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ABSTRACT 19 

Clostridium difficile is the dominant cause of pseudomembranous colitis in nosocomial 20 

environments. C. difficile infection (CDI) generally affects elderly (≥ 65) hospital in-patients 21 

who have received broad spectrum antimicrobial treatment. CDI has a 30% risk of reinfection 22 

and subsequent 60% risk of relapse thereafter, leading to a high economic burden of over 7 23 

billion pounds sterling and over 900,000 cases in the USA and Europe per annum. With the 24 

long-term consequences of faecal transplantation currently unknown, and limited spectrum of 25 

effective antibiotics, there is an urgent requirement for alternative means of preventing and 26 

treating CDI in high risk individuals. Metagenomics has recently improved our understanding 27 

of the colonisation resistance barrier and how this could be optimised. pH, oxidation-28 

reduction potentials and short chain fatty acids have been suggested to inhibit C. difficile 29 

growth and toxin production in vitro and in vivo studies. This review aims to pull together the 30 

evidence in support of a colonisation resistance barrier against CDI. 31 

 32 

  33 
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INTRODUCTION 34 

Clostridium difficile is an obligate anaerobic, heterotrophic, rod-shaped, ‘drumstick’ bacillus. 35 

(1 - 2) C. difficile is a toxigenic and proteolytic organism that was originally entitled 36 

‘difficile’ due to its difficulty to isolate and cultivate (1). Several refined mechanisms 37 

contribute to the ability of C. difficile to survive within the environment, transmit and 38 

colonise within the host. C. difficile colonisation has been attributed to its ability to germinate 39 

from a dormant, highly-resistant spore form and to produce toxins (TcdA, TcdB and binary 40 

toxin) which has been suggested to hamper the adaptive immune response and influence the 41 

surrounding colonic environment (3).  42 

 43 

C. DIFFICILE PATHOGENICITY 44 

C. difficile spores have the ability to survive on a wide variety of surfaces and are ethanol 45 

resistant (4). These spores are transmitted to the host via the faecal/oral route where they 46 

begin to germinate within the small intestinal area into a vegetative cell form (1). Virulence 47 

factors such as adherence, achieved by S-layer high molecular weight protein, chemotaxis 48 

and motility via flagella (5 - 6) may further aid C. difficile colonisation of the colon. CDI is 49 

generally observed in elderly individuals with low microbial diversity, and those enduring 50 

antimicrobial treatments (1). The colonisation resistance barrier in the normal healthy colon 51 

is the result of high microbial diversity, substrate/area competition, immune response 52 

modulation and short chain fatty acid production (6 - 7).  53 

Following colonisation of the large intestine, C. difficile initiates exponential growth, during 54 

which hydrolytic enzymes such as collagenase, chodrointin-4-sulphatase and hyaluronidase 55 

are produced, which results in epithelial cell inflammation, cell cytotoxicity and may 56 



4 
 

stimulate the release of further nutrients (8). At the stationary phase of growth, the production 57 

of toxins from C. difficile, toxin A (TcdA) and B (TcdB), peak (3). Both are encoded on the 58 

pathogenicity locus; TcdA is an enterotoxin which enters the cell through endocytosis and is 59 

activated through subsequent acidification, and TcdB is a cytotoxin activated by autocatalytic 60 

cleavage within the endolysosomal compartment. Both TcdA and TcdB inactivate the Rho-61 

GTPases which regulate actin production within the epithelial cytoskeleton, which leads to 62 

cell rounding, cell shrinking and apoptosis within 24 hours, ultimately resulting in increased 63 

permeability and loss of barrier function (3, 5, 9 - 10).  Certain strains of C. difficile, 64 

particularly hyper-virulent ribotypes, produce binary toxin which catalyses glucosylation to 65 

induce disorganisation of the actin in the cytoskeleton (10). Hyper-virulent strains of C. 66 

difficile, such as B1-NAP1-027 and 078 have been identified as toxin overproducers, which 67 

may account for their emergence as major pathogens with a mortality rate of 37% (1). 68 

