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Accurate forecasts of data center energy consumptions can help eliminate risks caused by under-
provisioning or waste caused by over-provisioning. However, due to nonlinearity and 
complexity, energy prediction remains a challenge. An added layer of complexity further comes 
from dynamically changing workloads. There is a lack of physical principle based clear-box 
models, and existing black-box based methods such neural networks are restrictive. In this 
paper, we develop an evolutionary neural network as a structurally optimal black-box model to 
forecast the energy consumption of a dynamic cloud data center. In particular, the approach to 
evolving an optimal network is developed from several novel mechanisms of a genetic 
algorithm, such as a structurally-inclusive matrix encoding and species parallelism that help 
maintain an overall increasing fitness to overcome slow convergence whilst preventing 
premature dominance. The model is trained using part of the data obtained from a set of 
MapReduce jobs on a 120-core Hadoop cluster and is then validated against unseen data. The 
results, both in terms of prediction speed and accuracy, suggest that this evolutionary neural 
network approach to cloud data center forecast is highly promising. 
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1. Introduction 

The proliferation of cloud computing has meant that energy demand for data centers 
continues to multiply. A more efficient use of energy can prevent this type of increased 
consumption from spiraling out of control. A more sustainable data center also makes business 
sense as it improves profitability and reduces environmental impact. To help achieve this, more 
accurate energy prediction will play a key role, as it helps data center owners adjust and 
schedule resources accordingly. With this motivation, we set out to develop an evolutionary 
neural network model with the aim to provide a fast and accurate energy forecast for cloud data 
centers [1] [2].  
Traditionally, the training of neural networks (NNs) uses a method called backpropagation, 
which is based on gradient guidance to optimize the network weights with a fixed architecture to 
produce the lowest modeling error. Albeit the efficiency of this approach, backpropagation often 
results in the search being trapped in a local minimum. Moreover, due to a fixed number of 
neurons and connections, this approach is unsuitable for modeling non-linear systems, where 
multiple local minima often exist. Within a data center, multiple electrical and mechanical 
systems interact in a complex manner in supplying power and cooling to the physical servers 
consolidated within virtual machine cloud environment. Hence, the energy consumption 
characteristics of cloud data centers exhibit non-linearity [3]. A global search algorithm such as 
the genetic algorithm (GA) overcomes this difficulty, but suffers from low convergence as it is a 
nondeterministic polynomial algorithm.  

In this paper, a novel implementation mechanism of the GA is proposed to improve the 
convergence rate for NN modeling. In particular, a new encoding scheme embodies the NN 
weights and structure in a matrix representation, so as to enhance the efficiency of the GA 
operations of crossover and mutation for the NN search. Further, sub-populations are used for 
individuals in each species to thrive through intra-species crossover, protecting the species from 
pre-mature extinction before they have a chance to evolve into healthier individuals. To train 
and validate such an evolutionary NN model, we set up a Hadoop cluster for our experiments.  

The rest of the paper is organized as follows. In Section 2, NN modeling for data center 
energy consumption is formulated. The evolutionary approach is then detailed in Section 3. 
Experimental results are presented and examined in Section 4, based on data collected from the 
Hadoop cluster. In Section 5, conclusions are drawn and future work is highlighted.       

2. Neural Network Modeling 

An artificial neural network mimics the way the human brain learns and recognizes 
patterns. NN models are optimized against training data often collected from experiments [5] 
[6]. In our modeling, data are collected from a Hadoop cluster. 
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2.1 Network Structure 

Figure 1 shows a typical three layer (or single hidden layer) feed-forward Multi-Layer 
Perceptron (MLP) NN [7]. In this work, the number of neurons is set to a maximum of 20 for 
the hidden layer and the number of hidden layer fixed to 1. Based on the universal 
approximation theorem [13], any arbitrary continuous function can be arbitrary well 
approximated by such MLP. In [11], NN with 1 hidden layer has been utilized to successfully 
forecast the photovoltaic power yield. In Figure 1, the structure of a NN consists of a 
constellation of interconnected neurons. These neurons send unidirectional signals to other 
neurons via these interconnections. The strength of a signal received by a neuron is dependent 
on the connection weight where the signal is being carried along. The more excitatory the 

weight, the more amplified the signal. The sum of the weighted signals received by the neuron 
is then put through an activation function to normalize the amplitude of the output of the neuron. 

