the matrices C and D, the model’s validity and the mean of the SDF.

We use the following notation: rD ⌘ rank(D) and rC ⌘ rank(C). We let X = ( X1 X2 )

denote a k⇥k orthogonal matrix whose first rD columns, X1, span the rowspace ofD [denoted

R(D)], and whose remaining columns, X2, span the nullspace of D [denoted N (D)]. We

let Y = ( Y1 Y2 ) denote a k ⇥ k orthogonal matrix whose first rC columns, Y1, span the

rowspace of C [denoted R(C)], and whose remaining columns, Y2, span the nullspace of C

[denoted N (C)].

Definition 2. The SDF m

� is identified if rD = k. The SDF m

� is identified if rC = k.

Theorem 1. A solution to equation (10), if it exists, is unique if and only if m

� is identified.

A solution to equation (12), if it exists, is unique if and only if m

�
is identified.

Proof. Let �0 be a solution to (10) so that µR = D�0. First, assume that rD = k. Assume

there is another parameter vector �1 6= �0 such that (10) holds. Then µR = D�1. But

this implies that D(�0 � �1) = 0. Because rD = k this implies that �1 = �0, which is a

contradiction. Now assume that rD < k with �0 defined as before. We can construct another

solution �1 = �0 + x for any x 6= 0 such that Dx = 0. Because rD < k, we know such an x

exists. The same argument applies to the second part of the lemma.

Theorem 2. There exists a solution to equation (13), which is unique if and only if m

�

is identified. There exists a solution to equation (14), which is unique if and only if m

�
is

identified.

Proof. Because W

� is positive definite, rD = rank(D0
W

�
D). So when rD = k, standard

arguments imply that � = (D0
W

�
D)�1

D

0
W

�
µR is the unique solution to equation (13).

When D has reduced rank, there are many solutions to equation (13). Consider, first, the

case where rD = 0. In this case, D = 0 and any � 2 R

k is a solution to (13). If 1  rD < k,

define D̃ = DX1 and let �̃ = (D̃0
W

�
D̃)�1

D̃

0
W

�
µR. Then, as shown in the extended proof

in the Appendix, � = X1�̃ + x is a solution to (13) for any x 2 N (D). A similar argument

applies to the second statement in the theorem.

A consequence of Theorems 1 and 2 is that estimators based on the sample equivalents of

(13) and (14) have standard properties if D and C have full rank. If the underlying moment
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restrictions, (10) and (12), hold, theorems from Hansen (1982) apply. If these moment

conditions are not satisfied, theorems for misspecified models from Hall and Inoue (2003)

and Hall (2005) apply. I focus, instead, on situations where rD < k or rC < k.

Lemma 1. The matrices C and D di↵er in rank by at most 1, i.e. |rC � rD|  1.

Proof. By definition D = C + µRµ
0
f . Since µR and µf are vectors, µRµ

0
f has, at most, unit

rank. Consequently, rD  rC + 1, and rC  rD + 1.

Lemma 2. rC < rD if and only if µf /2 R(C) and µf 2 R(D). rC > rD if and only if

µf /2 R(D) and µf 2 R(C). rC = rD if and only if µf 2 R(C) and µf 2 R(D).

Proof. Let C = UCSCY
0 and D = UDSDX

0 denote the singular value decompositions of C

and D. Allowing for the possibility that C and D have less than full rank we can equivalently

write these as

C = UC1SC1Y
0
1 D = UD1SD1X

0
1

where UC1 represents the first rC columns of UC , SC1 is the upper left rC ⇥ rC corner of SC

and Y1 is defined as above. UD1, SD1 and X1 are defined similarly. We can then write

D = C + µRµ
0
f = UC1SC1Y

0
1 + µRµ

0
f

C = D � µRµ
0
f = UD1SD1X

0
1 � µRµ

0
f .

We first establish the ifs. From the first equation it is clear that if µf /2 R(C) the columns of

Y1 do not span the rows of D, but (Y1 µf ) does span the rows of D and has full column rank.

Therefore, rD > rC and µf 2 R(D). Similarly, if µf /2 R(D) the columns of X1 do not span

the rows of C, but (X1 µf ) does span the rows of C. Therefore, rC > rD and µf 2 R(C).

The first two results imply that the only remaining possibility is that µf 2 R(C) and

µf 2 R(D). Given the above equations this means that the rows of D are in R(C) and

the rows of C are in R(D). This implies that C and D have the same rank. Since we have

considered all possible statements regarding the location of µf the only ifs have also been

established.

Theorem 3. If m is valid and m /2 M0 then rC � rD.

Proof. By definition D = C + µRµ
0
f . When an SDF of the general form (8) is valid and

has a non-zero mean we can always rewrite it in the form (11), so that equation (12) holds.
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Hence, µR = C� and so we can write

D = C + µRµ
0
f = C(Ik + �µ

0
f ).

It follows that rD  rC .

The following corollary follows directly from Theorem 3:

Corollary 1. If rC < rD any valid m must lie in M0 (has a zero mean).

Theorem 4. If m is valid and a 6= 0 then rC  rD. If, additionally, m /2 M0 then rC = rD.

Proof. By definition C = D � µRµ
0
f . When an SDF of the general form (8) is valid and

a 6= 0 the SDF can be written in the form (9) and equation (10) holds. Hence, µR = D� and

so we can write

C = D � µRµ
0
f = D(Ik � �µ

0
f ).

It follows that rC  rD. The final statement in the theorem follows from Theorem 3.

The following corollary follows directly from Theorem 4:

Corollary 2. If rC > rD any valid m must have a zero intercept.

Clearly, we can also combine the two theorems to get the following corollary:

Corollary 3. If m is valid, m /2 M0 and a 6= 0 then rC = rD.

Lemma 3. If rC = rD = 0 and m is valid then m 2 M0 and a = 0.

Proof. When rC = rD = 0 this means C = D = 0. It follows from validity that 0 =

E(Re
m) = µRa�Db = µRa, implying a = 0. Similarly, 0 = E(Re

m) = µRa�Cb�µRµ
0
fb =

�µRµ
0
fb, implying that µ0

fb = 0. Hence, E(m) = a� µ

0
fb = 0.

Figure 5 summarizes our results, so far, regarding the ranks of C and D. Each dot repre-

sents a combination of ranks that is mathematically possible; i.e. consistent with Lemma 1.

The mean-normalization is identified if rC = k, otherwise it is underidentified. The intercept-

normalization is identified if rD = k, otherwise it is underidentified. When rC < rD (the

shaded gray dots), the mean-normalization is underidentified and any valid m is mean zero.

When rC > rD (the striped dots), the intercept-normalization is underidentified and any

valid m has a = 0. If rC = rD = 0 (the gray striped dots), then any valid m is mean zero

and has a = 0. The solid black dots represent combinations of rank potentially consistent

with validity, E(m) 6= 0 and a 6= 0. We turn, next, to an exploration of the consequences of

underidentification.

14



2.4 Under-identification and the existence of valid SDFs

There are three cases to consider: (1) rD = rC � 1 with rC  k, (2) rC = rD � 1 with rD  k

and (3) rC = rD < k. We show results for each of these cases in turn.

Theorem 5. If rD < rC there exists a valid parameterization of the mean-normalization,

but it has a zero intercept.

Proof. Let �̃2 be a (k � rD) ⇥ 1 vector and choose it so that (µ0
fX2)�̃2 = �1. We know we

can choose �̃2 in this way because Lemma 2 implies that µf /2 R(D), so that µ

0
fX2 6= 0.

Then let � = X2�̃2. We then have

µR � C� = µR � CX2�̃2 = µR � (D � µRµ
0
f )X2�̃2.

Recall that DX2 = 0 so that we have

µR � C� = µR[1 + (µ0
fX2)�̃2] = 0.

The second statement in the theorem follows from Corollary 2.

When rC = k the solution for � described in the theorem is unique, otherwise it is not.

There are two ways of getting to this result. First, we already know, from Theorem 1, that

when rC = k any solution to µR = C� is unique. Second, when rD < rC = k, Lemma 1

implies that rD = k � 1 so that �̃2 = �1/(µ0
fX2) is a unique scalar.4

Theorem 6. If rC < rD there exists a valid parameterization of the intercept-normalization,

but it lies in M0.

Proof. The first part of the proof mimics the proof of Theorem 5. Let �̃2 be a (k � rC)⇥ 1

vector and choose it so that (µ0
fY2)�̃2 = 1. We know we can choose �̃2 in this way because

Lemma 2 implies that µf /2 R(C), so that µ0
fY2 6= 0. Then let � = Y2�̃2. We then have

µR �D� = µR �DY2�̃2 = µR � (C + µRµ
0
f )Y2�̃2.

Recall that CY2 = 0 so that we have

µR �D� = µR[1� (µ0
fY2)�̃2] = 0.

The second statement in the theorem follows from Corollary 1.

4We can ensure that �̃2 is unique, in this case, by normalizing the first non-zero element of the vector X2

to be positive. Regardless, � = X2�̃2 is always unique, in this case, because a sign change in X2 translates
to a sign change in �̃2 so these sign changes cancel out in �.
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It is worth noting that the solution for � described in the proof has a counterintuitive

economic interpretation: The SDF puts zero weight on the linear combinations of the risk

factors that are correlated with returns, and all its weight on linear combinations of the risk

factors that are uncorrelated with returns:

cov(Re
,m

�) = � cov(Re
, f)� = � cov(Re

, f)Y2�̃2 = �cov(Re
, fY1)| {z }

6=0

0� cov(Re
, fY2)| {z }

=0

�̃2 = 0.

When rD = k the solution for � described in the theorem is unique, otherwise it is not.

We already know, from Theorem 1, that when rD = k any solution to µR = D� is unique.

When rC < rD = k, Lemma 1 implies that rC = k � 1 so that �̃2 = 1/(µ0
fY2) is a unique

scalar.5

Finally we have the case where rC = rD < k. In this case, neither normalization of

the SDF is identified. If rC = rD = 0 we have C = D = 0, and there are no solutions to

equations (10) and (12). The only valid m has the form m = �f

0
b with µ

0
fb = 0 so it is

both mean zero and has a zero intercept. When 0 < rC = rD < k there may or may not be

solutions to equations (10) and (12).

3 Estimation and Inference using GMM

3.1 The intercept-normalization

Using the n moment restrictions given by (10), � is estimated using GMM. Define u

�
t (�) =

R

e
t (1 � f

0
t�) and let g�T (�) =

1
T

PT
t=1 u

�
t (�) = R̄

e �DT � be an n ⇥ 1 vector of pricing errors,

where R̄

e = 1
T

PT
t=1 R

e
t , DT = 1

T

PT
t=1 R

e
tf

0
t and T is the sample size.

I consider GMM estimators that set a�T g
�
T = 0, where a�T is a k⇥ n matrix and takes the

form a

�
T = D

0
TW

�
T , where W

�
T is an n⇥ n positive definite weighting matrix. It follows that

the GMM estimator of � is

�̂ =
�
D

0
TW

�
TDT

��1
D

0
TW

�
T R̄

e
. (15)

In the first GMM step I let W

�
T = In. In step j + 1, I let W

�
T = (S�

T )
�1 where S

�
T =

1
T

PT
t=1 û

�
jtû

�0
jt, û

�
jt = R

e
t (1� f

0
t �̂j) and �̂j represents the jth-step estimator of �.6

Let ��
T = �DT . An OIR, or pricing error, test is based on the statistic

J

� = Tg

�
T (�̂)

0(V̂ �
g )

+
g

�
T (�̂), (16)

5Uniqueness requires an argument analogous to the one provided in footnote (4).
6By computing S

�
T in this way, I impose the theoretical restriction that Et�j(u�

t ) = 0 for all j � 1.
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where

V̂

�
g = A

�
TS

�
T (A

�
T )

0 with A

�
T = In ���

T (a
�
T�

�
T )

�1
a

�
T , (17)

and (V̂ �
g )

+ indicates the generalized inverse of the matrix V̂

�
g .

