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Abstract—We study a novel solution to executing aggregation
(and specifically COUNT) queries over large-scale data. The
proposed solution is generally applicable, in the sense that it
can be deployed in environments in which data owners may
or may not restrict access to their data and allow only ‘ag-
gregation operators’ to be executed over their data. For this,
it is based on predictive analytics, driven by queries and their
results. We propose a machine learning (ML) framework for
the task (which can be adapted for different aggregates as
well). We focus on the widely used set-cardinality (i.e., COUNT)
aggregation operator, as it is a fundamental operator for both
internal data system optimisations and for aggregation-query
analytics. We contribute a novel, query-driven ML model whose
goals are to: (i) learn the query space (access patterns), (ii)
associate (complex) aggregation queries with the cardinality of
their results, (iii) define query similarity and use it to predict
the cardinality of the answer set of an ad-hoc incoming query.
Our ML model incorporates incremental learning algorithms for
ensuring high prediction accuracy even when both the querying
patterns and the underlying data change. The significance of
contribution lies in that it (i) is the only query-driven solution
applicable over general environments which include restricted-
access data, (ii) offers incremental learning adjusted for arriving
ad-hoc queries, which is well suited for big data analytics,
and (iii) offers a performance (in terms of prediction accuracy
and time, and memory requirements) that is superior to data-
centric approaches. We provide a comprehensive performance
evaluation of our model, evaluating its sensitivity and comparative
advantages versus acclaimed data-centric methods (self-tuning
histograms, sampling, and multidimensional histograms).

I. INTRODUCTION

In modern big data analytics applications, supported by
big data infrastructures, predictive analytics [2], [3] and ex-
ploratory analysis are commonly based on statistical aggrega-
tion operators over the results of ’complex’ queries [5]. Such
complex, aggregate queries typically involve large datasets
(which may themselves be the result of linking of other
different datasets) and a number of range predicates over
multidimensional vectors, structured, semi- and unstructured
data. Query-driven data exploration and predictive learning is
becoming increasingly important in the presence of large-scale
data [7] since predicting aggregations over range predicate
queries is a fundamental data exploration task [8] in big
data systems. Frequently, data analysts and statisticians are in
search of (approximate and/or partial) answers to such queries
over unknown data subspaces (knowledge discovery). Imagine
exploratory and predictive analytics [4] based on a stream of
such aggregation operators over data subspaces being issued,

until the scientist extracts sufficient statistics or learns local
statistical characteristics, e.g., coefficient of determination and
product-moment correlation coefficient, of the subspaces of
interest.

In modern big data systems, often data to be analyzed
possibly extends over a large number of federated data nodes,
perhaps even crossing different administration domains and/or
where data owners (nodes) may only permit restricted accesses
(e.g., aggregations) over their data. Similarly, in the modern
big data era, large datasets are often stored in the cloud. Hence,
even when access is not restricted, accesses to raw data needed
to answer aggregate queries are costly money-wise. Hence,
predictive/exploratory analytics solutions which are widely
applicable, even in such scenarios, are highly desirable.

Consider a d-dimensional data space x ∈ Rd.

Definition 1: Let a d-dim. box be defined by two boundary
vectors [a1, . . . , ad]

> and [b1, . . . , bd]
>, ai ≤ bi, ai, bi ∈ R.

A predicate range query is represented by the 2d-dimensional
vector q = [a1, b1, a2, b2, . . . , ad, bd]

> where ai and bi is lower
and higher value, respectively, for the i-th dimension. Query
q is a hyper-rectangle with faces parallel to the axes.

Definition 2: Given a predicate range query q and a dataset
B of data points x ∈ Rd, y ∈ N is the cardinality of the answer
set of those x ∈ B in the interior of the hyper-rectangle defined
by query q satisfying ai ≤ xi ≤ bi, ∀i.