In Figure 1,  represents the inputs, , represents the weights matrix between input i and 

neuron j. Each n is the sum of the products of all the inputs with their respective weights as 
expressed in (1),  
 

  n =∑ , 	 	      (1) 

 
The activation function is represented by f. An example of this is the uni-polar sigmoid function 
given by (2).  

  f(n) =       (2) 

 
The output y(x) is the result predicted by the entire NN at the output layer where, 
 

y(x) = ∑ , 	 .       (3) 

 

Figure 1: A multi-layer perceptron neural network with three layers 
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2.2 Training Neural Networks 

NN training utilizes learning algorithms to improve the network parameters such as 
weights and structure using empirical inputs and output data of an observed system that is to be 
modeled. The inputs represent energy related features collected from the Hadoop cluster and the 
output represents the energy consumption of the cluster. The neural network features are listed 
as follows: 
 

Neural Network Features: 
1. Number of Map and Reduce 

Instructions 
2. CPU Utilization (%) 
3. System Load (%) 
4. Memory Use (%) 
5. Map Read (Gigabyte) 
6. Reduce Read (Gigabyte) 

 

 
7. Map Write (Gigabyte) 
8. Reduce Write (Gigabyte) 
9. Reduce Shuffle (Gigabyte) 
10. Network Bandwidth (Gigabit per 

second) 
11. File size (Gigabyte) 
12. Job Completion Duration (Hour) 

 
Neural Network output:  

1. Energy consumption (kilowatt-hour) 
 

The features, along with their method of collection, are described in Table 1 below. 
Category Metric Unit Description Method of 

collection 

In
pu

ts
 

CPU/ 
System 

1. Number of Map and 
Reduce Instructions 

Number Job’s instruction number Ganglia 

2. CPU utilization % Percentage of CPU time process the 
MapReduce process 

Ganglia 

3. System Load Number System capacity in processing 
MapReduce workload  

Ganglia 

Memory 4. Memory use % Percentage of memory use during the 
MapReduce process 

Ganglia 

Disk IO 5. Map read 
6. Reduce read 
7. Map write 
8. Reduce write 

Gigabyte
Gigabyte 
Gigabyte 
Gigabyte 

Data read by Map from local disk 
Data read by Reduce from local disk 
Data written by Map to local disk 
Data written by Reduce to local disk 

Hadoop built-in 
counters 

Network 9. Reduce Shuffle 
bytes  

Gigabyte Data transferred from Map to Reduce Hadoop built-in 
counters 

10. Network Bandwidth Gigabit 
per sec 

Data transmitted and received Ganglia 

Job 
Profile 

11. File size Gigabyte Size of MapReduce jobs Hadoop built-in 
counters 

12. Job completion 
duration 

Hour Time taken to finish a MapReduce 
job 

Hadoop built-in 
counters 

O
ut

pu
t 

Energy 1. Energy consumption kWh Energy consumed by Hadoop cluster  SNMP retrieve from 
Raritan iPDU 

Table 1 Energy-Related Metrics for Hadoop Cluster 
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The learning of a NN generally follows the gradient of an error function through 
backpropagation. As gradient guidance often converges to a local minima [7] and cannot be 
used to determine an optimal network structure, we propose the use of a GA to evolve both the 
structure and the weights of the NN for the energy consumption modeling of cloud data center.   

3. Evolutionary Neural Network Modeling 

The evolutionary NN modeling technique being developed in this paper aims to provide an 
accurate and computationally efficient approach to the optimization of both the weights and the 
structure of the NN during the training phase. There are up to 12 neurons for the input layer, 
with an additional input of a unity value to represent a bias term through the weight to be trained 
for this input. The output layer comprises of the single neuron, representing the energy 
consumption. The number of layers is fixed at 3. Although this can be varied to model various 
complex systems, it is proven that a single hidden layer is sufficient to approximate any 
arbitrary function and the general consensus is that any improvements in the efficiency of 
hidden neurons are typically very small [8]. As an empirically-derived rule-of-thumb suggests 
that an optimal number of hidden neurons is usually between that of the input and output ones 
[8], we set a maximum number of hidden neurons to 20 for the GA to optimize. The following 
sections describe in detail the GA encoding scheme and the evolutionary NN.  

