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Recently Danan et al. [Phys. Rev. Lett. 111, 240402 (2013)] have performed a much discussed
experiment in which which-way information was obtained from the light in a nested Mach-Zehnder
interferometer by weak measurement. The presented analysis using the two state vector formalism
drew the conclusions that the photons followed disconnected paths. We analyse this experiment
using standard quantum optical methods and arrive at analytical expressions that match the ex-
perimental results without the need for such disconnected photon paths. We also propose a simple
amendment to the experiment capable of displaying new phenomena highlighting the advantages of
our description.
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I. INTRODUCTION

Recently there has been a proposal by Vaidman [1] to
obtain which-way information from a photon in a nested
Mach-Zehnder interferometer (MZI) by weak measure-
ment. This has been implemented by Danan et al. [2]
where the measurement was performed by weakly mark-
ing each path by reflecting the light off of a vibrating mir-
ror (see Fig. 1) and measuring the time varying intensity
difference across two halves of a quad-cell detector placed
at one of the outputs. This has generated much interest
in both theoretical [3, 4] and experimental [5–11] con-
texts due mainly to the controversial conclusion that the
photons follow disconnected paths in the interferometer.

The point of issue arises when maximum possible de-
structive interference towards mirror F is arranged. The
assumption that this is complete destructive interfer-
ence, i.e., that light reaching the detector D could have
gone only via the lower path in Fig. 1, led to the curi-
ous observation of the vibrational frequencies of mirrors
A and B along with that of C in the spectrum of the
signal and yet the absence of frequencies of E and F .
A further surprise—that at first seems to support the
assumption of complete destructive interference in the
inner interferometer—was the disappearance of all three
frequencies A, B and C upon blocking the lower path
containing only mirror C, suggesting an interpretation
that the photons did not reach the mirrors A and B via E
and F but rather as a disconnected part of their path via
C. The explanation put forward by Danan et al. is based
on the two-state vector formalism (TSVF) pioneered by
Aharonov et al. [12], linking the presence (or absence)
of the peaks at A,B (E,F ) to the simultaneous presence
(or the lack of) both forward- and backward-propagating
states from the source and the detector.
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Once one acknowledges that there is a non-negligible
leakage from the inner MZI due to the fact that the
two paths are partially distinguished, i.e., that light from
paths A and B does have a means of reaching the detec-
tor, the mystery vanishes. Salih [5] and Saldanha [6] both
recognised the significance of the leakage. Salih argued
that in the case that true complete destructive interfer-
ence towards mirror F is arranged by marking paths A
and B with degenerate frequencies with the mirrors vi-
brating with opposite phase no ground is given for the
claims of Danan et al. Saldanha has provided a phe-
nomenological description of the interference by show-
ing numerically that the leakage acts as a first-order cor-
rection to the beam profile and that this leakage, when
mixing with the light from arm C, acts to displace the
light beam in the transverse plane, thereby imprinting
it with the signatures of mirrors A and B. Moreover,
Danan et al., in the supplementary material appended
to their paper [13], have themselves shown that there is
a non-negligible leakage by blocking light from mirror F
and observing the peaks corresponding to mirrors A and
B disappear, although this was interpreted by them as
evidence for the lack of electronic noise in the set-up.
Bartkiewicz et al. [11] have attempted to provide a min-
imal fully quantum treatment working in the frequency
domain only. However they have assumed that the ef-
fect of the vibrating mirrors is to imprint the which-way
information using mutually orthogonal (i.e. perfectly dis-
tinguishable) states, hence their assumptions as well as
results disagree with those of the experiment they are
describing.

We put Saldanha’s description on a simple analytical
footing by modelling the effect of the mirrors as a first-
order Hermite-Gaussian perturbation to the light in the
interferometer. We derive an effective observable that
shows explicitly that the perturbed portion of the light
(carrying the which-way information) must mix with the
unperturbed part to give a non-vanishing signal. Within
this context we discuss the experimental results presented
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FIG. 1. The schematic of the experiment. The symbols la-
belled A, B, C, E, F denote the vibrating mirrors and D de-
notes a two-cell detector. The two dashed lines denote blind
input arms of beam splitters and the two dotted lines output
arms which are not measured in the experiment.

in [2]. Once the formalism is properly set up simple
arguments based on the trade-off between path distin-
guishability and visibility of interference can be employed
to understand the results in all cases, in particular in
the counter intuitive case of arm C being blocked for
which a simple analysis in the TSVF fails [7]. Further we
show that by appropriate tuning of the path lengths the
signatures of certain mirrors may be hidden. We work
throughout in the standard quantum optical formalism.
The treatment may be transposed to the classical do-
main by using a coherent state as an input or by replac-
ing annihilation and creation operators by complex field
amplitudes. The validity of our quantum treatment ex-
tends to fermion interferometry such as that based on
neutrons, as all the relevant states and observables can
also be constructed for fermions.