3.2 The mean-normalization

Using the n moment restrictions given by (12) along with the moment condition E(ft�µf ) =

0, � and µf are estimated using GMM. I use the notation ✓ = ( �

0
µ

0
f )0 for the combined

parameter vector. Define u

✓
1t(✓) = R

e
t [1 � (ft � µf )0�] and let g

✓
1T (✓) = 1

T

PT
t=1 u

✓
1t(✓) =

R̄

e � (DT � R̄

e
µ

0
f )�. Define u

✓
2t(✓) = ft � µf and let g✓2T (✓) =

1
T

PT
t=1 u

✓
2t(✓) = f̄ � µf , where

f̄ = 1
T

PT
t=1 ft. Define u

✓
t = ( u

✓0
1t u

✓0
2t )0 and g

✓
T = ( g

✓0
1T g

✓0
2T )0.

I consider GMM estimators that set a

✓
T g

✓
T = 0, where a

✓
T is a 2k ⇥ (n + k) matrix and

takes the form

a

✓
T =

✓
C

0
TW

✓
T 0

0 Ik

◆
, (18)

where CT = DT � R̄

e
f̄

0 and W

✓
T is an n ⇥ n positive definite weighting matrix. It follows

that the GMM estimators of � and µf are

�̂ = (C 0
TW

✓
TCT )

�1
C

0
TW

✓
T R̄

e (19)

µ̂f = f̄ . (20)

In the first GMM step I let W ✓
T = In. In step j + 1, I let W

✓
T = (PTS

✓
TP

0
T )

�1 where PT =

[ In R̄

e
�̂

0
j ], �̂j represents the jth-step estimator of � and S

✓
T is a consistent estimator of

S

✓ =
P+1

j=�1 E(u✓
tu

✓0
t�j).

7 Because u✓
2t may be serially correlated I use a VARHAC estimator,

described in more detail in the Appendix, to compute ST .8

Let

�✓
T =

✓
�CT R̄

e
�̂

0

0 �Ik

◆
. (21)

An OIR test is based on

J

✓ = Tg

✓
T (✓̂)

0(V̂ ✓
g )

+
g

✓
T (✓̂), (22)

7The first step of the GMM procedure is numerically equivalent (in terms of pricing errors) to using the
two-pass regression method and running the cross-sectional regression with no constant. In the later GMM
steps, Cochrane (2005) suggests using the matrix ( In 0n⇥k ) in place of PT in the expression for W

�
T .

This is less e�cient in terms of the covariance matrix of �̂, but is asymptotically equivalent in terms of the
OIR test.

8The VARHAC estimator that I use imposes the theoretical restriction that Et�j(u✓
1t) = 0 for all j � 1.

This restriction does not hold for u

✓
2t since the risk factors may be serially correlated. The VARHAC

procedure whitens u✓
2t using a VAR, but is otherwise identical to a standard HAC procedure.
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where

V̂

✓
g = A

✓
TS

✓
T (A

✓
T )

0 with A

✓
T = In+k ��✓

T (a
✓
T�

✓
T )

�1
a

✓
T . (23)

Yogo (2006) uses a di↵erent, optimal, GMM procedure in conjunction with the mean-

normalization. Noting that the derivative of g✓1T with respect to µf is non-zero, he uses a

variant of a✓T that is not block diagonal because this improves asymptotic e�ciency. In his

case µ̂f does not, in general, equal f̄ . As it turns out, in finite samples, the properties of

Yogo’s procedure are quite di↵erent than the properties of the procedure I have outlined here.

Peñaranda and Sentana (2015) discuss Yogo’s procedure and normalizations of the SDF in

the context of continuously-updated (CU)-GMM estimators. I discuss the optimal-GMM

and CU-GMM procedures in more detail in a separately available appendix.

3.3 Asymptotic properties of the estimators

Let rC and rD be defined as in Section 2. If rD = k inference is standard for the intercept-

normalization. If there exists a solution, �, to equation (10), it is unique. Under regularity

conditions provided in Hansen (1982), �̂
a.s.! � where � is that unique solution. Also

p
T (�̂ �

�)
d! N(0, V �) with V� = (a���)�1

a

�
S

�
a

�0[(a���)0]�1, where a

� and �� are the probability

limits of a�T and ��
T . Finally, J

� d! �

2
n�k.

Similarly, if rC = k inference is standard for the mean-normalization. If there exists a

solution, �, to equation (12), it is unique. Under regularity conditions provided in Hansen

(1982), ✓̂
a.s.! ✓, where ✓ = ( �

0
µ

0
f )0 and � is the unique solution to equation (12). Also

p
T (✓̂ � ✓)

d! N(0, V✓) with V✓ = (a✓�✓)�1
a

✓
S

✓
a

✓0[(a✓�✓)0]�1, where a

✓ and �✓ are the

probability limits of a✓T and �✓
T . Finally, J

✓ d! �

2
n�k.

When the rank conditions are satisfied but there do not exist solutions to equations (10)

and (12) the model is misspecified. We can refer to Hall (2005), Chapter 4 for the asymptotic

properties of �̂, J�, ✓̂ and J

✓ in this case.

When rD < k the intercept-normalization is under-identified. Therefore, �̂ and J

� have

non-standard asymptotic distributions. Similarly, when rC < k the mean-normalization is

under-identified. Therefore, �̂ and J

✓ have non-standard asymptotic distributions.

Kan and Zhang (1999a) consider SDF models with factors that are assumed to be mean

zero, so their findings are directly relevant for the mean-normalization. They derive the

asymptotic properties of Wald tests applied to the elements of �̂ and the OIR test for the

case where rC < k. Assume that there is a valid SDF model with risk factors ft. Suppose that
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a researcher estimates a model with (ft, xt) as the conjectured factors, where xt is completely

“useless” and mean zero.9 This model is correctly specified, in the sense that it nests the

true model, and it actually doesn’t matter what coe�cient ends up attached to the spurious

factor, xt. Because xt is uncorrelated with R

e
t it has no e↵ect on the pricing equation. On

the other hand, suppose a researcher estimates a model with (f1t, xt) as the conjectured

factors, where f1t is an incomplete subset of ft. In this case, the model is misspecified. The

asymptotic properties of the tests studied by Kan and Zhang (1999a) depend on whether the

model is correctly specified or misspecified. Additionally, the extent of the misspecification

matters and how many steps are taken over the GMM weighting matrix also matters. For

example, using a model design with two true factors, Kan and Zhang (1999a) show that a

model that uses only the spurious factor xt will be rejected with probability less than the size

of the test when a 2nd-step GMM test is used, but with probability greater than 0.9 when

a 3rd-step GMM test is used. On the other hand, when one of the true factors is included

along with the spurious factor, the power of the 2nd-step GMM test improves, while the

power of the 3rd-step GMM test does not.

One interesting case is when rC = k � 1 and rD = k. As we saw in Section 2, when

rC = k � 1 and rD = k there is always a solution, �, to equation (10). So, in large samples,

tests of the model based on the intercept-normalization will reject it with the same probability

as the size of the test, say 5% of the time. But, in this situation, as discussed in Section 2,

the solution to equation (10) implies a zero-mean SDF. As mentioned above, this solution

puts no weight on economically relevant risk factors, and, instead, puts all its weight on a

“useless” linear combination of the factors. The OIR test is not useful for detecting this

problematic feature of the solution, because, strictly speaking, the zero-mean SDF is valid

in this case. Kan and Zhang’s (1999a) results tell us that the mean-normalization can also

run into trouble, especially when the model is tested in the first or second step of GMM.

Symmetrically when rC = k and rD = k � 1 there is always a solution, �, to equation

(12). So, in large samples, tests of the model based on the mean-normalization will reject it

with the same probability as the size of the test, say 5% of the time. It is not entirely clear

what the properties of the intercept-normalization will be in this case, but they are likely

non-standard given that � is not identified.

9Kan and Zhang (1999a) define a useless factor as one that is independent of Re
t and ft at all leads and

lags.
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3.4 Testing identification

In the introduction I discussed tests of the rank conditions proposed by Cragg and Donald

(1997) and Kleibergen and Paap (2006). The Kleibergen and Paap (2006) statistic has a

computational advantage because it does not involve nonlinear optimization whereas the

Cragg and Donald (1997) test does. Instead, it only involves forming the singular value

decomposition (SVD) of a matrix, giving it a computational advantage in Monte Carlo

experiments. For this reason, I focus the rest of my discussion on the Kleibergen and Paap

(2006) statistic.

Suppose we have an n ⇥ k matrix ⇧, and the null hypothesis is that rank(⇧) = r < k.

Rather than directly test the rank of ⇧ using some estimate, ⇧̂, Kleibergen and Paap (2006)

suggest forming the scaled matrix ⇥ = G⇧F 0 where Gn⇥n and Fk⇥k are invertible matrices

that make ⇥ invariant to invertible transformations of the data. When ⇧ = cov(Re
, f)

natural choices are G = ⌃�1/2
R , the Cholesky decomposition of the inverse of the covariance

matrix of Re, and F = ⌃�1/2
f , the Cholesky decomposition of the inverse of the covariance

matrix of f .

The next step is to form the SVD ⇥ = USV

0, where the upper k ⇥ k block of S is

a diagonal matrix with the singular values of ⇥ arranged from largest to smallest. When

rank(⇧) = rank(⇥) = r < k, the k � r smallest singular values ⇥ are zero. Therefore,

the rank test forms the SVD of an estimate ⇥̂ and finds its k � r smallest singular values.

The test statistic measures the size of these singular values, in a statistical sense, relative to

zero. The Appendix provides details of the calculation of the statistic, denoted rk(r), which

converges asymptotically to a �

2
(n�r)(k�r) distribution.

3.5 A procedure for model reduction

Suppose that a researcher has a candidate model based on the k-dimensional risk factor, f . I

propose the following sequential procedure for testing the model’s rank, possibly reducing the

dimension of the model, estimating the model, and performing an OIR test. The procedure

assumes that a researcher has a favored size, denoted ↵, to be used in the OIR test. Model

reduction, estimation and evaluation takes place after a separate procedure determines the

dimension of the model the researcher will actually estimate. The model dimension procedure

can be described as a loop as follows.
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Step 0. Test whether rC = 0 using the rk(0) statistic.

If the p-value associated with the statistic is greater than ↵, discard the model and

proceed no further. If the p-value associated with the statistic is less than or equal to ↵

continue to step 2.

Step 1. Test whether rC = 1 using the rk(1) statistic.

If the p-value associated with the statistic is greater than ↵, break out of the loop and

invoke the model reduction procedure described below. If the p-value associated with the

statistic is less than or equal to ↵ continue to step 3.

The procedure continues, like this, until ...

Step k � 1. Test whether rC = k � 1 using the rk(k � 1) statistic.

If the p-value associated with the statistic is greater than ↵, break out of the loop

and invoke the model reduction procedure described below. If the p-value associated with

the statistic is less than or equal to ↵ proceed to model estimation without reducing the

dimension of the model.

The model reduction procedure is invoked if the p-value associated with rk(r) is greater

than ↵, and is a by-product of the construction of the statistic. To see how it works consider

the following linear combination of the risk factors: f̃ = Af with A = V

0
F , where V is the

the matrix from the SVD of ⇥, defined above, and F = ⌃�1/2
f . The covariance matrix of f̃ is

⌃̃f = V

0
V = Ik, implying that f̃ is a vector of mutually orthogonal factors with unit variance.

Also C̃ ⌘ cov(Re
, f̃) = CF

0
V . It follows that ⇥̃ = GC̃(⌃̃�1/2)0 = GCF

0
V = USV

0
V = US

implying that ⇥̃ and ⇥ have the same singular values. When rC = r, only the first r elements

of f̃ are relevant factors. Hence the procedure suggests reducing the model to one in which

f̃r = Arf is a r ⇥ 1 vector of risk factors. Here Ar is a r ⇥ k matrix representing the first

r rows of the matrix A, or, equivalently, V 0
rF , where Vr represents the first r columns of V .

In the actual procedure all of the matrices are replaced with their sample equivalents.10

Model estimation proceeds in the standard way using either the mean-normalization or

the intercept-normalization. The OIR test is conducted in a standard way but has n � r

degrees of freedom. If the researcher wishes to recover the parameters associated with the

original factors this is straightforward. The SDFs for the two normalizations can be written

10I discuss the implications of the non-uniqueness of the SVD of ⇥ in the Appendix.
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as

m

� = 1� f̃

0
r�̃ = 1� f

0(A0
r�̃),

m

� = 1� (f̃r � µ̃f )
0
�̃ = 1� (f � µf )

0(A0
r�̃),

so the parameters attached to the original factors are � = A

0
r�̃ and � = A

0
r�̃.