 

3.1 Neural Network Encoding 

To encode the NN structure and weights, a direct encoding scheme is developed. This 
approach is able to represent a large class of NN solutions as well as to provide a stable search 
space for improved convergence. Figure 2 shows the chromosome for a NN with 3 input nodes, 
4 hidden nodes and 1 output node. The length of the chromosome is determined by the 
maximum number of connections between the input, hidden and output nodes. In this case, it 
would be 16 where the maximum number of connections between the input and hidden nodes is 
12 (3 inputs x 4 hidden neurons) and the maximum number of connections between the hidden 
and the output node is 4 (4 hidden nodes x 1 output node). The first 12 genes represents the 
connections and weights between input node i to hidden node j, denoted by w(i,j). The last 4 
genes represent the connections and weights between the hidden node j to output node 1, 
denoted by w(j,1). A value of ‘0’ in the gene indicates the absence of a connection between the 
nodes. This chromosome can be easily expressed as a 4 x 4 matrix as shown in Figure 3a. 

 
w(1,1) 

0.032 
w(1,2) 

-0.348 
w(1,3) 

0.013 
w(1,4) 

0

w(2,1) 

0.031 
w(2,2) 

0 
w(2,3) 

0.349

w(2,4) 

0.210

w(3,1) 

-0.583

w(3,2) 

-0.348

w(3,3) 

0.239

w(3,4) 

0

w(1,1) 

0.023 
w(2,1) 

0.345 
w(3,1) 

0.295 
w(4,1) 

-0.345

 
Figure 2. The Chromosome of the 3 Layer NN Model with 3 Input Nodes, 4 Hidden Nodes and 1 

Output Node 

 
Figure 3 shows the complete genotype-phenotype mapping with rows denoting input and 

output node connections and columns denoting hidden node connections. Input node 1 has 
connections to hidden node 1, 2 and 3 with weights 0.032, -0.348 and 0.013, respectively. All 4 
hidden nodes are connected to the output node with weights 0.023, 0.345, 0.295 and -0.345, 
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respectively. A weight value of ‘0’ indicates there is no connection between input node 2 and 
hidden 2 nodes.  

 
w(1,1) 

0.032 
w(1,2) 

-0.348 
w(1,3) 

0.013 
w(1,4) 

0

w(2,1) 

0.031 
w(2,2) 

0 
w(2,3) 

0.349

w(2,4) 

0.210

w(3,1) 

-0.583

w(3,2) 

-0.348

w(3,3) 

0.239

w(3,4) 

0

w(1,1) 

0.023 
w(2,1) 

0.345 
w(3,1) 

0.295 
w(4,1) 

-0.345

 
 

           

 Hidden 
node 1 

Hidden 
node 2 

Hidden 
node 3 

Hidden 
node 4 

Input 
node 1 

0.032 -0.348 0.013 0 

Input 
node 2 

0.031 0 0.349 0.210

Input 
node 3 

-0.583 -0.348 0.239 0 

Output 
node  

0.023 0.345 0.295 -0.345

 
(a). Genotype      (b). Corresponding NN  

Figure 3. Illustration of the NN encoding scheme and genotype-phenotype mapping. 
 

3.2 GA Framework 

Figure 4 shows the framework and the corresponding pseudo code for the GA used in the 
NN modeling. The control parameters used in the GA are summarized in Table 2.  The 
algorithm is briefly explained below.  

 
The evolutionary process begins with the random initialization of individuals. This is the 

initial (global) population. At the start of each generational cycle, the fitness of the individuals is 
calculated and the weakest ones are replaced with the fittest. The “kill-percentage” determines 
the amount of individuals that will be replaced. The replacement strategy keeps the average 
population fitness on a progressive course by purging of the weaklings.  

 
The next process is speciation. The speciation algorithm splits the population into sub-

populations (see Figure 5). The compatibility consideration for speciation is based on the 
number of hidden nodes for a NN. For example, NN with 10 hidden nodes are grouped into a 
species by themselves called NN_10. NN with 12 hidden nodes are grouped into another 
species, NN_12, so on and so forth. Individuals compete for survival primarily within their own 
species instead of with the population at large. The objective of speciation is to grant time for 
individuals to evolve to healthier organisms without the threat of any one species taking over 
[14]. This way, premature extinction is withheld thereby preserving structural innovation and 
giving potential solutions within the species a chance to thrive. From the optimization 
viewpoint, each species contain a local optima [15] from which a global solution can be 
identified.   