The reason we focus on the COUNT aggregation operator is
that the answer Set Cardinality Prediction (SCP) of a predicate
multidimensional (m-d) range query is a fundamental task,
playing a central role in predictive analytics. With m-d range
queries, analysts define the subspaces of interest within the
overall data space. SCP in such subspaces then becomes
important for data mining, query-driven data exploration, time
series analysis, and big data visualization tasks [8], [4] of data
(sub)spaces of interest. In exploratory and predictive analytics,
a data scientist routinely defines specific regions of a large
dataset that are worth exploring and wishes to derive and
predict statistics over the populations of these regions – which
amounts to SCP of the corresponding range queries. In addition
to being an important aggregation operator, in database systems
SCP (which amounts to the well known selectivity estimation
problem) is explicitly used for query processing optimization,
empowering query optimizers to choose, for instance, the
access plan which produces the smallest intermediate-query
results (which have to be retrieved from disks and commu-
nicated over the network) saving time, resource waste, and



money (e.g., in Clouds). Furthermore, SCP is a core ‘operator’
in modern big data frameworks: For instance, in Spark [1] one
of the five fundamental actions defined is the so-called count
action, which is executed over the underlying raw data at each
data node.

Motivation: Well-established and widely adopted tech-
niques for Approximate aggregation-Query Processing (AQP)
based on sampling, histograms, self-tuning histograms,
wavelets, and sketches [6] have been proposed. Their fun-
damental and naturally acceptable assumption is that the
underlying data are always accessible and available, thus it
is feasible to create and maintain their statistical structures.
For instance, histograms [9] require scanning of all data to be
constructed and being up-to-date; the self-tuning histograms
[10] require additionally the execution of queries to fine tune
their statistical structures; the sampling methods [14] execute
the queries over the sample to extrapolate the SCP result.

Consider now a big data environment, where a federation
of data nodes store large datasets. There are cases where the
data access to these nodes’ data may be either restricted, (e.g.,
government medical and DNA databases and demographic and
neighborhood statistic datasets). Furthermore, many real-world
large-scale data systems may limit the number of queries that
can be issued and/or charge for excessive data accesses. For ex-
ample, there may exist per-IP limits (for web interface queries)
or per developer key limits (for API based queries). Even when
the (daily) limit is high enough, repeated executions actually
have high monetary cost (e.g., in cloud deployments), waste
communication overhead due to remote query execution, and
computational resources. The accessed data nodes can either
fully execute the queries (to produce exact results) or locally
deploy an AQP technique to produce estimates. In the latter
case, we must rely upon the SCP accuracy provided by the
applied traditional AQP technique.

The above discussion raises the following desiderata: it is
important to develop AQP techniques that (1) are applicable
to all data-environment scenarios (restricted-access or not), (2)
are inexpensive (i.e., avoid relying on excessive querying of
and communication with the data nodes), while (3) offering
high prediction accuracy, and (4) being prudent in terms of
compute-network-store resource utilization.

Let us consider an indicative baseline solution for AQP in
our environment. One approach is to store, e.g., locally to a
central node, all the AQP structures (e.g., histograms, samples,
sketches, etc.) from a federation of data nodes. Thus, we can
simply locally access this node for SCP. Firstly, this violates
our first desideratum, as privacy issues emerge (data access
restrictions). Obviously, retaining all AQP structures, provides
one with the whole valuable information about the underlying
data (e.g., in the case of histograms, we obtain the underlying
probability data distribution p(x), while in sampling methods
we retain actual samples from the remote datasets). Even, in
cases where the local accesses to AQP structures were secured
(which is again subject to major security concerns), we would
have to cope with the problem of AQP structure updates. The
maintenance of those structures in the face of updates demands
high network bandwidth overhead, cost for data transfer (in
a Cloud setting), latency for communicating with the remote
nodes during updates of the underlying dataset at these nodes,
and scalability and performance bottleneck problems arise at

the central node. Therefore, this approach does not scale well
and can be expensive, violating our 2nd and 3rd criteria above.
An alternative baseline solution would be to do away with
the central node and send the query to the data nodes, which
maintain traditional AQP statistical structure(s) and send back
their results to the querying node. As before, this violates
many of our desiderata. It is not applicable to restricted-access
scenarios (violating criterion 1) and involves heavy querying
of the data node (violating criteria 2 and 4). Even if this was
the case (by violating criteria 1, 2, and 4), the construction and
maintenance of an AQP structure would become a prohibited
solution; we struggle with huge volumes of data (data universe
explosion phenomenon; imagine only the creation of a m-
d histogram over 1 zettabyte). These facts help expose the
formidable challenges to the problem at hand, (a significant
problem for large-scale predictive analytics) which to the best
of our knowledge, has not been studied before. In this work
we study a query-driven SCP in a big data system taking
into consideration the above-mentioned desiderata. Although
significant data-centric AQP approaches for SCP have been
proposed [6] a solution for our intended environments of use
is currently not available.