Our work is structured as follows: In Section II we be-
gin by establishing the formalism to be used to describe
the interferometer. Despite drawing grounds for the em-
ployed simplifications from the experimental setup [2],
we emphasize that this is not a part of the description of
the interferometer itself; experienced readers may review
only the key points and skip ahead to the following sec-
tion. In Section III, we use the formalism in a quantum
path sum approach to obtain an analytical description of
the detector output and discuss the immediate observa-
tions made possible by our method. In Section IV, we
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FIG. 2. A tilted mirror and the original and reflected coordi-
nate systems. The system (xr, yr, zr) corresponds to (x, y, z)
reflected with respect to the actual location of the mirror
while (x′, y′, z′) is reflected with respect to 45◦. The y axis is
not affected by the reflection (y = y′ = yr) and is not plot-
ted. Both the tilt angle θ and the beam divergence are vastly
exaggerated.

match our results to those measured in [2]. In Section V,
we propose a small amendment of the system in which
novel phenomena can be observed. Finally, we conclude
our results.

II. PRODUCTION AND DETECTION OF
SLIGHTLY TILTED GAUSSIAN BEAMS

Let us consider a monochromatic paraxial beam going
along the z axis incident at a mirror inclined at an angle
π/4+θ to its axis in the xz plane, as illustrated in Fig. 2.
Inspired by the experiment [2], we will only consider mi-
nuscule tilt angles θ for which no point of the mirror’s
surface is displaced more than a fraction of a wavelength
over the principal cross section of the beam, as modelled
by its beam waist w0. Mathematically, we will assume
the condition

w0θ � λ,

or

kw0θ � 2π, (1)

where λ is the wavelength and k = 2π/λ the wave num-
ber. For the typical values in the experiment, λ ≈
700 nm, w0 ≈ 1 mm, and θmax ≈ 300 nrad, the peak
value of the left hand side of (1) is three orders of mag-
nitude smaller than π. In an optical table setting the s-
and p-polarizations are maintained throughout the setup,
so for an unpolarized light or a fixed input polarization
a scalar wave description is fully sufficient. Moreover,
the reflected beam is simply an analytic continuation
of the incident beam in the reflected coordinate system
(xr, yr, zr) as per Fig. 2.
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It will be more practical to work in the untilted co-
ordinate system (x′, y′, z′) where the reflected beam is
rotated by the angle 2θ. If the incident beam is parax-
ial with respect to z and described by a scalar complex
field u(x, y, z, t) = ψ(x, y, z)eikz−iωt, the reflected beam
is paraxial with respect to z′ and similarly described by

ψ′(x′, y′, z′) = e2ikθx′−2ikθ2(z′−z′M )ψ(x′−2θ(z′−z′M ), y′, z′),
(2)

where z′M denotes the z coordinate of the point of in-
tersection of the mirror with the beam axis. This trans-
formation represents a symmetry of the paraxial wave
equation,

2ik
∂ψ(x, y, z)

∂z
= −

(
∂2

∂x2
+

∂2

∂y2

)
ψ(x, y, z) (3)

with respect to shear transforms [14]. At z′ = z′M , and
with the condition (1) in mind, (2) can be written as

ψ′(x′, y′, z′M ) =ψ(x′, y′, z′M ) + 2ikθx′ψ(x′, y′, z′M )

+O((kw0θ)
2).

(4)

Specifically, if the incident wave is Gaussian of the form

ψ(x, y, z) = ψ00(x, y, z) =

√
2

πw2
0

zR
zR + iz

e
− k(x2+y2)

2(zR+iz) ,

where w0 is the beam waist and zR = 1
2kw

2
0 the Rayleigh

range (a distance from the beam waist where the width

expands by a factor of
√

2), the second term of the
right hand side of (4) represents a first-order Hermite-
Gaussian wavefront superimposed on the former profile.
Indeed, the corresponding TEM10 wave is described by

ψ10(x, y, z) =

√
2

πw2
0

(
zR

zR + iz

)2
2x

w0
e
− k(x2+y2)

2(zR+iz)

=
2x

w0

zR
zR + iz

ψ00(x, y, z),

(5)

so after the reflection (4), it holds that

ψ′(x′, y′, z′) = ψ00(x′, y′, z′) + ikw0θ
zR + izM

zR
ψ10(x′, y′, z′)

+O((kw0θ)
2).