With approximate figures of around 900,000 cases per year, resulting in an annual economic 69 

burden of £7 billion in Europe and the USA (11), there is an urgent requirement for effective 70 

novel treatments for C. difficile infection (CDI). Recent advances have involved 71 

characterising and transplanting a “healthy” microbial flora into infected patients in a bid to 72 

restore colonisation resistance from apparently healthy subjects. Current preventative 73 

measures and treatment recommendations for CDI involve stricter broad spectrum antibiotic 74 

stewardship, discontinuation of antibiotic treatment and an arduous regimen of 75 

metronidazole, or vancomycin in more severe cases (12). Both antimicrobials are associated 76 

with as high as a 35% risk of recurrence or reinfection after initial infection (13). These 77 

relatively high recurrence rates suggest a requirement to switch the focus to other treatments 78 

that preserve susceptible intestinal bacteria required for a healthy colonic environment (12). 79 

This review looks at the current status of C. difficile research and the requirement for new, 80 

novel treatments and preventative methods. Potential intervention methods that restore the 81 
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inter-regulatory mechanisms involved in shaping the colonisation resistance barrier and 82 

optimal environment for growth of indigenous bacteria are reviewed to highlight 83 

physiologically relevant methods which could be implemented in human interventions.  84 

  85 

C. DIFFICILE EPIDEMIOLOGY 86 

The epidemiological profile and severity of CDI has changed significantly over the 87 

last decade. An increased incidence of outbreaks caused by closely-related strains was 88 

reported in the USA, Canada and Europe with the increased emergence of hypervirulent 89 

strains (6, 13 - 18). The rates of CDI vary between countries worldwide. CDI infection rates 90 

are lower in some areas of Europe (14 - 15), such as the Netherlands (14), due to the 91 

improvement of prevention, antibiotic stewardship, monitoring and reporting methods when 92 

dealing with the infection (16). Areas such as Chile have noted an increase and rapid spread 93 

of C. difficile ribotype NAP1/BI/027, which has accounted for 79% of cases (19). In North 94 

America in 2000, however, an increase in the incidence of CDI was noted from 0.68% to 95 

1.2% of hospitalised patients, with 3.2% of these developing life-threatening symptoms (17). 96 

Patients in North America who have received antimicrobial treatment and have recently 97 

visited hospital, either as an outpatient or otherwise, have high CDI risk; only 20% of all CDI 98 

cases are community-associated (17). Queensland has noted an emergence of binary toxin 99 

ribotype UK 244, a genetic relative of 027 (20) whilst, within the UK, a decline in the 100 

incidence of ribotype 027 has been noted while ribotype 078 has emerged as a prominent 101 

cause for concern (21). Significant outbreaks in the UK from 2003-2005 involved the 102 

hypervirulent ribotype 027 resulted in an 11-12% mortality rate from both outbreaks (22). 103 

Davies et al., (2014) also reported that there are approximately 40,000 cases of CDI that are 104 

undiagnosed amongst European inpatients (23). Consequently, under-diagnosis impacts upon 105 

monitoring the epidemiology of CDI and successful treatment of the infection (23).   106 



6 
 

DIAGNOSIS OF C. DIFFICILE INFECTION 107 

Diagnostic guidelines dictate that only samples of diarrhoea or unformed stools are to be used 108 

for testing, with the exception of ileal fluid that is suspected of CDI (12). Positive diagnosis 109 

of CDI is defined as the presence of symptoms, generally diarrhoea and a positive stool 110 

sample, with identification of C. difficile toxins or toxigenic bacteria with the use of cytotoxin 111 

assays, enzyme immunoassay or polymaerase chain reaction (PCR) (12, 24). In other cases, 112 

diagnosis can be made by histopathological or colonoscopic findings revealing 113 

pseudomembranous colitis (12). The method with the highest sensitivity for the diagnosis of 114 