This is obviously a simple procedure, but one might ask whether it has reasonable size

and power properties. Consider size first. The size calculation depends on the true value of

rC , which I treat as an unknown.

If rC = k the p-value associated with the test in steps 0 through k � 1 should converge

to zero 0 in su�ciently large samples. This is because the null hypotheses being tested are

not local to the alternative, which is that cov(Re
, f) has full column rank. Hence, if rC = k

the probability of rejecting the model should be ↵, the size of the OIR test.

By the same argument, if rC = k � 1 the p-value associated with the test in steps 0

through k�2 should converge to zero 0 in su�ciently large samples. At step k�1, however,

rC = k�1 will be rejected with a probability that limits to ↵. So, with probability 1�↵ the

model reduction procedure will be invoked, and the probability of rejecting the model based

on the OIR test should be ↵. On the other hand, with probability ↵ the model reduction

procedure is not invoked. In this case, the probability of rejecting the model based on the

OIR test will be some ↵̃k�1 6= ↵ because inference is non-standard for models with spurious

factors. Therefore, overall, the probability of rejecting the model is ↵k�1 = (1�↵)↵+↵↵̃k�1.

Propositions 3 and 4 in Kan and Zhang (1999a) suggest that for the mean-normalization the

probability of rejecting a correctly specified model that includes a spurious factor is less than

↵. This suggests that 0  ↵̃k�1 < ↵ and that (1� ↵)↵  ↵k�1 < ↵ but it must certainly be

the case that ↵k�1 < ↵(2� ↵).

A similar argument can be used to establish that if rC = r, the probability of invoking

the model reduction procedure at step r is 1� ↵, in which case the probability of rejecting

the model based on the OIR test would be ↵. But with probability ↵ it would not be invoked

and the researcher would move on to step r + 1. Again, this suggests that the probability

of rejecting the model is ↵r = (1 � ↵)↵ + ↵↵̃r, where ↵̃r is the probability of rejecting the

larger model at a later step. Again, the results in Kan and Zhang (1999a) are suggestive

that 0  ↵̃r < ↵ but certainly ↵r < ↵(2� ↵).

In terms of power, consider a misspecified model. If the C matrix associated with this

model has full rank this should be revealed with probability one in large samples. Therefore,
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the model reduction procedure will not be invoked and the model should be rejected with

the same probability as it would be using standard GMM procedures. The main advantage

of the procedure is that it should improve the detection of invalid models for which C has

less than full rank because the model will often be reduced in dimension to one where the

parameters are fully identified and inference is standard. Additionally, the procedure is

designed to discard spurious risk factors, or reject models based entirely on them.

In Section 5 I use Monte Carlo experiments to explore the size and power properties of

the model reduction procedure.

4 Empirical Findings

In Table 1 I present the results of rank tests for a variety of models taken from the literature.

In this section I discuss two of these models in more detail: the Fama and French (1993)

Three Factor model and the Yogo (2006) model. These models are also used as the inspiration

for the Monte-Carlo experiments that I run later in the paper. Estimates of the model

parameters and the results of OIR tests are presented in Table 2. I use quarterly data over

the period 1949Q1–2012Q4 to estimate both models. For Re I use the excess returns of the

25 portfolios of U.S. stocks sorted on size and the book-to-market value ratio introduced by

Fama and French (1993).11

4.1 The Fama-French Three Factor Model

The Fama-French model uses three factors: (1) the excess return on the value-weighted U.S.

stock market (Mkt-Rf), (2) the return di↵erential between a portfolio of small firms and a

portfolio of large firms (SMB) and (3) the return di↵erential between a portfolio of high-value

firms and a portfolio of low-value firms (HML), where a firm’s value is measured as the ratio

of its book value to its market capitalization.

As we saw in Table 1, the rank tests strongly reject the null hypotheses that this model

has reduced rank. It appears that rC = rD = 3. Table 2 indicates that the statistical

significance of � and � and the results of the OIR tests (which are all strong rejections) are

quite similar across the two normalizations. Additionally, Table 2 shows that if the first

step GMM estimates of � obtained with intercept-normalization are mapped to equivalent

11The data are described in more detail in the Appendix.
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values of � these estimates are quite similar to the estimates of � obtained with the mean-

normalization. However, this is not true for iterated GMM.

4.2 Yogo (2006)

Yogo (2006) proposes a consumption-based model in which agents have recursive prefer-

ences over a consumption bundle of nondurable and durable goods. When this model is

approximated with a linear SDF, the risk factors are the log-growth rate of real per capita

consumption of nondurables and services (�cns), the log-growth rate of the real per capita

consumption of durables (�cd) and the return on wealth, which is proxied with the real

return on the value-weighted U.S. stock market (Mkt).

From the results of the rank tests shown in Table 1 it would be tempting to conclude

that rC = 1 and rD = 2 for Yogo’s model. If this were true in population, then any valid

parameterization of the model would have a zero mean, and would put all its weight on

spurious linear combinations of the factors.

As Table 3 shows, if we rely on the intercept-normalization we get statistically significant

estimates of � for �cd (for first step and iterated GMM) and �cns (for iterated GMM). The

model also passes the OIR test with flying colors.

On the other hand, if we use the mean-normalization we draw di↵erent conclusions. For

first step GMM, none of the parameter estimates are statistically significant, but the model

is not rejected by the OIR test. For iterated GMM, the � parameters for �cd and �cns are

statistically insignificant, but the coe�cient associated with Mkt is marginally significant.

The model is sharply rejected by the OIR test. It is tempting to attribute the qualitatively

di↵erent inference across normalizations to the fact that rC < rD.

This model appears to be a candidate for reduction to a single factor. Using the procedure

outlined in Section 3.5, we end up with the following single factor: f̃1 = �1.47 ·�cns+2.72 ·
�cd + 12.1·Mkt. This factor has a correlation of 0.9999 with Mkt.12 The two consumption

factors are, roughly speaking, excluded by the model reduction procedure, and we end up

with a model very similar to the CAPM, except that we have Mkt instead of Mkt-Rf as

the risk factor. As Table 3 indicates, once the model is reduced in dimension the model is

sharply rejected based on the OIR test for both normalizations.

12As described above, the model reduction procedure uses V 0
1F , where V1 is the first column of V in the

SVD of ⇥. As it turns out, if we form V

0
2:kF , using the remaining columns of V these linear combinations

put almost no weight on Mkt, and are almost uncorrelated with it.
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5 A Monte Carlo Experiment

To further demonstrate the sensitivity of empirical results to the choice of normalization in

the presence of failure of the rank conditions, I conduct Monte Carlo experiments. These

experiments also provide evidence on the performance of the model reduction procedure I

proposed in Section 3.5.

5.1 The True Model, Some Misspecified Models, and an Over-
specified Model

Here, the true model is calibrated to resemble the Fama-French three-factor model estimated

using U.S. data over the sample period 1949:Q1–2012:Q4. The model is used to generate an

n ⇥ 1 (with n = 25) vector of artificial excess returns R

e
t with E(Re) equalling the model-

predicted expected returns in the data. Details on how the simulated data are generated are

provided in the Appendix.

Using the data generated from the model, we estimate several test models in 10000

artificial samples of 256 observations (the size of our U.S. data sample):

1. The true model, which includes the artificial Mkt-Rf, SMB and HML factors. This

model has full rank and is correctly specified, by construction.

2. A model that includes the artificial Mkt-Rf factor. This factor is relevant, in the sense

that it has non-zero covariance with the returns generated within the experiment. So

it satisfies the rank conditions for identification. However, the model is misspecified

because the Mkt-Rf factor, alone, cannot price returns accurately.

3. A model with a single spurious (uncorrelated with returns) factor, St, whose behavior

somewhat mimics durable consumption growth in U.S. data. I assume that St ⇠
Niid(µs, �

2
s) and set µS and �

2
S equal to the sample mean and variance of durable

consumption growth in the data. In this model, C has reduced rank (0), but D has

full rank (1).

4. A model with two factors: Mkt-Rf and S. In this model, C has reduced rank (1), but

D has full rank (2).

5. The last model is an over-specified model which includes the Mkt-Rf, SMB and HML

factors, as well as the spurious factor, S. In this model C and D are n ⇥ 4 but both
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have reduced rank (3). The model is not misspecified, because it nests the true model.

The presence of S, however, a↵ects estimation and inference.

5.2 Rank Tests

I first explore the performance of the Kleibergen and Paap (2006) rank tests. Table 4 shows

that the rank tests never understate the rank of C. For models 1 and 2, which have full rank,

the tests reject the null hypothesis of reduced rank 100% of the time. For model 4, where

rC = 1, the test always rejects the null that rC = 0. For model 5, where rC = 3, the test

always rejects the null that rC  2. The tests do sometimes overstate the rank of C in the

sense that for model 3, where rC = 0, the test rejects the null that rC = 0 12.1% of the time

(when size is set at 5%). For model 4, where rC = 1, the test rejects the null that rC = 1

11.9% of the time (when size is set at 5%). For model 5, where rC = 3, the test rejects the

null that rC = 3 11.4% of the time (when size is set at 5%).

For models 1 and 2, where D has full rank, the tests reject the null hypothesis of reduced

rank 100% of the time. For model 3, where D also has full rank the rank test rejects the

null 92.5 of the time (when size is set at 5%). For model 4, where D also has full rank the

rank test rejects the null 69.8% of the time (when size is set at 5%).13 For model 5, where

rD = 3 the rank tests reject the null that rD = 3 10.9% of the time (when size is set at 5%).

In extended results presented in the Appendix, I show that the rank tests become close

to perfect in 10000 simulated samples each of which has 10000 observations. When the

null hypothesis of reduced rank is false, the tests reject the null 100% of the time, as I

conjectured in Section 3.5. When the null hypotheses of reduced rank are true, I find the

tests have almost exactly their asymptotic size.

5.3 Estimating the True Model

Table 5 shows that for both normalizations the parameter estimates are centered near the

true values of the parameters. For the factors that play the biggest role in pricing the

returns in the model (the pseudo Mkt-Rf and HML factors) the parameters are statistically

significant in almost all samples. The parameter associated with the pseudo-SMB factor is

usually not significant, consistent with it playing a very small role in pricing the returns.

The OIR test usually does not reject the model, with size being slightly excessive for the

13Rank tests on D play no role in the model reduction procedure that I described earlier.

26



mean normalization and very slightly reduced for the intercept normalization. In extended

results presented in the Appendix, I show that OIR tests have almost exactly the correct size

in 10000 simulated samples each of which has 10000 observations. The qualitative di↵erence

between the results for the two normalizations disappears.

5.4 Estimating Model 2

Model 2 is misspecified. The proposed risk factor, Mkt-Rf, is relevant but insu�cient to price

the assets. Not surprisingly, as Table 6 shows, for both normalizations we find parameter

estimates to be significant in a very large fraction of the samples. Additionally, for both

normalizations the model is rejected roughly 70% of the time using an OIR test with size

set at 5%. In extended results presented in the Appendix, I show that these rejection rates

rise to 100% in 10000 simulated samples each of which has 10000 observations.

5.5 Estimating Model 3

Model 3 uses a single spurious factor. The intercept and mean-normalizations behave di↵er-

ently because the intercept-normalization is identified and (strictly speaking) valid, while the

mean-normalization is neither. Standard asymptotics apply to the intercept-normalization,

but not to the mean-normalization. This is reflected in the results shown in Table 7.

In the simulations the inverse of the mean of the spurious factor, S, is µ

�1
S = 102. As

expected, therefore, the estimates of � are centered near this value, and are frequently (in

this case, always) statistically significant. Additionally, because the pricing equations for

the intercept-normalization are satisfied at µ�1
S , the model is rejected very infrequently, with

small sample size being close to the asymptotic size of the OIR test.

On the other hand, when the mean-normalization is used, the parameter �S is statistically

significant in a much smaller fraction of the samples. At the first and second steps of GMM

the OIR test has very weak power to reject the model. Paradoxically, the power of the OIR

tests rises sharply with further iterations over the weighting matrix, while, at the same time,

the tendency of �̂S to be statistically significant rises to 22% (when size is set at 5%). The

remarkably di↵erent behavior of �̂S and its associated t-statistic across the GMM steps can

be better understood with reference to Figure 6. When the identity matrix is used to weight

the pricing equations the distribution of �̂S is very wide and bimodal. This bimodality is

shared by the distribution of the t-statistic but its tails are not that thick. In later GMM
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steps, where a non-identity weighting matrix is used, the distribution of �̂S narrows and

is unimodal. But with su�cient iterations over the weighting matrix it has very fat tails.