1

2

3

1 

2 

3 

4 

Genotype-
Phenotype 
Mapping 

o/p

0.032

-0.345

0.023
0.031

0.210
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GA Control 
Parameters 

Description Values 

pop_size The size of the population. 100 

max_gen The maximum number of generational cycles. 100 

xo_rate_intra The intra-species crossover rate. This rate governs the percentage of new individuals 
in the respective species that will replace the old.

0.9 

xo_rate_inter  The inter-species crossover rate. This rate governs the probability where one of the 
parent for crossover will come from another species.

0.01 

mu_rate_wt The mutation rate for the connection weights. This rate governs the probability where 
connection weights will be mutated. 

0.015 

mu_range_wt The mutation range for the connection weights. This range governs the mutated 
weight value that will fall within this range centered on its original value. 

-0.5 to 0.5 

mu_wt_cap  The weight cap number that caps the mutated weight to 1. 1 

mu_rate_conn The mutation rate for re-enabling a connection. This rate governs the probability that a 
disabled link will be re-enabled. 

0.01 

kill_percentage The kill percentage number. This number governs the percentage of the weakest 
individuals in the population will be replaced with the healthiest ones. 

0.05 

Table 2 GA Control Parameters and Values 

 

Figure 4. Framework and corresponding pseudo code of the  GA for NN modeling. 

Start 

Initialisation 

Replacement 

Speciation 

Selection 

Crossover 

Mutation 

End 

Y 
N Stop condition 

Met? 

Parameterisation 

Cycle through all 
species? 

N

Y 

Genetic Algorithm ()
[ 
Parameterise control data;  
Initialise population;  
do  
   [ 
   Replace; 
   identify and group species; 
   do  
      [  
      select solution for next generation 
      perform crossover  
      perform mutation 
      ] 
   while cycle through all species not completed 
] 
while stop condition not met 
] 
end 

Figure 4. Framework and corresponding pseudo code of the  GA for NN modeling. 
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After the speciation process, the selection process begins in the preparation for crossover. 

Here, the Stochastic Universal Sampling (SUS) selection scheme is applied to choose suitable 
candidates for crossover. Figure 6 provides an illustration of the SUS. In comparison to the 
Roulette-Wheel Selection (RWS) which provides no bias but does not guarantee a minimum 
spread, SUS is non-bias and ensures a minimum spread is maintained [9]. This is achieved by 
using a single random value to select the candidates at equally spaced intervals as opposed to 
the RWS where the apportioning is based on an individual’s fitness such that the fittest 
individual has a highest chance of being selected In SUS, weaker individuals of the sub-
population has equal chances to be chosen and therefore not allow the fittest individuals to 
dominate the candidate space prematurely. 

 

Global population

NN_12

NN_5

NN_14

NN_9

NN_11

NN_10

NN_6

Sub‐populations

Figure 5. Speciation Forming Sub-population 

Individuals     1            2                   3            4                   5         6          7      8   9 10

   

0.0                     0.19                0.32          0.46               0.60           0.71       0.84        0.91  1.0     

Random number 

Selection 1   Selection 2  Selection 3  Selection 4  Selection 5 Selection 6  Selection 7 Selection 

Figure 6. Stochastic Universal Sampling 
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Without loss of generality, the crossover rate is fixed at 0.9, for 90% of the population to 

be replaced with new offspring. We implement two types of crossover in this algorithm - intra-
species crossover and inter-species crossover. In intra-species crossover, we apply a single-point 
crossover at the mid-point of the hidden layer in the NN structure. The parents selected for the 
crossover is provided by the SUS selection scheme. The portions of the parents’ genome at the 
crossover point are recombined to produce the new offspring (see Figure 7). This method of 
crossover will always produce an offspring that retains the species’ compatibility which allows 
that new individual to stay and thrive within the species. The safeguard is necessary to protect 
structural innovation and prevent the threat of any one species from taking over the entire 
population. The intra-species crossover rate is set to 0.9. Hence, 9 out of 10 individuals in their 
own species will be replaced with new offspring in each generational cycle. For inter-species, 
the crossover rate is set at 0.01. Here, we too apply a single-point crossover method however, 
this time it is at the mid-point of the genome, as shown in Figure 8. The recombination at the 
mid-point of the genome ensures new species can be formed thereby enhancing the search 
space. The parents for inter-species crossover are selected at random from the entire population.  