There are three fundamental pressures at play here. The
first pertains to the development of a solution for SCP that
is efficient and scalable (especially for distributed scale-out
environments, wherein extra communication costs, remote
invocation techniques, and estimation latency are introduced)
by the distribution of datasets and computation. The second
pertains to the accuracy of SCP results, where as we shall see
traditional solutions fall short. The third concerns the wide-
applicability of a proposed method, taking into account envi-
ronments where data accesses may be restricted, We propose
a solution that addresses all these tensions. Conceptually, its
fundamental difference from related works is that it is query-
driven, as opposed to data-driven, and is thus based on a
ML model (trained by a number of queries sent to a data
node) and later utilized to predict answers to new incoming
queries. More specifically, the challenging aim of our approach
is to swiftly provide SCP of ad-hoc, new, unseen queries
while (i) avoiding executing them over a data node, saving
communication and computational resources and money, and
(ii) not relying on any knowledge on the p(x), and any
knowledge about nodes’ data. Through our query-driven SCP,
an inquisitive data scientist, who explores data spaces, issues
aggregate queries, and discovers hidden data insights, can
extract accurate knowledge, efficiently and inexpensively.

Related Work: Given a d-dim. data space x ∈ Rd the holy
grail approaches focus on: (i) inspecting the (possibly huge)
underlying dataset and estimate the underlying probability
density function (pdf) p(x). Histograms (typically m-d) as
fundamental data summarization techniques are the corner-
stone, whereby the estimation of p(x) is highly exploited for
SCP of range queries, e.g., [9], [10]. The traditional methods
of building histograms do not scale well with big datasets.
Histograms need to be periodically rebuilt in order to update
p(x) thus, exacerbating the overhead of this approach [17].
Central to our thinking is the observation that a histogram
is constructed solely from data, thus obviously being not
applicable to our problem for the above-mentioned reasons.
Histograms are also inherently unaware on the SCP requests,
i.e., query patterns. Their construction method rely neither on



query distribution p(q) nor on joint p(q, y) but only on p(x).
As a result, such methods do not yield the most appropriate
histogram for a given p(q) [18]. The limitations of this method
are also well-known [19], [20]. To partially address some
of the above limitations, prior work has proposed self-tuning
histograms (STHs) e.g., [10], [19]. The STHs learn a centrally
stored dataset from scratch (i.e., starting with no buckets) and
rely only on the cardinality result provided by the execution of
a query, referred to as Query Feedback Records (QFR). STHs
exploit the actual cardinality from QFR and use this informa-
tion to build and refine traditional histograms. Formally, given
a query q over data with cardinality y, the methods of STHs
estimate the conditional p(x|y,q) since the main purpose is to
construct and tune an histogram conditioned on query patterns.
Fundamentally, the limitations in STHs in our problem stem
from the fact that they estimate p(x|y,q), thus, having to
data access (in m-d STHs, at least one scan of the set B is
required), deal with the underlying data distribution and make
certain assumptions of the statistical dependencies of data.
Other histogram-based SCP methods utilize wavelets [11],
singular value decomposition [12], value transformations [13],
and entropy-based [16]; the list is not exhausted. Briefly, the
idea is to apply wavelet decomposition to the dataset to obtain
a compact data synopsis based on the wavelet coefficients. By
nature, wavelets-based AQP relies on the synopsis construction
over data thus could not be applied to our problem. Overall,
STHs and the other advanced histogram-based approaches,
are associated with data access for estimating p(x) or any
other p(x|q, . . .) thus not applicable in our problem. There
are also SCP methods e.g., [25] that use the dataset’s fractal
dimensions. They rely on certain assumptions on the density of
data points in the dataset B and require data access to construct
their structures. Sampling methods [14], [15] have been also
proposed for SCP. They share the common idea to evaluate
the query over a small subset of the dataset and extrapolate
the observed cardinality. Finally, another approach for AQP
answering to SCP is data sketching; we refer the reader to
[6] for a useful survey of sketching techniques. Sketching
algorithms construct estimators from the raw data and yielding
a function of these estimators as the answer to the query.
Therefore, as discussed above, we neither have access to data
nor to a sample of them, thus yielding the data sketching and
sampling methods inapplicable to our problem.