Figure 7 shows that the distribution of �̂S widens when the sample size in the Monte Carlo

experiments is increased to 10000. This reflects the fact that �̂S is unidentified.14 As it turns

out, the behavior of the t-statistic also worsens, with it exhibiting very fat tails at the first

GMM step and after many iterations over the weighting matrix.

The model reduction procedure I described in Section 3.5 suggests discarding the model

if the null hypothesis that rC = 0 cannot be rejected at the 5% level of significance. The

results in Table 10 show that this null is rejected in only 12.1% of the repeated samples.

So the model reduction procedure would yield a 87.9% rejection rate of the model based on

the rank test alone. For the procedure as a whole—in which the model is estimated and

tested if the model passes the rank test—the rejection rate rises to 88.4% for first and second

step GMM and 98.5% for iterated GMM if the mean-normalization is used to estimate the

model. The corresponding rejection rates for the intercept-normalization are 89.2% and

93.2%. When I increase the sample size in the simulations to 10000 observations, these

rejection rates rise to 95.1% and 100% for the mean-normalization, and 98.5% and 99.0%

for the intercept-normalization.

5.6 Estimating Model 4

Model 4 uses the Mkt-Rf factor and the spurious factor, S. Strictly speaking, the intercept-

normalization is valid. However it is valid when no weight is put on the relevant factor,

Mkt-Rf, and all the weight in the SDF is on the spurious factor S. The mean normalization

is misspecified.

In Table 8 we see that, as for Model 3, the estimates of �S are centered near µ�1
S = 102,

and are always statistically significant. The typical estimate of �Mkt�Rf , on the other hand,

is small and significant in a much smaller fraction of the samples. Additionally, because

the pricing equations for the intercept-normalization are satisfied at (0, µ�1
S ), the model is

rejected very infrequently, with small sample size being close to the asymptotic size of the

OIR test.

On the other hand, when the mean-normalization is used, �̂Mkt�Rf is typically quite large

(similar to the values we obtained for Model 2) and significant in a large fraction of the

14In an earlier draft I showed that with the data generating process used in my Monte Carlo simulations,
T

�1/2
�̂S has an asymptotic distribution so, in a sense, we expect the domain of �̂S to widen at the rate T 1/2.
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samples, while �S is statistically significant in a smaller fraction of the samples. Once again,

however, at the first and second steps of GMM the OIR test has quite weak power to reject

the model. Paradoxically, the power of the OIR tests rises sharply with further iterations

over the weighting matrix, while, at the same time, the tendency of �̂S to be statistically

significant rises to 16.5% (when size is set at 5%).

The model reduction procedure I described in Section 3.5 suggests rejecting the model if

the null hypothesis that rC = 0 cannot be rejected at the 5% level of significance. However,

as the results in Table 4 show this null is rejected in every repeated sample. The model

reduction procedure also suggests reducing the model to a single factor if the null hypothesis

that rC = 1 cannot be rejected at the 5% level of significance. This occurs in 88.1% of

the samples, as indicated in Table 10. For the procedure as a whole the model rejection

rate rises to 64.3% for first and second step GMM and 70.8% for iterated GMM. This is

an improvement over the 16.8% and 62.4% rejection rates for the procedure without model

reduction. The corresponding rejection rates for the intercept-normalization are 60.7% and

63.8%. When I increase the sample size in the simulations to 10000 observations, these

rejection rates rise to 97.0% and 100% for the mean-normalization, and 98.8% and 99.3%

for the intercept-normalization.

When the model reduction procedure is invoked, it chooses linear combinations of the

two factors that put most of their weight on Mkt-Rf and are highly correlated with it. As

the sample size increases, the procedure limits to choosing Mkt-Rf as the single factor, since

S is uncorrelated with returns, by construction.

5.7 Estimating Model 5

Model 5 uses the factors from the true model (Mkt-Rf, SMB and HML) as well as the

spurious factor, S. This model is not misspecified because it nests the true model, but it has

reduced rank for both normalizations: rC = rD = 3.

In Table 9 we see that adding the spurious factor changes the small sample size of

the OIR test. The under-rejection we observed in Table 5 for the intercept-normalization

becomes more exaggerated here. The over-rejection we observed for the mean-normalization

almost vanishes. But, as in the other cases where a spurious factor is included in the

model, the normalizations di↵er sharply in terms of coe�cient estimates. For the intercept-

normalization estimates of �Mkt�Rf and �HML are not centered near their true values, and they
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are less often found to be statistically significant compared to the case where the spurious

factor is excluded from the model. On the other hand, estimates and inference regarding

�Mkt�Rf and �HML are almost una↵ected by the inclusion of the spurious factor.

The model reduction procedure I described in Section 3.5 suggests reducing the model

to three factors when the null hypothesis that rC = 3 cannot be rejected at the 5% level

of significance. As the results in Table 10 show, this occurs in 88.6% of the samples. In

these samples, the OIR test is performed using the model with three factors instead of four.

As a consequence, for the mean-normalization the model rejection rate rises to 7.0% for

first and second step GMM and 6.9% for iterated GMM. This compares to 5.1% and 5.6%

rejection rates for the procedure without model reduction. The corresponding rejection

rates for the intercept-normalization are 5.5% and 5.4%. When I increase the sample size

in the simulations to 10000 observations, these rejection rates are 5.0% and 5.0% for the

mean-normalization, and 6.1% and 6.2% for the intercept-normalization.

5.8 Indirect Estimates of Model Parameters

If we use the intercept-normalization, GMM produces an estimate, �̂. This estimate can be

mapped into an indirect estimate of � if we use the formula �(�̂) = �̂/(1 � f̄

0
�̂). Similarly,

if we use the mean-normalization, GMM produces an estimate, �̂. This estimate can be

mapped into an equivalent estimate of � if we use the formula �(�̂) = �̂/(1 + f̄

0
�̂). Is the

asymptotic distribution of �̂ similar to that of �(�̂)? How about �̂ and �(�̂)?

The Appendix provides extensive evidence on this question for Monte Carlo experiments

with a very large number of observations (10000). These experiments suggest that when

the model is true and identified (i.e., Model 1), the direct and indirect estimates have very

similar distributions in large repeated samples.

When the model is misspecified (Model 2) the direct and indirect estimates, in general,

have di↵erent probability limits. They also have di↵erent distributions around these limits.

This is confirmed by the Monte Carlo evidence, although the distributions look quite similar

at the first GMM step.

When the model includes a spurious factor (Models 3, 4 and 5), or, equivalently, the

mean normalization is poorly identified (both normalizations are underidentified for Model

5), the direct and indirect estimates of � and � have very di↵erent looking distributions, even

for factors that belong in the model. The presence of spurious factors matters.
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6 Conclusion

When excess returns are used to estimate linear SDFs, GMM estimation requires that a nor-

malization of the SDF be adopted. Two standard normalizations of the SDF, the intercept-

normalization and the mean-normalization are equivalent in population, in the sense that

they are proportional up to a constant, when the model is valid and fully identified. However,

the conditions under which these normalizations are identified are, in general, di↵erent.

In practice, di↵erent normalizations sometimes lead to very di↵erent qualitative inferences

about a model. Estimates of the slope coe�cients of the SDF can di↵er sharply in terms

of magnitude and statistical significance. OIR tests can di↵er sharply in outcome. I have

demonstrated this, here, for several factor models fit to U.S. data. I interpret these di↵erences

as the consequence of failures of the rank conditions for identification.

It is well known that lack of identification a↵ects inference. But here, there is an addi-

tional problem that the rank conditions for identification can fail di↵erentially across model

normalizations. In particular, I establish that when the mean-normalization is less identified

than the intercept-normalization, there is always at least one valid parameterization of the

proposed SDF, and any valid SDF is mean zero and uncorrelated with returns. Also, when

the intercept-normalization is less identified than the mean-normalization, there is always at

least one valid parameterization of the proposed SDF, and any valid SDF has zero intercept.

I propose model diagnostics and a model reduction procedure based on Kleibergen and

Paap (2006)’s rank test. I argue that these tests should have desirable asymptotic size and

power properties. In a Monte Carlo experiment I show that these rank tests are, indeed, a

powerful diagnostic. My preliminary evidence also suggests that the model reduction method

increases the power of asset pricing tests, while having little undesired e↵ect on their size.
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TABLE 1: Tests for Failure of Rank Conditions (p-values)

# of Factors Test rank cov(Re, f) E(Ref 0) Sample

Model k r CD KP CD KP period

CAPM 1 0 0.000 0.000 0.000 0.000 49Q1–12Q4

Fama-French 3-Factor 3 2 0.000 0.000 0.000 0.000 49Q1–12Q4
1 0.000 0.000 0.000 0.000
0 0.000 0.000 0.000 0.000

CCAPM 1 0 0.076 0.076 0.000 0.000 49Q1–12Q4

Durables-CCAPM 2 1 0.961 0.958 0.024 0.025 49Q1–12Q4
0 0.017 0.017 0.000 0.000

Yogo (2006) 3 2 0.977 0.931 0.521 0.513 49Q1–12Q4
1 0.767 0.770 0.000 0.000
0 0.000 0.000 0.000 0.000

Lettau and Ludvigson (2001) 3 2 0.239 0.167 0.240 0.166 52Q1–12Q3
1 0.040 0.004 0.004 0.000
0 0.000 0.000 0.000 0.000

Jagannathan and Wang (2007) 1 0 0.005 0.005 0.000 0.000 1949–2012

Lustig and Verdelhan (2007) 3 2 0.732 0.670 0.790 0.708 1953–2002
1 0.818 0.728 0.640 0.629
0 0.758 0.758 0.000 0.000

Note: For eight models from the literature, the table presents p-values for tests of the null hypothesis H0 : rank(M) = r where M is an n⇥ k matrix
[cov(Re, f) or E(Ref 0)]. CD and KP indicate tests based on Cragg and Donald (1997), and Kleibergen and Paap (2006). Every case, except Lustig
and Verdelhan (2007), uses the real excess returns to the Fama and French (1993) 25 portfolios sorted on the basis of size and value. For risk factors,
the CAPM uses the real market excess return (Mkt-Rf). The Fama-French 3 factor model uses Mkt-Rf, SMB and HML (expressed in real terms).
The CCAPM model uses nondurable & service consumption growth. The Durables-CCAPM case adds durable consumption growth to the CCAPM.
The Yogo (2006) model adds the real market return (Mkt) to the Durables-CCAPM. The Lettau and Ludvigson (2001) model uses consumption
growth, cay, and the product of consumption growth and cay. The Jagannathan and Wang (2007) model uses data on a Q4-Q4 annual basis, and uses
nondurable consumption growth as the risk factor. The Lustig and Verdelhan (2007) case uses a di↵erent set of returns: Eight currency portfolios
sorted by interest rate, and measured on an annual basis. The risk factors are the same as the ones from Yogo (2006), measured at the annual
frequency.
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TABLE 2: GMM Estimates of the Fama & French Three Factor Model

First GMM Step Iterated GMM

Factor � �(�) J� � J� � �(�) J� � J�

Mkt-Rf 3.27
(0.84)

3.69
(1.06)

50.3
(0.001)

3.67
(1.06)

54.9
(0.000)

5.14
(0.81)

6.16
(1.19)

47.9
(0.001)

3.79
(1.01)

54.4
(0.000)

SMB �0.17
(1.19)

�0.19
(1.34)

�0.17
(1.34)

�1.21
(1.10)

�1.45
(1.32)

�0.76
(1.28)

HML 5.02
(1.04)

5.68
(1.34)

5.57
(1.33)

6.87
(0.95)

8.24
(1.36)

5.98
(1.18)

Note: This table presents first step GMM estimates and GMM estimates after iterating to convergence over the weighting matrix. For the intercept
normalization � is the SDF parameter, with standard errors in parentheses [�(�) is given by � = �/(1�µ0

f�) with standard errors computed using the

delta method]. J� is the OIR test statistic with p-values in parentheses. For the mean normalization � is the SDF parameter, with standard errors
in parentheses. The returns used to estimate the model are the excess returns of the Fama and French (1993) 25 portfolios sorted on the basis of size
and value. The risk factors, are Mkt-Rf, SMB and HML. Detailed data descriptions are in the Appendix. Sample period is 1949Q1–2012Q4.
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TABLE 3: GMM Estimates of the Yogo Model