 

                 Mid-point of Hidden Layer 

 
 
The mutation rate for weights and connections are set to 0.015 and 0.01, respectively, 

where every individual has a 1.5% chance for its weights and 1% for structure to be changed 
during the mutation process. Structure mutation rate is lower of the two as this mutation, if 
occur, can effectively change the individual from one species to another. At the completion of 
the sub-population renewal on a global basis, the stop condition is assessed. If the stop 
conditions are not met – either the individual fitness > 0.99 or generational cycle reaches 100, 
the generational cycle repeats.  
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Figure 7. Intra-Species Crossover 
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                    Parent 1                                  Parent 2 
 

 
  

             
 
 
 
 
 
 

 
      Child 1               Child 2 
 

 
 
 
 
 
 
 
 
 

 
 

The generational cycle continues until the termination conditions are met. The search will 
terminate when either an individual’s fitness within the population has reached the given target 

value of 0.99 or a fixed number of generational cycle, that is, 100 generations has passed.  

The dataset is apportioned 70% for training and 30% for validation. The cost function JMSE 
is a Mean Square Error (MSE), i.e. the average squared difference between the actual output, a 
and target, t as shown in Equation (4). 

 

JMSE = ∑      (4) 

 

4. Results and Discussions 

Figure 9 shows the fitness plot of the evolutionary NN. The fittest individual has a fitness 
of 0.9910 found in the 63th generation. The output plot can be seen in Figure 10 as the actual 
data (blue) track and try to fit the desired data (red). Figure 11 shows the solution structure of 

the fittest individual. It optimizes hidden layer to 9 neurons. 

 Hidden 
node 1 

Hidden 
node 2 

Hidden 
node 3 

Hidden 
node 4 

Input 
node 1 

-0.232 0 -0.103 0.234

Input 
node 2 

-0.999 0.123 -0.483 0.343

Input 
node 3 

0 -0.342 0.342 -0.987

Output 
node  

0.234 0 0 0.774

Hidden 
node 1 

Hidden 
node 2 

Hidden 
node 3 

Hidden 
node 4 

Input 
node 1 

0.032 -0.348 0.013 0 

Input 
node 2 

0.031 0 0.349 0.210 

Input 
node 3 

-0.583 -0.348 0.239 0 

Output 
node  

0.023 0.345 0.295 -0.345 

 Hidden 
node 1 

Hidden 
node 2 

Hidden 
node 3 

Hidden 
node 4 

Input 
node 1 

-0.232 0 0.013 0 

Input 
node 2 

-0.999 0.123 0.349 0.210

Input 
node 3 

0 -0.342 0.239 0 

Output 
node  

0.234 0 0.295 -0.345
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node 1 

Hidden 
node 2 

Hidden 
node 3 

Hidden 
node 4 

Input 
node 1 

0.032 -0.348 -0.103 0.234 

Input 
node 2 

0.031 0 -0.483 0.343 

Input 
node 3 

-0.583 -0.348 0.342 -0.987 

Output 
node  

0.023 0.345 0 0.774 

Figure 8 Inter-Species Crossover 
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We validate the solution with dataset not used by the training. Figure 12 shows the 
validation plot by the NN solution. The blue graph has successfully predicted the red, which is 

the desired output with an MSE of 0.096216.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figures 13 to 15 show the species or sub-population distribution at various stages of the 
generational cycle. At initialization (Figure 13), the population shows a normal distribution. 
Sub-populations NN_9 and NN_10 are most populous (23 count each) followed by NN_8 (13 
count). In NN_4 and NN_16, there are only one individual respectively. NN_1, NN_2, NN_3, 
NN_17, NN_18, NN_19 and NN_20 do not exist. After 10 generations (Figure 14), the sub-
population distribution changes. NN_9 size remains unchanged, NN_10 decreases slightly (20 
count), NN_13 grow from a size of 6 to 11 while NN_4, NN_15 and NN_16 have extinct. After 
20 generations (Figure 15), NN_9 has increased to 28, NN_6 has extinct. At the 63rd generation 
(Figure 16), the solution converged with the fittest individual located in NN_9. It is interesting 
to note that NN_6 and NN_16, previously extinct, these species have re-emerged and a new 

species NN_18 is formed. This shows that the algorithm search space has a good diversity. 