In conclusion, the data-centric approaches in related work
are not applicable to our problem since they require explicit
access to data to construct their AQP structures and maintain
them up-to-date. For this reason, our proposed solution to
this novel setting is query-driven. Our model can be highly
useful when it is very costly (in time, money, communication
bandwidth) to execute aggregation operators over the results
of complex range queries (including joins of datasets and arbi-
trary selection predicates), when data are stored at the cloud,
or at federations of data stores, across different administration
domains, etc. And, to our knowledge, it is the only work
that can address this problem setting. However, to assess the
performance of our solution, we provide extensive experiments
comparing our approach versus histograms, popular self-tuning
histograms, and sampling methods. We show that our query-
driven solution, which extracts knowledge from the issued
queries and corresponding answers, provides higher SCP ac-
curacy and performance, while being more widely applicable.

II. CHALLENGES & OVERVIEW

Naturally, our approach is query-driven. The first require-
ment (and challenge) of our approach is to incrementally learn
the query patterns p(q) at any time, thus being able to (i) detect
possible changes to user interests on issuing queries and (ii)
reason about the similarity between query patterns. The second
requirement (and challenge) is to learn the association q→ y
between a query q and its aggregate result (here, cardinality)
y, i.e., p(y|q), thus being able to predict the cardinality. The
third requirement (and challenge) is to learn such association
without relying on the underlying p(x) which in our case is
totally unknown and inaccessible. The fourth requirement (and
challenge) is to update p(q) and p(q, y) based on changes
in query patterns and to data. Query distributions are known
to be non-uniform, with specific portion of the data space
being more popular. However, query patterns change with
time, reflecting changes of users interests to exploring different
sections of the datasets of nodes. Hence, we must swiftly
adapt and learn on-the-fly the new query patterns, updating
p(q, y) and p(q). Furthermore, updates on the underlying
datasets of nodes can independently occur, altering p(x). We
must also deal with such mutations, implying the need to
maintain the current q → y association, subject to updates
of the underlying data. We require a model to meet the above-
mentioned requirements.

Overview of COUNT Predictive Learning: Consider a set
Q = {(qi, yi)}ni=1 of training pairs and a new query q with
actual result y. Our major aim is to predict its result ŷ using
only Q without actually executing q. Let us discuss some
baseline solutions: A first idea is to keep all pairs (qi, yi)
and given q we find the most similar query qj with respect
to Euclidean distance and predict ŷ = yj , with (qj , yj) ∈ Q.
We can also involve the k closest queries to q and average
their cardinalities, e.g., k-nearest neighbors regression. The
major problems here are: (i) we must store and search all
previous pairs for each new query; Q can be huge. Deciding
which pairs to discard is not a trivial task (a new pair might
convey useful information while another new one might be a
redundant / repeated query); (ii) when data change (updates on
raw data), which impacts the query results, it is not trivial to
determine which pairs from Q and how many to update. Even
worse, all pairs may need updating; (iii) when query patterns
change (new user interests), then there may be many pairs in
Q that will not contribute to cardinality prediction (the new
queries are actually far distant to the previous ones) or even
negatively impact the final result. To avoid such problems we
extract knowledge from Q as to how query and cardinality
depend on each other. We could cluster similar queries given
the Euclidean distance, thus forming a much smaller set L
of representative (prototype) queries w with |L| � |Q|. For
instance, w ∈ L can be the centroid of those queries from
Qw ⊂ Q with distances from w be the smallest among all
other representatives. However, we are not just interested in
clustering Q. We should partition Q aiming at cardinality
prediction. An approach could be to assign to each wi ∈ L a
‘representative’ cardinality value, e.g., the average cardinality
of those queries that belong to Qwi . Once this assignment
is achieved, we only keep L and discard Q. Nonetheless,
our requirements include incremental learning of the query
space in light of cardinality prediction. We require an adaptive
clustering algorithm that incrementally, i.e., with only one pass