C. difficile infection is stool culture (12 - 24). However this is not practical for use as the 115 

standard diagnostic method as it has a long turnaround time and is not sufficiently specific 116 

due to the possibility of isolating non-toxigenic strains. Stool culture is recommended during 117 

epidemiological studies (12) and should be coupled with toxigenic culture to identify a 118 

standard for comparison to other clinical testing methods (12, 24).  119 

 120 

Enzyme immunoassays (EIA) or enzyme-linked immunosorbent assays (ELISA) are 121 

considered insufficient as the sole means of CDI diagnosis due to low sensitivity compared 122 

with other methods (12). These assay methods are, however, rapid and inexpensive 123 

techniques (6) and thus have been suggested for use if coupled with other more sensitive 124 

methods (12). Cytotoxin assays are presently considered to be the gold standard diagnostic 125 

methods used (12, 20, 24). This technique should be used in combination with an EIA, which 126 

screens for glutamate dehydrogenase, due to cytotoxin assays being time-consuming and 127 

having relatively low sensitivity in comparison with stool culture (12). 128 

 129 

Genotyping methods have been of particular importance in the rapid detection, with good 130 

sensitivity and specificity (6, 12), these methods are increasingly utilised throughout Europe 131 
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although more data is required before they can be recommended as a routine method for 132 

diagnosis (6, 12). Several genotyping methods, such as pulse field gel electrophoresis, widely 133 

used in the US (6), and multi-locus variable number tandem repeat analysis (MLVA) has 134 

been used in epidemiological studies but is not considered an efficient method of diagnosis 135 

(25). MLVA is a widely used method for epidemiology, transmission and genotype studies 136 

and has been used to assess toxigenic C. difficile isolates within a hospital environment and to 137 

assess the role of asymptomatic C. difficile carriers in infection transmission (25).  138 

  139 

TREATMENTS FOR C. DIFFICILE INFECTION  140 

The recommended first-line treatment after CDI diagnosis is discontinuation of current 141 

antibiotic therapy followed by administration of metronidazole or vancomycin, dependent on 142 

infection severity or instance of recurrence (12). CDI bares a 35% risk of re-infection or 143 

relapse when treated with metronidazole or vancomycin (13), bringing the effectiveness of 144 

these antibiotics into question.  145 

Other treatments such as Fidaxomicin, a macrocylic antibiotic which targets the protein 146 

sheath (26) and SMT 19969, a heterocyclic non-absorbable agent, which has a high 147 

selectivity for C. difficile over other members of the microbiota (27), have recently been 148 

reviewed and suggested as potential ‘new antibiotics’ for CDI. Studies have shown that both 149 

Fidaxomicin (currently in Phase III development) and SMT 19969 (in Phase II development) 150 

are more selective for C. difficile than metronidazole and vancomycin and thus would be less 151 

damaging to the intestinal flora (26 - 28), but these require further trials and elucidation of 152 

cost before they can replace the current antibiotics of choice. As the current treatments for 153 

CDI involve further administration of antibiotics, attempts have been made to identify other 154 

means of therapy. 155 
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Probiotic interventions have been suggested in previous studies, specifically involving the use 156 

of Lactobacilli and Bifidobacteria, common bacterial groups that comprise part of the normal 157 

microbiota (29). Although some success has been reported, evidence remains inconsistent 158 

and no overall therapeutic efficacy can be drawn from basic probiotic treatments consisting 159 

of single bacterial strains (30). Restoration of the faecal microbiome has been investigated in 160 

the form of faecal transplantation. In the case of recurrent CDI and antibiotic refractory 161 

diseases, faecal transplantation of healthy donor faeces has boasted high success rates (31). 162 

Single methods of preparation of donor faeces and faecal microbial transplantation 163 

administration have demonstrated inconsistent success and it has been suggested that in 164 

future faecal transplantations are tailored to the individual patients (30). The full 165 

consequences of faecal transplantation of a donor’s indigenous flora are not fully understood 166 

but may involve risk of infection from opportunistic pathogens harmless to the donor, or the 167 

effect of the flora on the recipient’s mental wellbeing and potential consequences to weight 168 

loss or gain (12, 32). 169 

 170 

An effective treatment for CDI would prevent or inhibit the growth and/or toxin production 171 

of C. difficile whilst promoting the re-colonisation of the host’s own microbiome. An ideal 172 

treatment would not involve arduous administration of antibiotics, would eliminate the 173 

challenge for patient of accepting donor faeces and would minimise the risk of potential long 174 