 

 

 

 

 

 

Figure 13. Initial Sub-population Distribution 

Fittest individual 
occurred at 

80th generation 

Figure 14. Sub-population Distribution after 10 
Generations 

Figure 9. Fittest Plot Figure 10. Training Plot (70% of Dataset) 

Figure 12. Validation Plot (30% of Unseen Dataset) Figure 11. Optimized NN Structure 

Validation output
Desired output
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To further investigate the implementation of the GA, in particular the impact of speciation 
and replacement strategy on the convergence rate and MSE, we performed an experiment to run 
the algorithm 20 times. Each time the combinations of speciation and replacement strategy is 

varied as shown in Table 3.  

Case Selection Speciation Replacement 
(5%) 

Convergence 
(Fitness > 
0.99?) 

Mean MSE 
(20 runs) 

Average 
Generational 
Cycle it takes 
to converged 

1 SUS No No No N.A. N.A. 

2 SUS No Yes Yes 0.0020 77.7 

3 SUS Yes No Yes 0.0063 54.5 

4 SUS Yes  Yes Yes 0.0021 64.9 

Table 3 Experiment to Study the Impact of Speciation and Replacement Strategy on the GA by Running it 
20 Times for each Cases 

 

From Table 3, it is observed that in Case 1, when SUS is implemented without speciation 
and replacement strategy, the solution does not converged. The training plot in Figure 17 shows 

the population fitness fluctuates considerably for this case. 

Figure 15. Sub-population Distribution after 20 
Generations 

Figure 16. Sub-population Distribution at 63rd 
Generation (Converged) with Stop Condition of 

0.997 

Figure 17 Without Speciation and Replacement Strategy 
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When the replacement strategy is implemented in Case 2, convergenced occurred with the 
MSE of 0.0020. This is comparable with the result for Case 4 where both speciation and 
replacement strategy are implemented. However, in Case 4, the average generational cycle of 
64.9, where the solution converges, is shorter than that in Case 2 where the average generation 
cycle is 77.7. In case 3, although convergence occurred at an earlier average generational cycle  
of 54.5, the average MSE result was higher than in Case 2 or 4. The experiment showed that 
when both speciation and replacement strategy are present in the GA, the results were better 

than if speciation or replacement strategy were to be implemented separately. 

 

5. Conclusion and Future Work 

In this paper, we have proposed novel mechanisms of the GA to improve the convergence 
rate for NN modeling while preventing premature convergence. We have first assessed how in 
particular a new encoding scheme that embodies the NN weights and structure in a matrix 
representation can enhance the efficiency of the GA search. We have then further investigated 

the effects of sub-populations and a replacement strategy on the efficiency of the GA operations. 

The results from the experiments are promising, which can be attributed to the following 
factors. First, the matrix encoding for the NN structure and weights, which is compact and 
sufficient to represent the possible solution space. Second, speciated compatible individuals, 
where individual competes locally instead of globally for survival. This approach protects 
potential individuals from early extinction and allows exploration to flourish for innovation. 
Third, a corresponding replacement strategy, which is presented to eliminate weakest 
individuals with top individuals, hence advancing the fitness of the overall population. Together, 

these mechanisms have enhanced the efficiency of the GA operations. 

With the evolutionary NN of an optimal structure, the NN based non-linear black-box 
modeling now offers improved accuracy and dynamics in forecasting the energy consumption of 
a cloud data center.  This could help data center owners eliminate under-provisioning or over-

provisioning and manage resources scheduling more optimally [12]. 

For future development to improve the robustness of the solution, two areas have been 
identified for further investigation. First, how to ensure species diversity both in initial 
distributions of the subpopulations as well as during the candidate selection to discourage 
premature convergence. Second, in black-box modeling of non-linear systems, an apparent 
drawback is that the physical meanings of parameters, structures and their impacts on the system 
could not be reflected by the model. A ‘grey-box’ model combining the merits of the black-box 
model with physical principle based clear-box approaches can therefore be developed. This 
could lead to a model that would accurately predict data center energy consumption or cloud 
demand at the same time, giving data center owners the visibility of key factors affecting its 

performance and competitiveness. 
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