of Q, quantizes Q but also with respect to minimizing the
prediction error.

Also, the adoption of an on-line quantization algorithm,
like on-line k-means is not directly applicable in our case as
we don’t wish to simply quantize the query space; we explicitly
require quantization of the query space in light of cardinality
prediction. Moreover, on-line regression methods, e.g., incre-
mental regression trees [26], on-line support vector regression
[27], could not fulfill all requirements. This is because, we
also deal with the fact that queries are continuously observed,
conveying the way users are interested in data exploration.
The capability of the model to adapt to such changes requires
explicit information on accessing the very specific regions of
the query patterns space; this is neither easily provided nor
supported by incremental regression methods. Moreover, the
problem here is not only to adapt to changes on the query
patterns but, if so, to decide which and how representative(s)
or regions of the query patterns space to update upon data
and/or query updates.

Our Predictive Learning Approach & Contribution: We
address the above problems bearing in mind the requirements
of (i) incremental learning of the query patterns and (ii)
incremental learning of the association between query and
cardinality utilized for prediction. To this end, we attempt
to combine, in parallel, two incremental learning processes:
adaptive, self-organized vector quantization of the query pat-
terns space (which will also give insights to which regions
of the query patterns space to adapt) taking also into account
the objective to minimize the SCP error. On the one hand,
we learn p(q) and in parallel, on the other hand, we learn
p(y|q) reflected by the q→ y association. We move beyond a
typical on-line quantization (partitioning) of Q going toward
a prediction error-driven, incremental, self-organized cluster
formation of each Qw. Specifically, given a new query q we
predict ŷ through locally weighted regression (using Kernel
functions) over those assigned representative cardinality values
whose corresponding prototypes wi are topologically close to
q. The regression weights quantify a topology information
obtained by the self-organizing neural maps [22]. Through
this topological information, we can find which prototypes
from L are similar to q, thus, use their assigned cardinalities
for prediction. Moreover, by learning the q → y association
(a.k.a. heteroassociative learning [22]) we rest on the fact that
similar queries correspond to close cardinalities. Based on
this, the update of the most similar query prototypes to an
incoming query q (either during learning or adaptation due
to data change) takes into account both the query q itself
and the feedback of the prediction error of the actual result
of query q and the currently estimated result of the model.
Hence, the query prototypes in L are partitioned with respect
to the cardinality prediction error, thus, yielding a mechanism
ideal for our use case.

We introduce a novel Machine Learning (ML) model M
that incrementally extracts information about the q → y
association by learning p(q) and, in parallel, p(y|q). Once
trained, model M predicts the cardinality of an unseen query
without requesting its execution. Our model also swiftly adapts
to new query patterns, and deals efficiently with data updates.
The major technical contributions are:

• a novel incremental, self-organized, prediction error-

driven, vector quantization and regression model for
predicting the aggregate results of range queries. This
model adopts stochastic gradient descent, thus we
provide theoretical analysis and proof of convergence
over large-scale loss minimization;

• adaptation methods based on stochastic gradient de-
scend in the face of updates to query patterns and/or
data updates;

• comprehensive experimental results analyzing the per-
formance of our model and showcasing its benefits
vis-à-vis data-centric sampling [15], histograms [9]
and STHs [19], [20].