term consequences. 175 

 176 

 177 

 178 
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THE HEALTHY MICROBIOTA AND THE COLONIC ENVIRONMENT AND THE 179 

EFFECT OF BROAD SPECTRUM ANTIBIOTICS  180 

An individual’s gut microbiome is possibly unique and its diversity depends on the method of 181 

birth, whether breast fed or bottle fed in infancy and the individual’s diet and lifestyle 182 

thereafter (33). The adult bacterial population of the colon contains approximately 1011-1012 183 

bacteria per gram of faecal content (34). Recent advances in metagenomic techniques have 184 

improved our understanding of the indigenous flora and the environmental niches which 185 

specific bacterial groups occupy (35). Although many members of the diverse microbiome 186 

are not yet cultivable, it is understood that there are groups of phylogenetically diverse 187 

bacteria which coexist harmoniously within the gut of each individual. The gut microbiome is 188 

dominated at the phylum level by Bacteroidetes and Firmicutes, with abundant taxa 189 

represented by some of the more dominant genera such as Bacteroides and Prevotella 190 

alongside a host of less abundant taxa such as Bifidobacteria and Lactobacilli (36). This 191 

microbial ecosystem is known to inter-regulate the intestinal environment alongside 192 

environmental mediators such as pH and oxidation-reduction potentials (ORP) and nutrient 193 

availability (7). The microbes present within the colon are known to contribute to 194 

environmental ORP through H2S production, and conversely ORP influences bacterial 195 

colonisation by controlling areas which bacteria grow in to within a particular niche (37). 196 

Microaerophillic bacteria, for instance, will grow alongside epithelial cells whereas more 197 

anaerobic bacteria will occupy niches further into the lumen, at a more negative ORP (37). 198 

ORP is also influenced by a series of redox couples; the glutathione and thiol redox couple 199 

(GSSG/GSH), the cysteine redox couple (CyS/CySS) and thioredoxin (Trx) (38). 200 

Inflammation is likely to increase ORP due to the mucosal immune response and efflux of O2 201 

into the epithelial environment (37) (Figure 1).  202 
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The microbiota also produce the short chain fatty acids (SCFA) acetate, propionate, and 203 

butyrate as the main fermentation products (7). They perform a variety of important roles 204 

within the gut including resistance to pathogens (7). SCFA along with lactate are the major 205 

drivers towards acidic pH in the colon.. The pH within the intestine controls bacterial survival 206 

via disruption of the cell or provision of a niche. The pH of the colon can range between 5 – 7 207 

dependent on whether the individual is fasted or fed and also on the amount of dietary fibre 208 

consumed in their diet and some gut microbes are sensitive to pH within the physiological 209 

range of the intestine (39). 210 

Broad spectrum antibiotics such as cephalosporins, ciprofloxacin, clindamycin, amoxicillin 211 

and clavulanic acid have been found to decrease Bifidobacterium spp., Enterobacteriacea, 212 

Lactobacilli and Bacteroidetes as well as other gram positive anaerobes (40). Any disruption 213 

to the fragile balance between bacteria and environment via introduction of antibiotics 214 

decreases the diversity of bacteria and therefore is likely to adversely affect the colonisation 215 

resistance barrier as shown in Figure 1.  In a study on the effect of neomycin on the luminal 216 

pH of rabbits, a significant increase was observed in pH from 6.07 to 6.66 (41). In elderly 217 

patients, with already diminished microbial diversity due to decreased bowel motility, 218 

nutrient production and constipation (42), and prescribed broad spectrum antimicrobial 219 

treatments, the collapse of the colonisation resistance barrier makes way for opportunistic 220 

pathogens such as C. difficile (1). Understanding the mechanisms that regulate C. difficile 221 

colonisation in the high risk cohort would allow for the development of targeted therapies.222 