(6)
Note that except for the immediate neighbourhood of

the mirror we don’t need to distinguish between (x, y, z)
and (x′, y′, z′): for the incident (reflected) part of the
beam, the original (primed) coordinate system is implic-
itly used. The change occurs at z = z′ = zM .

The above results are valid for a monochromatic
case with an error of O((w0/λ)−4) due to the paraxial
wave approximation used. Under a narrow bandwidth
assumption, their validity can be extended to quasi-
monochromatic waves, affecting only the propagation
factor eikz−iωt. The resulting error terms are of the or-
der O((∆ω/ω0)(w0/λ)−2) and for a typical optical laser

source of coherence length ∼ 1 m are strongly dominated
by the former. In other words, we can assume that for a
sufficiently narrow vicinity of ω0 the spatial mode struc-
ture does not change significantly. This allows us to de-
fine annihilation and creation operators indexed by the
m,n indices of TEM waves and frequency, satisfying

[âmn(ω), â†m′n′(ω
′)] = δmm′δnn′δ(ω − ω′),

such that the field operator in the scalar description and
under the two approximations taken becomes

Â(x, y, z, t) =

√
~

4πε0ω0c

+∞∑
m,n=0

ψmn(x, y, z)×

∫ +∞

0

dωe−iω(t−z/c)âmn(ω) + h.c.

Following the construction in [15], we further define

âmn(t) :=
1√
2π

∫
R

dωe−iωtâmn(ω)

and write the longitudinal component of the Poynting
vector as

Ŝ(x, y, z, t) = ~ω0

+∞∑
m,n,m′,n′=0

ψ∗mn(x, y, z)ψm′n′(x, y, z)×

â†mn

(
t− z

c

)
âm′n′

(
t− z

c

)
.

This clearly represents the energy of one photon at the
central frequency (owing to the narrow bandwidth ap-
proximation used) multiplied by the flux of particles at
retarded time. In the case of fermionic particles the
derivation will be different but the flux can be used with-
out modifications. For a stationary beam, the expecta-
tion value of the flux is constant in time. This is possible
regardless of the type of particle.

Let us now consider a quad-cell detector placed further
along the beam at z = zD. The idealized model measures
the total intensity difference between two half-planes in
the direction of the displacement:

∆̂I(t) =

∫ +∞

0

dx

∫
R

dy Ŝ(x, y, zD, t)−
∫ 0

−∞
dx

∫
R

dy Ŝ(x, y, zD, t).

If, according to (6), the modes TEM00 and TEM10 are
sufficient to describe the state of the beam at any instant,
we can restrict the operator to the relevant subspace to
get an effective observable. Doing so and carrying out
the explicit integration, this gives

∆̂Ie(t) = I0

(
e−iζ(zD)â†00(t′)â10(t′) + h.c.

)
(7)

where

I0 = ~ω0

√
2

π
, t′ = t− z

c
, and ζ(zD) = arctan

zD
zR
(8)



4

is the Gouy phase. (We note that if the detector is not
geometrically ideal, as assumed above, only the prefac-
tor I0 changes to reflect the geometry as long as it is
symmetric with respect to the axis of the undisplaced
beam.) From this formula, we see that it is of great im-
portance that both the carrier Gaussian wave and the
Hermite-Gaussian correction are incident at the detector
plane simultaneously for a nonzero signal to be obtained.
Moreover, the response is linear in both the amplitudes,
which will be crucial in the following.

Let us examine the expectation value of the observable
(7) for a single-particle state with the spatial structure
(6). Let f(t) be some L2 function representing the tem-
poral shape of the pulse (slowly varying, to comply with
the narrow bandwidth assumption). Thus, we write

|ψ〉 =

∫
R

dtf(t)

(
â†00(t) + ikw0θ

zR + izM
zR

â†10(t)

)
|0〉.

(9)
Then for t′ = t− z/c,

〈ψ|â†00(t′)â10(t′)|ψ〉 = ikw0θ
zR + izM

zR
|f(t′)|2 (10)

and hence

〈ψ|∆̂I(t′)|ψ〉 = 〈ψ|∆̂Ie(t′)|ψ〉 = 2kw0θI0
zD − zM√
z2
R + z2

D

|f(t′)|2.