First GMM Step Iterated GMM

Factor � �(�) J� � J� � �(�) J� � J�

�cns 23.7
(33.5)

288
(619)

17.2
(0.749)

234
(204)

6.68
(0.999)

45.0
(17.4)

387
(377)

18.0
(0.709)

43.5
(42.1)

46.9
(0.002)

�cd 81.1
(19.8)

987
(1881)

249
(236)

67.6
(9.78)

581
(526)

50.0
(36.2)

Mkt 0.50
(0.55)

6.04
(12)

2.15
(2.91)

0.41
(0.43)

3.55
(4.76)

1.94
(1.03)

Model Reduction

f̃1 0.25
(0.06)

0.27
(0.08)

66.4
(0.000)

0.27
(0.08)

69.9
(0.000)

0.43
(0.06)

0.49
(0.09)

65.6
(0.000)

0.22
(0.07)

70.3
(0.000)

Implied Parameters

�cns �0.37 �0.40 �0.39 �0.63 �0.71 �0.32

�cd 0.68 0.74 0.73 1.18 1.33 0.60

Mkt 3.06 3.29 3.26 5.21 5.91 2.69

Note: This table presents first step GMM estimates and GMM estimates after iterating to convergence over the weighting matrix. For the intercept
normalization � is the SDF parameter, with standard errors in parentheses [�(�) is given by � = �/(1�µ0

f�) with standard errors computed using the

delta method]. J� is the OIR test statistic with p-values in parentheses. For the mean normalization � is the SDF parameter, with standard errors
in parentheses. The returns used to estimate the model are the real excess returns of the Fama and French (1993) 25 portfolios sorted on the basis of
size and value. The risk factors are nondurable & service consumption growth (�cns), durable consumption growth, �cd, and the real market return
(Mkt). Detailed data descriptions are in Appendix. Sample period is 1949Q1–2012Q4.
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TABLE 4: Rank Tests in the Monte Carlo Experiment

% rejected at % rejected at

10% level 5% level 10% level 5% level

1. True Model (Factors: Mkt-Rf, SMB, HML) rD = rC = 3

H0 : rD = 2 100% 100% H0 : rC = 2 100% 100%
H0 : rD = 1 100% 100% H0 : rC = 1 100% 100%
H0 : rD = 0 100% 100% H0 : rC = 0 100% 100%

2. Single Relevant Factor (Factor: Mkt-Rf) rD = rC = 1

H0 : rD = 0 100% 100% H0 : rC = 0 100% 100%

3. Single Spurious Factor (Factor: S) rD = 1, rC = 0

H0 : rD = 0 96.3% 92.5% H0 : rC = 0 20.7% 12.1%

4. Two Factors (Factors: Mkt-Rf, S) rD = 2, rC = 1

H0 : rD = 1 80.0% 69.8% H0 : rC = 1 20.2% 11.9%
H0 : rD = 0 100% 100% H0 : rC = 0 100% 100%

5. Over-specified Model (Factors: Mkt-Rf, SMB, HML, S) rD = rC = 3

H0 : rD = 3 19.0% 10.9% H0 : rC = 3 19.5% 11.4%
H0 : rD = 2 100% 100% H0 : rC = 2 100% 100%
H0 : rD = 1 100% 100% H0 : rC = 1 100% 100%
H0 : rD = 0 100% 100% H0 : rC = 0 100% 100%

Notes: The table reports results of Kleibergen and Paap (2006) rank tests from 10000 Monte Carlo experiments with sample size T = 256. The true
risk factors are synthetic mimics of the Mkt-Rf, SMB and HML factors in U.S. data. Rank tests are performed for five test models that use di↵erent
factors. rC = rank[cov(Re, f)] and rD = rank[E(Ref 0)], where Re are the returns generated in the experiment, and f is the conjectured vector of
factors. The table reports the fraction of the samples in which these tests reject the null hypothesis when the size of the test is set to 10% and 5%.
Details of the Monte Carlo experiments are provided in the Appendix and main text. Results for the case where T = 10000 are in Appendix Table 1.
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TABLE 5: Monte Carlo Experiment: Estimation of Model 1 (The True Model)

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

True Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�Mkt�Rf 3.25 3.28 3.29 99.2 98.3 3.67 3.68 99.7 99.3 3.74 3.75 99.7 99.3
�SMB -0.15 -0.17 -0.17 11.3 5.9 -0.14 -0.16 17.0 10.3 -0.14 -0.15 18.0 11.4
�HML 4.92 4.97 4.99 99.8 99.4 5.54 5.55 99.9 99.7 5.63 5.65 99.9 99.7
OIR test 9.6 4.3 9.6 4.3 9.3 4.0

Mean Normalization

�Mkt�Rf 3.70 3.77 3.75 99.2 98.1 3.77 3.74 99.4 98.5 3.79 3.75 99.4 98.6
�SMB -0.17 -0.19 -0.19 10.4 5.1 -0.19 -0.19 12.1 6.3 -0.19 -0.19 12.3 6.6
�HML 5.61 5.70 5.65 99.8 99.4 5.71 5.65 99.8 99.4 5.74 5.68 99.8 99.4
OIR test 13.5 7.1 13.5 7.1 13.4 7.0

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 256. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The true values of the parameters of the SDF are indicated in the first column. The table reports mean
and median estimates of the parameters of the intercept and mean-normalizations, as well as the frequency with which the estimated parameters are
found to be statistically significant at the 10% and 5% levels. The table also reports the frequency with which the model is rejected at the 10% and
5% levels based on the OIR test. The test statistic is numerically identical at the first and second GMM steps. Details of the Monte Carlo experiments
are provided in the Appendix and main text. Results for the case where T = 10000 are in Appendix Table 2.
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TABLE 6: Monte Carlo Experiment: Estimation of Model 2

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�Mkt�Rf 3.06 3.07 99.0 98.0 3.45 3.46 99.3 98.8 3.60 3.62 99.3 98.9
OIR test 79.1 67.7 79.1 67.7 78.8 66.9

Mean Normalization

�Mkt�Rf 3.27 3.25 98.8 97.6 2.85 2.82 97.8 95.3 2.78 2.76 97.3 94.5
OIR test 81.2 70.3 81.2 70.3 82.2 71.6

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 256. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The test model includes only the Mkt-Rf factor. The table reports mean and median estimates of
the parameters of the intercept and mean-normalizations, as well as the frequency with which the estimated parameters are found to be statistically
significant at the 10% and 5% levels. The table also reports the frequency with which the model is rejected at the 10% and 5% levels based on the
OIR test. The test statistic is numerically identical at the first and second GMM steps. Details of the Monte Carlo experiments are provided in the
Appendix and main text. Results for the case where T = 10000 are in Appendix Table 3.
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TABLE 7: Monte Carlo Experiment: Estimation of Model 3

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�S 103 101 100.0 100.0 90.4 90.2 100.0 100.0 88.7 88.5 100.0 100.0
OIR test 3.6 1.3 3.6 1.3 12.4 5.6

Mean Normalization

�S 5.63 43.3 11.9 4.4 0.24 0.23 3.3 1.7 0.47 0.85 30.3 21.7
OIR test 3.5 2.8 3.5 2.8 92.2 86.3

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 256. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The test model includes only a spurious factor, S, that is uncorrelated with returns. The table reports
mean and median estimates of the parameters of the intercept and mean-normalizations, as well as the frequency with which the estimated parameters
are found to be statistically significant at the 10% and 5% levels. The table also reports the frequency with which the model is rejected at the 10%
and 5% levels based on the OIR test. The test statistic is numerically identical at the first and second GMM steps. Details of the Monte Carlo
experiments are provided in the Appendix and main text. Results for the case where T = 10000 are in Appendix Table 4.
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TABLE 8: Monte Carlo Experiment: Estimation of Model 4

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�Mkt�Rf 0.08 0.11 10.3 5.4 0.39 0.39 26.2 17.8 0.43 0.44 34.7 25.5
�S 99.3 98.1 100.0 100.0 87.1 86.9 100.0 100.0 85.5 85.3 100.0 100.0
OIR test 3.2 1.1 3.2 1.1 11.5 5.3

Mean Normalization

�Mkt�Rf 3.14 3.14 73.8 64.3 2.81 2.79 77.1 65.6 2.79 2.76 95.6 91.7
�S 4.68 6.77 54.7 29.1 0.19 0.60 10.1 4.9 0.00 0.79 24.8 16.5
OIR test 22.3 16.8 22.3 16.8 74.6 62.4

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 256. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The test model includes Mkt-Rf and a spurious factor, S, that is uncorrelated with returns. The table
reports mean and median estimates of the parameters of the intercept and mean-normalizations, as well as the frequency with which the estimated
parameters are found to be statistically significant at the 10% and 5% levels. The table also reports the frequency with which the model is rejected
at the 10% and 5% levels based on the OIR test. The test statistic is numerically identical at the first and second GMM steps. Details of the Monte
Carlo experiments are provided in the Appendix and main text. Results for the case where T = 10000 are in Appendix Table 5.
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TABLE 9: Monte Carlo Experiment: Estimation of Model 5 (The Over-specified Model)

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

True Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�Mkt�Rf 3.25 0.89 0.89 44.0 32.2 0.89 0.90 55.2 44.3 0.89 0.90 55.8 45.7
�SMB -0.15 -0.04 -0.05 8.8 4.2 -0.03 -0.03 14.0 8.1 -0.03 -0.03 15.3 9.0
�HML 4.92 1.35 1.34 47.2 35.2 1.35 1.35 58.7 47.8 1.34 1.35 59.4 48.9
�S 74.2 74.3 99.7 99.4 74.9 74.9 100.0 100.0 75.0 75.0 100.0 100.0
OIR test 5.5 2.2 5.5 2.2 6.0 2.4

Mean Normalization

�Mkt�Rf 3.70 3.77 3.74 98.4 96.2 3.77 3.74 99.0 97.6 3.79 3.76 99.1 97.7
�SMB -0.17 -0.19 -0.20 9.1 4.3 -0.19 -0.20 11.2 5.9 -0.19 -0.18 11.7 6.3
�HML 5.61 5.70 5.64 99.2 98.6 5.71 5.66 99.4 98.9 5.74 5.69 99.6 99.0
�S -0.06 0.47 5.7 1.8 -0.11 0.23 10.6 5.3 -0.19 -0.14 11.3 5.9
OIR test 10.0 5.1 10.0 5.1 11.2 5.6

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 256. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data, but the test model also includes a spurious factor, S, that is uncorrelated with returns. The true values
of the parameters of the SDF are indicated in the first column. The table reports mean and median estimates of the parameters of the intercept
and mean-normalizations, as well as the frequency with which the estimated parameters are found to be statistically significant at the 10% and 5%
levels. The table also reports the frequency with which the model is rejected at the 10% and 5% levels based on the OIR test. The test statistic is
numerically identical at the first and second GMM steps. Results for the case where T = 10000 are in Appendix Table 6.
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TABLE 10: Model Reduction using the Mean-Normalization in the Monte Carlo Experiment

Model 3 Model 4 Model 5

1st/2nd step Iterated 1st/2nd step Iterated 1st/2nd step Iterated

Frequency rank is not reduced 0.121 0.121 0.119 0.119 0.114 0.114

Rejection rate in these cases 3.7% 87.1% 19.5% 64.5% 5.6% 6.0%

Frequency rank is reduced 0.879 0.879 0.881 0.881 0.886 0.886

Rejection rate in these cases 100% 100% 70.3% 71.7% 7.1% 7.1%

Overall rejection rate with model reduction 88.4% 98.5% 64.3% 70.8% 7.0% 6.9%

Rejection rate without model reduction 2.8% 86.3% 16.8% 62.4% 5.1% 5.6%

Notes: The table reports results of the rank reduction procedure from 10000 Monte Carlo experiments with sample size T = 256. The nominal size
of the OIR tests for the procedure is set to 5%. Details of the Monte Carlo experiments are provided in the Appendix and main text. Results for
sample size T = 10000 are presented in Appendix Table 7.
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FIGURE 1