  223 

 224 
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 225 

Figure 1: The proposed effect of antimicrobials on the colonisation resistance barrier. As the microbial 226 

diversity drops short chain fatty acid concentrations may also decrease in the colon which would cause a 227 

rise in pH (43). Dysbiosis also leads to a mucosal immune response and subsequent inflammation which 228 

increases ORP (37). 229 

 230 

PROSPECTIVE AVENUES FOR OPTIMISATION OF THE COLONISATION 231 

RESISTANCE BARRIER AND MODES OF INTERVENTION 232 

Recent metagenomic techniques have allowed greater insight into the gut microbiome and 233 

have advanced our understanding of the role of the microbiome in human health (35). 234 

Probiotics such as Bifidobacterium longum, Lactobacillus acidophilus and Bacteroides 235 

fragilis may serve to inter-regulate the environment of the colon and loss of diversity. 236 

Bifidobacteria and Lactobacilli have been linked to suppression of opportunistic pathogens 237 

such as C. difficile (1, 29). Restoration of lost bacterial quantity and diversity through FMT 238 

has also shown great promise as a technique for restoring the colonisation resistance barrier 239 

and preventing C. difficile recurrence (31). 240 
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 In vitro, pH and SCFA regulate C. difficile where decreased pH and physiological 241 

concentrations of butyrate are inhibitory to C. difficile growth (7, 43). However, few clinical 242 

studies exist where a systematic approach to restoring the colonisation resistance barrier has 243 

been undertaken. Vegetative cells are sensitive to SCFA, most notably butyrate, at 244 

physiological concentrations of approximately 160 mM (43). Acetate also produced a 245 

protective epithelial cell response in a murine model from Escherichia coli 0157:H7 (44) 246 

Vegetative cells are sensitive to acidic pH and fully germinate by the time they reach the 247 

colon. Evidence suggests that the physiological pH within the colon can drop as low as 5 248 

(39), which is shown to be well within the inhibitory range for C. difficile vegetative cells (7, 249 

43), thus indicating a potential route for intervention by manipulating the pH of the intestine. 250 

Fermentable fibres, such as inulin, act as substrates for the colonic microbiota and can 251 

selectively promote the growth of probiotic bacteria (43). Fermentation of dietary fibre 252 

results in a decrease in luminal pH through increased SCFA production, both of which inhibit 253 

C. difficile growth (7, 43 - 44).   Increased SCFA production is also associated with an 254 

improved innate immune response, reducing inflammation and alleviation of symptoms in 255 

IBD patients (7, 45 - 46). There is also the potential to introduce physiological concentrations 256 

of SCFA directly into the large intestine, through direct instillation (although realistically 257 

limited to the distal colon in patients), through encapsulation strategies or targeted delivery.  258 

  259 

Oxidation-reduction potentials have also been found in to impact on toxin production of C. 260 

difficile (47). Altering the ORP from -360 mV to +100 mV was found to increase toxin 261 

production 100-fold, which has significant relevance to understanding the mechanisms which 262 

promote increased toxin production within the colon of a CDI patient (47). Therefore, if ORP 263 

can be modulated by GSH supplementation, this presents a further method for optimising the 264 

colonisation resistance barrier against C. difficile colonisation (38, 48). C. difficile growth and 265 
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toxin production has been shown to be affected by pH, SCFA and ORP within physiological 266 

ranges. Manipulation of the colonic environment has been suggested as a clinical avenue for 267 

prevention and treatment, but it has never been systematically investigated (7). If an optimum 268 

inhibitory range for ORP, pH and SCFA can be established in vitro, then a strategy for 269 

translating this to the human intestine (the colonisation resistance barrier) could be explored. 270 

.  271 

CONCLUSION 272 

C. difficile infection is a worldwide problem, and although there have been advances in 273 

treatments, it still remains a significant economic burden which cannot be ignored. There is 274 

rationale for further understanding and taking advantage of the effect of the colonisation 275 

resistance barrier within the colon. Re-establishing normal physiological parameters in the 276 

colon, harmless to indigenous flora and colonisation but inhibitory to either C. difficile 277 

growth or production of virulence factors would prove a useful tool in the battle against CDI 278 

as a worldwide burden. Dietary and targeted delivery approaches that manipulate the 279 

colonisation resistance barrier are worthy of further investigation because they represent a 280 

low risk option for treatment but more importantly may offer solution in prevention of CDI. 281 

 282 

 283 

 284 

 285 

 286 

 287 
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