(11)
This result illustrates the fact that right after the mir-

ror (zD ≈ zM ), the Hermite-Gaussian component only
modifies the local phase of the wave profile but the in-

tensity remains parity-symmetric, resulting in zero 〈∆̂I〉.
The further the detector is placed from the mirror, the
longer optical length both the waves propagate freely, re-
sulting in their superposition forming a displaced Gaus-
sian profile as argued by Saldanha [6] and producing a
nonzero differential signal. With constant I0, zM , and
zD, the differential signal is proportional to θ (within the
small angle approximation). At large distances the dif-
ferential intensity saturates at the limit value of 2I0kw0θ.

In the following, we will take the liberty of leaving out
the time argument and the second spatial index (which
is always zero) of â for the sake of brevity, as well as the

time argument of ∆̂I, e.g.,

∆̂I = I0

(
e−iζ(zD)â†0â1 + h.c.

)
. (12)

The result (11) indicates that any time dependence of
the input state will only serve as a prefactor (in retarded
time) in the output state within the global assumptions.

One more important observation is that (11) does not
significantly depend on small variations in path length (of
the order of λ). This allows us to denote in the follow-
ing the position of the detector by a single zD coordinate
even in the case of interference of several distinct paths
including small differences in optical path length to ob-
tain relative phases.

III. CONTRIBUTION OF THE DISTINCT
PATHS

In Fig. 1, we can identify three possible paths from the
input to the detector, determined by a reflection off the
mirrors E, A, F , or E, B, F , or C only. We will denote
the three paths by A, B, and C. The reflectivities of the
four beam splitters at the diagonal of Fig. 1 are chosen
such that each of these paths enters the path sum with
an equal weight of 1/3. This is done in [2] by means of
polarizers and polarizing beam splitters but in a way that
is indistinguishable from polarization-independent beam
splitters with a fixed input polarization at the measure-
ment stage. The phases of the reflection and transmission
coefficients will be accounted for later.

The mirrors A,B,C,E, F oscillate at frequencies ωA
to ωF , which are assumed to be all mutually different
but each of them many orders of magnitude smaller than
ω0. (In [2] the former are of the order of hundreds of
Hz, as compared to the optical frequency of ω0.) In
this case there is no need to take into account any time-
frequency uncertainty or finite propagation time effects
and the time dependence of the angles θM (t) can be sim-
ply reflected in an explicit time dependence of the optical
state incident at the detector.

We build upon (9) to describe the effect of reflections
off of several tilted mirrors, whose angles θ allow for slow
time variation. We will consider the tilts of all the mir-
rors, denoted θA(t) through θF (t), to be bounded by
a common θ at all times. Clearly, the Gaussian term
remains after each reflection with the same amplitude
(up to a correction of the order O[(kw0θ)

2]) and repre-
sents a “carrier wave” common to the whole optical path.
Trivially, each of the mirrors adds a first-order Hermite-
Gaussian component with an amplitude

ikw0θM (t)
zR + izM

zR
(13)

relative to the carrier wave, where θM (t) is the tilt of
the mirror M ∈ {A,B,C,E, F} and zM represents the
optical distance from the source, where the beam is colli-
mated. (It is important to add that the rectangular con-
figuration of the interferometer defines the ‘x’ direction,
and thus the orientation of Hermite-Gaussian modes, in
every path segment unambiguously.) In fact, summing
these contributions is sufficient to describe the effect of
several consecutive mirrors. Of course, each of the suc-
cessive mirrors will also apply a transformation to the
side terms added by the previous reflections but these
will be second order in kw0θ and can be neglected.

Furthermore, in [2] the mirrors are located at similar
positions zM � zR whereas for the detector it holds that
zD . zR. In order to illustrate the core of our argument
without the burden of unnecessary detail, we will reflect
this in the following by leaving out terms of the form
zM/zR, M ∈ {A,B,C,E, F}, so that the term (zR +
izM )/zR in equation (13) reduces to 1. The analysis is
equally tractable without this simplification.
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In this setting we find that the path A transforms an

initial state â†0|0〉 to(
â†0 + i

(
δE(t) + δA(t) + δF (t)

)
â†1

)
|0〉+O(δ2),

where the notation

δM (t) = kw0θM (t), δ = kw0θ

has been introduced. Similarly, the paths B and C result
in contributions of the form(

â†0 + i
(
δE(t) + δB(t) + δF (t)