Simple Example with E(Re)/E(Re
f) < 1/µf

A

B
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a � 1
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b � a−1
6 f

b � a
6 f

Notes : The shaded area denotes the region in which E(m) < 0. The heavy solid line
denotes the pricing line, b = [E(Re)/E(Re

f)]a. The dashed line denotes all possible
parameter pairs where the SDF has a unit intercept. The dotted line denotes all possible
parameter pairs where E(m) = 1. Point A lies at the intersection of the solid and dashed
lines indicating that it corresponds to the unique unit-intercept SDF consistent with the
pricing equation. Point B lies at the intersection of the solid and dotted lines indicating
that it is the unique unit-mean SDF consistent with the pricing equation.
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FIGURE 2

Simple Example with E(Re)/E(Re
f) > 1/µf
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b � a−1
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b � a
6 f

Notes : The shaded area denotes the region in which E(m) < 0. The heavy solid line
denotes the pricing line, b = [E(Re)/E(Re

f)]a. The dashed line denotes all possible
parameter pairs where the SDF has a unit intercept. The dotted line denotes all possible
parameter pairs where E(m) = 1. Point A lies at the intersection of the solid and dashed
lines indicating that it corresponds to the unique unit-intercept SDF consistent with the
pricing equation. It implies an SDF with a negative mean. Point B lies at the intersection
of the solid and dotted lines indicating that it is the unique unit-mean SDF consistent with
the pricing equation.
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FIGURE 3

Simple Example with E(Re)/E(Re
f) = 1/µf or cov(Re

, f) = 0
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b � a−1
6 f

b � a
6 f

Notes : The shaded area denotes the region in which E(m) < 0. The heavy solid line
denotes the pricing line, b = [E(Re)/E(Re

f)]a, which is also the locus where E(m) = 0.
The dashed line denotes all possible parameter pairs where the SDF has a unit intercept.
The dotted line denotes all possible parameter pairs where E(m) = 1. Point A lies at the
intersection of the solid and dashed lines indicating that it corresponds to the unique
unit-intercept SDF consistent with the pricing equation. It implies an SDF with E(m) = 0.
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FIGURE 4

Simple Example with E(Re
f) = 0
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b � a−1
6 f

b � a
6 f

Notes : The shaded area denotes the region in which E(m) < 0. The heavy solid line
denotes the pricing line, b = [E(Re)/E(Re

f)]a, which is also the vertical axis in this case.
The dashed line denotes all possible parameter pairs where the SDF has a unit intercept.
The dotted line denotes all possible parameter pairs where E(m) = 1. Point B lies at the
intersection of the solid and dotted lines indicating that it is the unique unit-mean SDF
consistent with the pricing equation.
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FIGURE 5

Model Identification and Validity
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Notes : Here rC = rank(C) and rD = rank(D).
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FIGURE 6

Small Sample Distributions of �̂S and its Associated t-statistic
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Note: The figure reports results from 10000 Monte Carlo experiments with sample size
T = 256. The true risk factors are synthetic mimics of the Mkt-Rf, SMB and HML factors
in U.S. data. The test model includes only a spurious factor, S, that is uncorrelated with
returns. The graphs report distributions of parameter estimates for the
mean-normalization, and the associated t-statistics. Details of the Monte Carlo
experiments are provided in the Appendix and main text. Results for the case where
T = 10000 are in Figure 7.
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FIGURE 7

Large Sample Distributions of �̂S and its Associated t-statistic
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Note: The figure reports results from 10000 Monte Carlo experiments with sample size
T = 10000. The true risk factors are synthetic mimics of the Mkt-Rf, SMB and HML
factors in U.S. data. The test model includes only a spurious factor, S, that is uncorrelated
with returns. The graphs report distributions of parameter estimates for the
mean-normalization, and the associated t-statistics. Details of the Monte Carlo
experiments are provided in the Appendix and main text.
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7 Appendix

7.1 Extended Proof of Theorem 2

As in Section 2.3 we have X = ( X1 X2 ) with the columns of X1 lying in R(D) and the

columns of X2 lying in N (D). The matrix X is invertible and X

0 = X

�1. We also have

D̃ = DX1.

First we write

D

0
W

�(µR �D�) = XX

0
D

0
W

�(µR �D�)

= X

✓
X

0
1

X

0
2

◆
D

0
W

�(µR �D�)

= X

✓
D̃

0
W

�

0

◆
(µR �D�).

Then we note that

µR �D� = µR �DXX

0
�

= µR �D

�
X1 X2

�✓
X

0
1

X

0
2

◆
�

= µR �
�
D̃ 0

�✓
X

0
1�

X

0
2�

◆

= µR � D̃X

0
1�

Now let � = X1�̃ + x for any x 2 N (D). Then we have

µR �D� = µR � D̃�̃.

Therefore,

D

0
W

�(µR �D�) = X

✓
D̃

0
W

�(µR � D̃�̃)
0

◆
.

Clearly this is zero if and only if �̃ = (D̃0
W

�
D̃)�1

D̃

0
W

�
µR.⌅

7.2 Estimating Long-Run Covariance Matrices

The intercept-normalization

I define S

�
T = 1

T

PT
t=1 û

�
t û

�0
t . When the model is true Et�1[u�

t (�)] = 0 when evaluated at the

true value of �. Therefore E[u�
t (�)u

�
t�j(�)

0] = 0 for j 6= 0. It follows that S�
T is a consistent

estimate of S�.
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The mean-normalization

To compute S

✓
T I use a VARHAC procedure proposed by den Haan and Levin (2000). The

pricing equations for the assets imply that Et�1[u✓
1t(✓)] = 0 when evaluated at the true value

of ✓. Therefore E[u✓
1t(�)u

✓
t�j(�)

0] = 0 for j > 0 and E[u✓
1t(�)u

✓
1t�j(�)

0] = 0 for j < 0. When I

use the VARHAC procedure I make the more restrictive assumption that lagged variables do

not appear in the equations for u✓
1t (the errors corresponding to the asset pricing conditions)

but allow for lags in the equations for u✓
2t (the GMM errors corresponding to ft � µ).

7.3 Data

Fama-French 25 Portfolios

Each Fama and French (1993) portfolio represents the intersection of one of 5 groups of stocks

sorted according to their market capitalization with one of 5 groups of stocks sorted according

to their book equity to market capitalization ratio. The returns are equally weighted. I ob-

tained raw monthly returns from Kenneth French’s website http://mba.tuck.dartmouth.edu/

pages/ faculty/ ken.french/ data library.html. To obtain quarterly returns I compounded

monthly returns within each quarter. To obtain quarterly excess returns I subtract the

quarterly risk free rate defined as the compounded monthly risk free rate from Fama/French

Research Data Factor file. Real excess returns are defined by dividing the nominal excess

return by one plus the inflation rate, which I define below.

Consumption Data

To compute real consumption of nondurables and services I proceed as follows. Let CN
t be

the consumption of nondurables and C

S
t be the consumption of services in nominal dollars,

and let cNt and c

S
t be the corresponding series in constant chained dollars, as published by the

Bureau of Economic Analysis. To obtain nominal consumption of nondurables and services I

simply set Ct = C

N
t +C

S
t . However, because real chained series are not summable, I proceed

as follows to create real consumption of nondurables and services, which I denote ct. First

define st = (CN
t /Ct + C

N
t�1/Ct�1), gNt = c

N
t /c

N
t�1 � 1 and g

S
t = c

S
t /c

S
t�1 � 1. Then define

the growth rate of ct as gt = stg
N
t + (1 � st)gSt . Notice that a real levels series can then be

generated by forward and backward induction relative to a base period. I convert the real

levels series into per capita terms by dividing by the quarterly population series published in

the National Income and Product Accounts by the BEA. I construct an inflation series using

a similar method. Letting ⇡

N
t and ⇡

S
t be the inflation rates for nondurables and services, I

let the combined inflation rate be ⇡t = st⇡
N
t + (1� st)⇡S

t .
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I assume that households derive utility in quarter t + 1 from the stock of durables at

the end of quarter t. To compute the real quarterly stock of durable goods I proceeded

as follows. The Bureau of Economic Analysis publishes end-of-year real stocks of durables

goods. Let kt denote the real stock of durables at the end of some year, and let kt+4 be the

same stock a year (four quarters) later. We observe quarterly real purchases of consumer

durables, which I denote c

D
t . I assume that within each year the model

kt+1 = c

D
t+1 + (1� �)kt (24)

holds, with � allowed to vary by year. I solve for the value of � such that the beginning and

end-of-year stocks are rationalized by purchases series. This is the � such that

kt+4 = c

D
t+4 + (1� �)cDt+3 + (1� �)2cDt+2 + (1� �)3cDt+1 + (1� �)4kt. (25)

Once I identify the value of � that applies within a year using (25), I use (24) to calculates

the within year stocks. I convert the real stocks to per capita terms by dividing by the same

population series used for the consumption series.

Fama and French Factors

These series are taken from the Fama/French Research Data Factor file. I define the monthly

market return as the sum of the market premium series (Mkt-Rf) and the risk free rate series

(Rf). I convert this to a quarterly return by compounding the monthly series geometrically

within each quarter. Denoting the resulting series, RM
t , I convert it to a real return as

follows: rMt = (RM
t � ⇡t)/(1 + ⇡t).

To create quarterly versions of the Fama-French factors (Mkt-Rf, SMB and HML) I

proceed as described in Burnside (2011). To convert them to real excess returns I divide

these series by 1 + ⇡t.

Lettau and Ludvigson Factors

Lettau and Ludvigson (2001) propose a scaled CCAPM model, which uses three factors:

consumption growth, the cay factor (a cointegrating residual between the logarithms of

consumption, asset wealth and labor income), and the product of consumption growth and

cay. I downloaded the factor data directly from the Martin Lettau’s web page for the sample

period 1952Q1–2012Q3.

Jagannathan and Wang Factors

Jagannathan andWang (2007) propose a Q4–Q4 CCAPMmodel. This is simply the CCAPM

estimated using annual, rather than quarterly, equity returns, and using annual consumption
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growth measured from the fourth quarter of one year to the fourth quarter of the year in

which the returns are realized. I construct the relevant series from the quarterly data set

described above, while constructing annual real excess returns for the FF25 portfolios in

similar fashion as to what was described above for quarterly data.

7.4 Lustig and Verdelhan Portfolios and Factors

Lustig and Verdelhan (2007) consider the annual real US dollar excess returns to portfolios

of short-term foreign government securities denominated in foreign currency. The sample

period is 1953–2002. They form these portfolios on the basis of the interest rates on the

underlying securities. In particular the real excess returns on a large number of countries’

treasury securities are sorted into eight bins in each period according to the nominal interest

rates on the securities, from lowest to highest. The returns to holding equally-weighted

portfolios of each bin are then calculated. Lustig and Verdelhan use three risk factors to

explain these returns: consumption growth, durables growth and the market return [their

model is equivalent to Yogo (2006)’s model]. I take the data for the returns and factors

directly from the AEA data repository for their paper.

7.5 Rank Tests

Cragg and Donald (1997)

The Cragg and Donald (1997) and Wright (2003) test for whether B has rank r < k is based

on measuring the distance between B and the set of matrices of the same dimension with

rank r. Let B̂ be a consistent estimator for B and assume that
p
T vec(B̂�B0)

d! N(0, VB),

where B0 is the true value of B. Let V̂B be a consistent estimator for VB. To test the null

hypothesis that rank(B) = r < k I form the statistic

L(r) = min
P2⌦r

T vec(B̂ � P )0V (B̂)�1 vec(B̂ � P )

where ⌦r is the set of all n ⇥ k matrices with rank r. If the true rank of B0 is r, L(r)
d!

�

2
(n�r)(k�r). I construct tests of the rank conditions for the two normalizations by letting B

be C or D and estimating the elements of these matrices by GMM.

To take an example, when the null hypothesis is that r = 0, the test is analogous to a

simple F-test for Bij = 0 for all i, j. In the case the test statistic can be computed with

ease and has a chi-squared distribution with nk degrees of freedom. However, when the null

hypothesis is that rC = 1, computing L(1) can be computationally burdensome, especially

when n and k are large. It involves optimization over nk � (n � 1)(k � 1) = k + n � 1
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free parameters since the single vector that forms the basis for the rows of B has k � 1 free

parameters and there are n rows.

Kleibergen and Paap (2006)

We start with an n ⇥ k matrix ⇧, and the null hypothesis that rank(⇧) = r < k. We

also define ⇡ = vec(⇧) and assume that we have some estimate ⇡̂ with the property thatp
T (⇡̂ � ⇡)

d! N(0, V⇡) as well as a consistent estimate of V⇡, denoted V̂⇡.