)
â†1

)
|0〉+O(δ2), (14)(

â†0 + iδC(t)â†1

)
|0〉+O(δ2), (15)

respectively. The three above lines contribute to a path
sum, after multiplication by the weight factor 1/3 and
relative phase factors eiφA , eiφB , and eiφC which include
path length differences as well as the phases of the reflec-
tion and transmission coefficients of the beam splitters
encountered along the paths. The resulting state can be
written as

|ψout(t)〉 =
1

3

α0â
†
0 +

∑
M∈{A,B,C,E,F}

αM (t)â†1

 |0〉+O(δ2),

(16)
where

α0 = eiφA + eiφB + eiφC ,

αM (t) = eiφM iδM (t), M ∈ {A,B,C},
αM (t) =

(
eiφA + eiφB

)
iδM (t), M ∈ {E,F}.

(17)
From this general form of the output state we can make

several observations:

• The Gaussian term, â†0|0〉, has the same coefficient
(to the first order) as if all the mirrors were station-
ary with zero tilt angles θM , therefore it represents
the part of the state with full visibility of interfer-
ence but no distinction between the paths.

• All of the which-way information (i.e., values de-
pendent on θM (t)) is contained in the coefficient

of the Hermite-Gaussian component â†1|0〉 and pre-
vented from further influencing the carrier wave by
the orthogonality of the two modes.

• The amplitude of â†1|0〉 is linear in all angles θM (t).
The constant of proportionality will always be
nonzero for αA(t), αB(t), and αC(t), unless the cor-
responding path is blocked. However, αE(t) and

αF (t) in the â†1 |0〉 component are undergoing in-
terference of the same quality as paths A and B do

in the â†0 |0〉 component.

The last point is a direct consequence of the fact that
the terms containing δA(t), δB(t), and δC(t) come from
exactly one of the three paths each, while the terms con-
taining δE(t) or δF (t) appear in both paths A and B and
therefore interfere the same way as the carrier Gaussian
wave in these two paths. In other words, the former three
terms represent a fully decisive which-way information,
which then can not undergo further interference. The
latter two terms represent a partial which-way informa-
tion, which rules out path C but retains the visibility of
the interference of the remaining two paths.

We propose this simple explanation as a fully tradi-
tional alternative to the explanation given in the conclu-
sions section of [2], and moreover, one to be readily fore-
seen from the fact that which-way marking at mirrors
E and F does not distinguish between two interfering
paths.

IV. ANALYSIS OF THE RELEVANT CASES

Quantifying our results, direct application of (12)
yields the differential signal as

〈ψout(t)|∆̂I|ψout(t)〉 =
2I0
9

∑
M

<
(
e−iζ(zD)α∗0αM (t)

)
.

(18)

Inserting for the values of αM results in meaningful
simplification only in the case where the phases φA, φB ,
φC are equal or differ by integer multiples of π. By setting
eiφA = eiφC = eiΦ and eiφB = ±eiΦ in (17) one can see
that α∗0αM is purely imaginary under this restriction and
|α0| takes the value 2 ± 1 for the constructive (+) and
destructive (−) interferences arranged in the inner MZI.
The expectation value of the differential intensity is then

〈ψout(t)|∆̂I|ψout(t)〉 =
2I0
9

sin ζ(zD)|α0|
(
δA(t)± δB(t) + δC(t) +

(
|α0| − 1

)(
δE(t) + δF (t)

))
+O(δ2). (19)

This result agrees perfectly with the experimental results
in [2] in the studied cases with path C opened. In par-
ticular, if all the three paths are aligned for constructive

interference, then eiφA = eiφB = eiφC and |α0| = 3. This
results in equal sensitivities to displacements from mir-
rors A,B and C and double sensitivities to displacements
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1

FIG. 3. The relative amplitudes of oscillations at frequencies
ωA and ωB (both red, solid line) compared to that at ωC

(blue, dashed) in the power spectrum of (21) as a function of
the static phase difference φA − φC . The value of ζ(zD) was
chosen arbitrarily to illustrate the point. (Color online)

from mirrors E and F , which in turn agrees with the 1 : 4
ratios of the peaks in the power spectrum of the intensity.
If path B is brought completely out of phase with path A
and consequently with C, then |α0| = 1, which explains
the same factors in front of the three peaks A,B and C
as in the above case as well as the disappearance of any
peaks at E and F in the spectral analysis of the signal.