We form the scaled matrix ⇥ = G⇧F 0 where Gn⇥n and Fk⇥k are invertible matrices

that make ⇥ invariant to invertible transformations of the data. As described in the main

text, when ⇧ = cov(Re
, f) natural choices are G = ⌃�1/2

Re and F = ⌃�1/2
f , the Cholesky

decompositions of the inverses of the covariance matrices of Re and f .

If we define ✓ = vec(⇥) then ✓ = (F ⌦ G)⇡. Now let ⇥̂ = Ĝ⇧̂F̂ 0 where Ĝ and F̂ are

standard sample analogs of G and F . Then, under standard assumptions, ✓̂ = vec(⇥̂) has

the property that
p
T (✓̂ � ✓)

d! N(0, V✓) with V✓ = (F ⌦G)V⇡(F ⌦G)0.

Now let USV

0 = ⇥ be the SVD of ⇥ and let Un⇥n, Sn⇥k and Vk⇥k be partitioned as

follows:

U =

✓
U11 U12

U21 U22

◆
S =

✓
S1 0
0 S2

◆
V =

✓
V11 V12

V21 V22

◆

where U12 is r ⇥ (n� r), U22 is (n� r)⇥ (n� r), S2 is (n� r)⇥ (k � r), V12 is r ⇥ (k � r)

and V22 is (k � r)⇥ (k � r). Similarly let Û ŜV̂

0 = ⇥̂ be the SVD of ⇥̂. Let

⇤̂r = (Û22Û
0
22)

�1/2
Û22Ŝ2V̂

0
22(V̂22V̂

0
22)

�1/2
,

Ar =

✓
U12

U22

◆
U

�1
22 (U22U

0
22)

1/2
,

Br = (V22V
0
22)

1/2(V 0
22)

�1( V

0
12 V

0
22 ),

and �̂r = vec(⇤̂r).

Under the null hypothesis that rank(⇧) = r,
p
T �̂r converges in distribution to a normal

distribution with mean 0 and covariance matrix ⌦r = (Br ⌦ A

0
r)V✓(Br ⌦ A

0
r)

0. Therefore,

T �̂

0
r⌦

�1
r �̂r converges to a �

2
(n�r)(k�r). In practice, a consistent estimator for ⌦r, ⌦̂r = (B̂r ⌦

Â

0
r)V̂✓(B̂r ⌦ Â

0
r)

0, is used to form the test statistic rk(r) = T �̂

0
r⌦̂

�1
r �̂r with Âr and B̂r being

sample analogs of Ar and Br.

7.6 Monte Carlo Experiment Details

The true SDF is given by m

�
t = 1 � (ft � µf )0� with µf and � being 3 ⇥ 1 vectors. The

vector of risk factors, ft, is assumed to follow the law of motion ft ⇠ Niid(µf ,⌃f ). I set

� = ( 3.70 �0.17 5.61 )0. This parameter vector corresponds to first step GMM estimates
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of the Fama-French three factor model obtained using the mean-normalization using real,

rather than nominal, excess returns and factors to estimate the model. I estimate the model

in real terms because some of the test models in the Monte Carlo experiments use synthetic

consumption factors. I set µf and ⌃f equal to the sample mean and covariance matrix of

the Mkt-Rf, SMB and HML factors.

I generate an n ⇥ 1 (with n = 25) vector of artificial excess returns R

e
t = µR + �(ft �

µf ) + ⇠t where µR is an n⇥ 1 vector, � is an n⇥ k matrix,  is an n⇥ n lower triangular

matrix, ⇠t ⇠ Niid(0, In) and is independent of ft. Given this law of motion for Re
t , it follows

that the covariance matrix of Re
t is ⌃R = �⌃f�

0 +  0.

So that the model shares some characteristics of actual data, I set ⌃R equal to its sample

equivalent for the Fama-French 25 portfolios sorted on size and value. I set � equal to the

matrix of factor betas for these returns regressed on Mkt-Rf, SMB and HML. I set  equal to

the Cholesky decomposition of the covariance matrix of the residuals from those regressions.

Given the assumptions above we have

E(Re
tmt) = E {[µR + �(ft � µf ) + ⇠t][1� (ft � µf )

0
�]}

= µR � �⌃f�. (26)

To ensure that the right hand side of equation (26) is zero, I set µR = �⌃f�. This means

that expected returns of the model correspond to the model-predicted expected returns for

the GMM estimates described above.

7.7 Non-Uniqueness of the SVD and the Model Reduction Pro-
cedure

As mentioned in footnote 10, the model reduction procedure relies on identifying linear

combinations of factors using the SVD of the matrix ⇥ = USV

0. This might be viewed as

problematic given that V in the SVD is sometimes non-unique.

There are two types of non-uniqueness. Neither causes di�culty with the procedure as

long as the researcher’s primary interest is in recovering the parameters associated with the

original factors. Recall that the procedure identifies f̃r = Arf as the reduced set of risk

factors, where V

0
rF and Vr represents the first r columns of V .

The first type of non-uniqueness is that it is usually possible to swap the signs of columns

in V and corresponding columns in U . So, we could swap the signs of the elements of Vr. Of

course, this reverses the signs of the factors, and the resulting coe�cients, �̃ and �̃. Therefore,

if one interested in backing out the implied � and � one ends up with the same values as

before. This is because the transformations � = F

0
Vr�̃ and � = F

0
Vr�̃ negate the change of

sign.
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The second type of non-uniqueness arises if there are repeat singular values. In this

the columns of V associated with these repeat singular values can be rotated using any

orthogonal matrix. So, now, imagine that this issue applies to two (or more) of the columns

in Vr. This means that we could find one SVD and define f̃r = (V 0
rF )f and, using an

arbitrary unitary rotation matrix Qr⇥r define V̄r = VrQ and let f̄r = (V̄ 0
rF )f .

For the model based on the f̃r we have

D̃ = E(Re
f̃

0
r) = E(Re

f

0)F 0
Vr = DF

0
Vr

C̃ = cov(Re
, f̃r) = cov(Re

, f)F 0
Vr = CF

0
Vr.

For the model based on the f̄r we have

D̄ = E(Re
f̄

0
r) = E(Re

f

0)F 0
V̄r = DF

0
VrQ = D̃Q

C̄ = cov(Re
, f̄r) = cov(Re

, f)F 0
V̄r = CF

0
VrQ = C̃Q.

Now consider the population version of first step GMM with the mean normalization for

these reduced factors. We have

�̄ = (C̄ 0
C̄)�1(C̄ 0

µR) = (Q0
C̃

0
C̃Q)�1(Q0

C̃

0
µR) = Q

0(C̃ 0
C̃)�1(C̃ 0

µR) = Q

0
�̃.

Similarly

�̄ = Q

0
�̃.

Thus the parameters associated with the original factors are the same regardless of which

rotation we use. That is � ⌘ A

0
r�̃ is the same as

� ⌘ Ā

0
r�̄ = (V̄ 0

rF )0(Q0
�̃) = F

0
V̄rQ

0
�̃ = F

0
Vr�̃ = A

0
r�̃,

and � ⌘ A

0
r�̃ is the same as � ⌘ Ā

0
r�̄.

Since the parameters associated with the di↵erent rotations are equivalent for the original

factors, the GMM errors at the first step are the same. So we get identical weighting matrices

at the next step of GMM. This makes the estimators at all GMM steps equivalent, regardless

of the rotation used.
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APPENDIX TABLE 1: Rank Tests in the Monte Carlo Experiment

% rejected at % rejected at
10% level 5% level 10% level 5% level

True Model (Factors: Mkt-Rf, SMB, HML) rD = rC = 3

H0 : rD = 2 100% 100% H0 : rC = 2 100% 100%
H0 : rD = 1 100% 100% H0 : rC = 1 100% 100%
H0 : rD = 0 100% 100% H0 : rC = 0 100% 100%

Single Relevant Factor (Factor: Mkt-Rf) rD = rC = 1

H0 : rD = 0 100% 100% H0 : rC = 0 100% 100%

Single Spurious Factor (Factor: S) rD = 1, rC = 0

H0 : rD = 0 100% 100% H0 : rC = 0 10.4% 5.1%

Two Factors (Factors: Mkt-Rf, S) rD = 2, rC = 1

H0 : rD = 1 100% 100% H0 : rC = 1 10.3% 4.9%
H0 : rD = 0 100% 100% H0 : rC = 0 100% 100%

5. Over-specified Model (Factors: Mkt-Rf, SMB, HML, S) rD = rC = 3
H0 : rD = 3 10.1% 5.3% H0 : rC = 3 10.2% 5.2%
H0 : rD = 2 100% 100% H0 : rC = 2 100% 100%
H0 : rD = 1 100% 100% H0 : rC = 1 100% 100%
H0 : rD = 0 100% 100% H0 : rC = 0 100% 100%

Notes: The table reports results of Kleibergen and Paap (2006) rank tests from 10000 Monte Carlo experiments with sample size T = 10000. The
true risk factors are synthetic mimics of the Mkt-Rf, SMB and HML factors in U.S. data. Rank tests are performed for five test models that use
di↵erent factors. rC = rank[cov(Re, f)] and rD = rank[E(Ref 0)], where Re are the returns generated in the experiment, and f is the conjectured
vector of factors. The table reports the fraction of the samples in which these tests reject the null hypothesis when the size of the test is set to 10%
and 5%. Details of the Monte Carlo experiments are provided in the Appendix and main text.
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APPENDIX TABLE 2: Monte Carlo Experiment: Estimation of Model 1 (The True Model)

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

True Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�Mkt�Rf 3.28 3.28 3.27 100.0 100.0 3.29 3.29 100.0 100.0 3.29 3.29 100.0 100.0
�SMB -0.15 -0.15 -0.15 18.4 10.8 -0.15 -0.15 18.9 10.9 -0.15 -0.15 18.9 10.9
�HML 4.97 4.97 4.97 100.0 100.0 4.98 4.98 100.0 100.0 4.98 4.98 100.0 100.0
OIR test 9.7 5.0 9.7 5.0 9.7 5.0

Mean Normalization

�Mkt�Rf 3.70 3.70 3.70 100.0 100.0 3.70 3.70 100.0 100.0 3.70 3.70 100.0 100.0
�SMB -0.17 -0.17 -0.17 18.4 10.8 -0.17 -0.17 18.8 10.9 -0.17 -0.17 18.8 10.9
�HML 5.61 5.62 5.62 100.0 100.0 5.62 5.62 100.0 100.0 5.62 5.62 100.0 100.0
OIR test 9.7 5.0 9.7 5.0 9.7 5.1

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The true values of the parameters of the SDF are indicated in the first column. The table reports mean
and median estimates of the parameters of the intercept and mean-normalizations, as well as the frequency with which the estimated parameters are
found to be statistically significant at the 10% and 5% levels. The table also reports the frequency with which the model is rejected at the 10% and
5% levels based on the OIR test. The test statistic is numerically identical at the first and second GMM steps. Details of the Monte Carlo experiments
are provided in the Appendix and main text.
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APPENDIX TABLE 3: Monte Carlo Experiment: Estimation of Model 2

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�Mkt�Rf 3.06 3.06 100.0 100.0 3.03 3.04 100.0 100.0 3.03 3.03 100.0 100.0
OIR test 100.0 100.0 100.0 100.0 100.0 100.0

Mean Normalization

�Mkt�Rf 3.24 3.24 100.0 100.0 2.78 2.78 100.0 100.0 2.74 2.74 100.0 100.0
OIR test 100.0 100.0 100.0 100.0 100.0 100.0

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The test model includes only the Mkt-Rf factor. The table reports mean and median estimates of
the parameters of the intercept and mean-normalizations, as well as the frequency with which the estimated parameters are found to be statistically
significant at the 10% and 5% levels. The table also reports the frequency with which the model is rejected at the 10% and 5% levels based on the
OIR test. The test statistic is numerically identical at the first and second GMM steps. Details of the Monte Carlo experiments are provided in the
Appendix and main text.
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APPENDIX TABLE 4: Monte Carlo Experiment: Estimation of Model 3

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�S 102 102 100.0 100.0 101 101 100.0 100.0 101 101 100.0 100.0
OIR test 9.4 4.4 9.4 4.4 10.5 5.0

Mean Normalization

�S 9.22 -185 18.7 10.4 -0.39 -0.47 2.2 1.6 -0.52 -1.71 82.3 78.4
OIR test 3.6 3.4 3.6 3.4 99.9 99.8

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of
the Mkt-Rf, SMB and HML factors in U.S. data. The test model includes only a spurious factor, S, that is uncorrelated with returns. The table
reports mean and median estimates of the parameters of the intercept and mean-normalizations, as well as the frequency with which the estimated
parameters are found to be statistically significant at the 10% and 5% levels. The table also reports the frequency with which the model is rejected
at the 10% and 5% levels based on the OIR test. The test statistic is numerically identical at the first and second GMM steps. Details of the Monte
Carlo experiments are provided in the Appendix and main text.
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APPENDIX TABLE 5: Monte Carlo Experiment: Estimation of Model 4

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�Mkt�Rf 0.00 0.00 9.9 4.9 0.03 0.03 11.6 6.1 0.03 0.03 11.9 6.3
�S 102 102 100.0 100.0 101 101 100.0 100.0 101 101 100.0 100.0
OIR test 9.1 4.1 9.1 4.1 10.9 5.4

Mean Normalization

�Mkt�Rf 3.11 3.18 83.3 77.1 2.75 2.75 91.1 79.1 2.74 2.74 100.0 100.0
�S -18.1 -39.7 91.5 76.8 -1.17 -4.35 4.6 2.2 -1.19 -3.55 77.4 72.4
OIR test 31.5 30.0 31.5 30.0 99.8 99.8

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The test model includes Mkt-Rf and a spurious factor, S, that is uncorrelated with returns. The table
reports mean and median estimates of the parameters of the intercept and mean-normalizations, as well as the frequency with which the estimated
parameters are found to be statistically significant at the 10% and 5% levels. The table also reports the frequency with which the model is rejected
at the 10% and 5% levels based on the OIR test. The test statistic is numerically identical at the first and second GMM steps. Details of the Monte
Carlo experiments are provided in the Appendix and main text.
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APPENDIX TABLE 6: Monte Carlo Experiment: Estimation of Model 5 (The Over-specified Model)

GMM Step 1 GMM Step 2 Iterated GMM

% Significant % Significant % Significant

True Mean Median 10% 5% Mean Median 10% 5% Mean Median 10% 5%

Intercept Normalization

�Mkt�Rf 3.25 0.89 0.89 69.4 58.9 0.89 0.89 83.6 75.2 0.89 0.89 84.1 76.0
�SMB -0.15 -0.04 -0.04 10.5 5.7 -0.04 -0.04 10.8 5.9 -0.04 -0.04 11.2 6.2
�HML 4.92 1.35 1.36 69.7 59.1 1.35 1.35 83.8 75.8 1.35 1.35 84.2 76.7
�S 74.1 74.1 99.8 99.5 74.2 74.2 100.0 100.0 74.2 74.2 100.0 100.0
OIR test 7.0 3.1 7.0 3.1 8.2 3.7

Mean Normalization

�Mkt�Rf 3.70 3.70 3.70 100.0 100.0 3.70 3.70 100.0 100.0 3.70 3.70 100.0 100.0
�SMB -0.17 -0.17 -0.17 15.9 9.0 -0.17 -0.17 16.6 9.4 -0.16 -0.17 17.1 9.8
�HML 5.61 5.62 5.62 100.0 100.0 5.62 5.62 100.0 100.0 5.62 5.62 100.0 100.0
�S -0.21 0.21 6.6 1.9 -0.36 -0.59 7.3 3.1 -0.36 -0.55 7.8 3.0
OIR test 6.5 2.8 6.5 2.8 7.6 3.4

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data, but the test model also includes a spurious factor, S, that is uncorrelated with returns. The true values
of the parameters of the SDF are indicated in the first column. The table reports mean and median estimates of the parameters of the intercept
and mean-normalizations, as well as the frequency with which the estimated parameters are found to be statistically significant at the 10% and 5%
levels. The table also reports the frequency with which the model is rejected at the 10% and 5% levels based on the OIR test. The test statistic is
numerically identical at the first and second GMM steps.
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APPENDIX TABLE 7: Model Reduction using the Mean-Normalization in the Monte Carlo Experiment

Model 3 Model 4 Model 5

1st/2nd step Iterated 1st/2nd step Iterated 1st/2nd step Iterated

Frequency rank is not reduced 0.051 0.051 0.049 0.049 0.052 0.052

Rejection rate in these cases 3.2% 100% 38.1% 100% 3.5% 4.3%

Frequency rank is reduced 0.949 0.949 0.951 0.951 0.948 0.948

Rejection rate in these cases 100% 100% 100% 100% 5.1% 5.1%

Overall rejection rate with model reduction 95.1% 100% 97.0% 100% 5.0% 5.0%

Rejection rate without model reduction 3.4% 99.8% 30.0% 99.8% 3.4% 3.8%

Notes: The table reports results of the rank reduction procedure from 10000 Monte Carlo experiments with sample size T = 10000. The nominal size
of the OIR tests for the procedure is set to 5%. Details of the Monte Carlo experiments are provided in the Appendix and main text.
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APPENDIX TABLE 8: Distributions of Direct and Indirect Parameter Estimates: Model 1

GMM Step 1 GMM Step 2 Iterated GMM

P10 Median P90 P10 Median P90 P10 Median P90

Intercept Normalization

�Mkt�Rf 3.12 3.27 3.43 3.13 3.29 3.44 3.13 3.29 3.44
�SMB -0.41 -0.15 0.12 -0.40 -0.15 0.11 -0.40 -0.15 0.11
�HML 4.76 4.97 5.18 4.78 4.98 5.20 4.78 4.98 5.20

�(�)Mkt�Rf 3.12 3.27 3.43 3.12 3.27 3.43 3.12 3.27 3.43
�(�)SMB -0.41 -0.15 0.12 -0.40 -0.15 0.11 -0.40 -0.15 0.11
�(�)HML 4.76 4.97 5.18 4.76 4.97 5.18 4.76 4.97 5.18

Mean Normalization

�Mkt�Rf 3.51 3.70 3.90 3.51 3.70 3.89 3.51 3.70 3.89
�SMB -0.47 -0.17 0.13 -0.45 -0.17 0.12 -0.45 -0.17 0.12
�HML 5.34 5.62 5.89 5.35 5.62 5.89 5.35 5.62 5.89

�(�)Mkt�Rf 3.51 3.70 3.90 3.52 3.72 3.91 3.52 3.72 3.91
�(�)SMB -0.47 -0.17 0.13 -0.45 -0.17 0.12 -0.45 -0.17 0.12
�(�)HML 5.34 5.62 5.89 5.37 5.64 5.91 5.37 5.64 5.91

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The table reports 10th percentiles, medians, and 90th percentiles of the distributions of the parameter
estimates for the true model. Details of the Monte Carlo experiments are provided in the Appendix and main text.

65



APPENDIX TABLE 9: Distributions of Direct and Indirect Parameter Estimates: Model 2

GMM Step 1 GMM Step 2 Iterated GMM

P10 Median P90 P10 Median P90 P10 Median P90

Intercept Normalization

�Mkt�Rf 2.91 3.06 3.21 2.87 3.04 3.20 2.87 3.03 3.19

�(�)Mkt�Rf 2.90 3.05 3.20 2.50 2.64 2.78 2.46 2.61 2.75

Mean Normalization

�Mkt�Rf 3.06 3.24 3.41 2.61 2.78 2.95 2.58 2.74 2.91

�(�)Mkt�Rf 3.07 3.25 3.43 3.03 3.22 3.41 3.02 3.22 3.41

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The table reports 10th percentiles, medians, and 90th percentiles of the distributions of the parameter
estimates for Model 2, which includes only Mkt-Rf as a risk factor. Details of the Monte Carlo experiments are provided in the Appendix and main
text.
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APPENDIX TABLE 10: Distributions of Direct and Indirect Parameter Estimates: Model 3

GMM Step 1 GMM Step 2 Iterated GMM

P10 Median P90 P10 Median P90 P10 Median P90

Intercept Normalization

�S 99.0 102 105 99.1 101 103 99.1 101 103

�(�)S 97.9 102 106 -43.2 75.7 236 -42.1 75.7 235

Mean Normalization

�S -5617 -185 5617 -354 0 357 -355 -1.71 356

�(�)S -19720 -1502 17535 -22426 4657 24897 -22385 4674 24884

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The table reports 10th percentiles, medians, and 90th percentiles of the distributions of the parameter
estimates for Model 3, which includes only a spurious risk factor, S. Details of the Monte Carlo experiments are provided in the Appendix and main
text.
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APPENDIX TABLE 11: Distributions of Direct and Indirect Parameter Estimates: Model 4

GMM Step 1 GMM Step 2 Iterated GMM

P10 Median P90 P10 Median P90 P10 Median P90

Intercept Normalization

�Mkt�Rf -0.12 0.00 0.12 -0.09 0.03 0.14 -0.09 0.03 0.14
�S 99.0 102 105 98.2 101 104 98.2 101 104

�(�)Mkt�Rf -0.58 0.03 0.56 -4.01 0.89 4.70 -4.01 0.89 4.86
�(�)S 83.4 98.3 121 -82.3 67.3 261 -87.5 66.8 259

Mean Normalization

�Mkt�Rf 1.74 3.18 4.34 2.50 2.75 2.99 2.50 2.74 2.98
�S -2000 -39.7 1991 -292 -4.35 294 -292 -3.55 292

�(�)Mkt�Rf -9.03 2.77 13.9 -7.93 2.70 12.5 -7.92 2.70 12.5
�(�)S -20218 2166 20421 -16466 3847 20273 -16438 3849 20288

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The table reports 10th percentiles, medians, and 90th percentiles of the distributions of the parameter
estimates for Model 4, which includes Mkt-Rf and a spurious risk factor, S. Details of the Monte Carlo experiments are provided in the Appendix
and main text.

68



APPENDIX TABLE 12: Distributions of Direct and Indirect Parameter Estimates: Model 5

GMM Step 1 GMM Step 2 Iterated GMM

P10 Median P90 P10 Median P90 P10 Median P90

Intercept Normalization

�Mkt�Rf 0.36 0.89 1.42 0.47 0.89 1.32 0.47 0.89 1.32
�SMB -0.18 -0.04 0.10 -0.18 -0.04 0.10 -0.18 -0.04 0.10
�HML 0.55 1.36 2.15 0.71 1.35 1.99 0.71 1.35 1.99
�S 57.9 74.1 90.2 61.3 74.2 86.9 61.3 74.2 86.9

�(�)Mkt�Rf 2.01 3.21 7.06 2.22 3.28 6.03 2.22 3.28 6.02
�(�)SMB -0.55 -0.14 0.14 -0.50 -0.15 0.12 -0.50 -0.15 0.12
�(�)HML 3.04 4.85 10.8 3.37 4.97 9.13 3.37 4.97 9.12
�(�)S -119 2.08 39.1 -85.0 -0.10 32.7 -85.0 0.03 32.7

Mean Normalization

�Mkt�Rf 3.50 3.70 3.91 3.50 3.70 3.90 3.50 3.70 3.90
�SMB -0.47 -0.17 0.14 -0.46 -0.17 0.13 -0.46 -0.17 0.13
�HML 5.34 5.61 5.90 5.34 5.62 5.90 5.34 5.62 5.90
�S -67.4 0.21 66.0 -53.7 -0.59 53.2 -53.7 -0.55 53.1

�(�)Mkt�Rf 3.24 3.70 4.15 3.30 3.71 4.12 3.29 3.71 4.12
�(�)SMB -0.87 -0.17 0.55 -0.81 -0.16 0.47 -0.81 -0.16 0.48
�(�)HML 4.99 5.62 6.24 5.05 5.62 6.20 5.05 5.62 6.20
�(�)S 143 299 797 171 307 650 172 307 650

Note: The table reports results from 10000 Monte Carlo experiments with sample size T = 10000. The true risk factors are synthetic mimics of the
Mkt-Rf, SMB and HML factors in U.S. data. The table reports 10th percentiles, medians, and 90th percentiles of the distributions of the parameter
estimates for Model 5, which includes the true risk factors and a spurious risk factor, S. Details of the Monte Carlo experiments are provided in the
Appendix and main text.
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