To complete our comparison with [2], we show the cor-
respondence of (19) to the experimental results in which
paths F and C are individually blocked. In the case of
path F or C being blocked eiφA,B or eiφC must be re-
placed by zero, respectively, in (17). By examining (17)
and (18) the consequences of these conditions may read-
ily be seen. Blocking path F results in a single peak
at C as the only non-vanishing coefficients in the out-
put state are αC(t) and crucially α0 showing that any
light carrying information about the inner MZI has been
prevented from reaching the detector. Blocking path C
results in the vanishing of αC(t) and in |α0| taking the
value | exp(iφA) + exp(iφB)|. In the case when construc-
tive interference is arranged in the inner MZI all peaks

along the A and B paths show up as the carrier wave
reaches the detector via these paths and so do all the
perturbations caused by the mirrors along these paths.
When destructive interference is arranged, however, α0

vanishes and—with the carrier wave absent—so does the
entire signal.

V. TUNABILITY OF THE PEAK HEIGHTS

From (12), we can see that if the relative phase of
the Gaussian and Hermite-Gaussian components could
in principle be modified independently, the differential
signal could be artificially strengthened or damped. For

example, if the phase of the â†1 |0〉 component of (9) was
modified by an extra amount of ζ(zD) − ζ(zM ), the dif-
ferential signal would vanish. Similarly, if the relative
phase of the Hermite-Gaussian component was modified
by ζ(zD)−ζ(zM )− π

2 , the expectation value of ∆̂I would
become the limit value, as if the detector was placed at
infinity. In the case of a single tilted or vibrating mir-
ror this is hypothetical because the two components are
phase-locked. However, although unexplored in [2], the
experiment readily provides means of achieving exactly
this. All one needs to do is break the condition of the
paths being aligned in phase (or completely out of phase).
This can be best illustrated with path C unblocked, paths
A and B with opposite phases, and allowing an extra
phase shift by statically displacing the mirror C. (In [2]
only the mirror B was displaced to control relative phases
of the paths.) In this setting, only the term with δC(t)
stays phase-locked to the Gaussian but the relative phase
of A and B paths can be freely controlled. The values of
the coefficients in (16) can then be written as

α0 = eiφC ,

αM (t) = eiφM iδM (t), M ∈ {A,B,C},
αE(t) = αF (t) = 0

(20)

and the detector signal, by inserting the above values into
(18), as

〈ψout(t)|∆̂I|ψout(t)〉 =
2I0
9

(
sin
(
φC − φA + ζ(zD)

)(
δA(t)− δB(t)

)
+ sin ζ(zD)δC(t)

)
. (21)

Thus the relative strengths of the peaks at A and B to
that of the peak at C can be tuned by simply moving
the mirror C, as plotted in Fig. 3. In particular, by
matching the phase difference of φA − φC to the Gouy
phase ζ(zD) (more precisely, to the Gouy phase difference
ζ(zD)− ζ(zA,B) had the approximation zA,B � zR been
not taken) and keeping φB − φA = π fixed , the peaks
at A and B (or either of them individually for zA 6= zB)
may disappear completely. It would be absurd, of course,

to conclude that the presence of the photons in the inner
interferometer, or one of its arms, depends on the phase
of the mirror C, or that not only are the paths taken
by photons disconnected, but also sensitive to non-local
conditions.
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VI. CONCLUSIONS

We have modelled the experiment presented in [2] us-
ing only waves propagating forward in time and the in-
terference of the possible paths. This allowed us to at-
tribute the disappearance of peaks E and F in transi-
tioning from maximum to minimum possible interference
towards mirror F to simple interference of paths in the
inner Mach-Zehnder interferometer as mirrors E and F
do not distinguish between paths A and B. We have also
shown that the simultaneous disappearance of all three
remaining peaks when blocking path C while maintain-
ing destructive interference between the other two paths

follows from the need for the perturbed wave â†1 |0〉 to mix

with the unperturbed carrier wave â†0 |0〉. The necessary

presence of â†0 |0〉 for a non-vanishing signal means that
interference between all the unblocked paths is a crucial
part of the weak which-way measurement.

As a novel contribution to the discussion of this ex-
perimental setup we found the crucial dependence of the
relative heights of the peaks in [2] on the three phases

φA,B,C associated with the three path lengths. In partic-
ular we have shown that some of these may be made to
vanish by tuning the three path lengths. This shows by
explicit construction that interpreting the lack of trace
of a given mirror in the signal to mean that the photon
has not interacted with that mirror is erroneous. It is
this type of reasoning that led to the disconnected pho-
ton paths in [2]. We have found a hitherto unexplored
tuning of the interferometer in which, without blocking
any of the paths, the trace of only mirror C is present in
the output signal.
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