III. PRELIMINARIES & PROBLEM FORMULATION

We overview the essentials of our ML model, namely
Unsupervised Competitive Learning (UCL) [21] for adaptive
query vector quantization and Heteroassociative Competitive
Learning (HCL) [22] for associating queries to cardinalities.
UCL partitions a query pattern space R2d characterized by
an unknown p(q), q ∈ R2d. A prototype or neuron wj

represents a local region of R2d and behaves as a quantization
vector. UCL distributes M neurons w1, . . . ,wM in R2d to
approximate p(q). A UCL model learns as wj changes in
response to random training patterns. Competition selects
which wj the training pattern q modifies. Neuron wj wins if
it is the closest (based on 2-norm distance ‖q−wj‖2) of the
M neurons to q. During the learning phase of UCL, patterns
q are projected onto their winning neurons, which competi-
tively and adaptively move around the space to form optimal
partitions that minimize the quantity

∫
‖q−wj‖22p(q)dq, i.e.,

vector quantization error, with winning neuron wj such that
‖wj − q‖2 = mini‖wi − q‖2. The neurons upon a t-th
training pattern q are incrementally updated as follows ∆wj =
β(t) (q−wj) and ∆wi = 0, if i 6= j, where learning rate
β(t) ∈ (0, 1] slowly decreases with the update step. Kohonen’s
self-organizing map (SOM) [22] is an advanced variant of a
UCL for vector quantization, in which wj corresponds to the
j-th position rj = [rj1, rj2] of a 2-dim. square lattice/matrix
L (we notate wj ∈ L). In SOM, neurons that are topologi-
cally close in the lattice correspond to patterns that are also
close in R2d. This way a topographic mapping is learned
between query pattern and lattice space. This is achieved by
adapting not only the winner neuron wj of a pattern q but
also its topographical neighbors wi to some degree through
a Kernel distance function h(i, j; t) over the positions ri
and rj of neurons wi and wj in L, respectively. Usually,
h(i, j; t) is a Gaussian neighborhood function h(i, j; t) =

exp
(
−‖ri−rj‖

2
2

2ρ2(t)

)
. The topological neighborhood is symmetric

around the winner neuron, which has the maximum value of
unity. Parameter ρ(t) is the width of the neighborhood with
initial value ρ0 defined as ρ(t) = ρ0 exp(− t

Tρ
), where Tρ

is a constant. A small width value corresponds to narrow
neighborhood. We obtain SOM through an incremental update
rule that adapts all neurons that are topographically close to
wj : ∆wi = β(t)h(i, j; t) (q−wi) ,∀i. A good choice of
β(t) improves significantly the convergence of SOM [22];
usually β(t) = β(t−1)

1+β(t−1) with β(0) = 1. SOM yields a high
quality vector quantization from all UCL variants because
of producing a structured ordering of the pattern vectors,



i.e., similar query patterns are projected to similar neurons,
making it ideal for our purposes. UCL/SOM does not learn
any conditional or joint association between different pattern
spaces. In our case, we desire also to estimate an association
between R2d and N, i.e., estimate p(q, y) with q ∈ R2d, y ∈ N,
HCL comes into play. HCL estimates indirectly an unknown
joint p(q, y), while directly estimates a function f : R2d → N
over random pairs (q, y). In statistical learning theory [21],
HCL refers to a function estimation modelM(f, α) (or simply
M) with parameter α ∈ Λ (Λ is a parameter space defined
later) for estimating f . The problem of learning M is that of
choosing from a set of functions f(q, α), α ∈ Λ, the one which
minimizes the risk function J (α) =

∫
L(y, f(q, α))dp(q, y)

given random pairs (q, y) drawn according to p(q, y) =
p(q)p(y|q) with loss or estimation error L(y, ŷ) between
actual y and predicted ŷ = f(q, α), e.g., L(y, ŷ) = |y−ŷ|. The
goal for HCL is to learn M(f, α0) which minimizes J (α)
subject to unknown p(q, y), i.e., α0 = arg minα∈Λ J (α).
Stochastic gradient descent (SGD) is considered to be one
of the best methods for large scale loss minimization and
has been experimentally and theoretically analyzed by [28].
Upon the presence of a t-th pattern (q, y), α(t) is updated by
∆α(t) = −β(t)∇L(y, ŷ;α(t)), where ∇L is the gradient of
L at t-th pattern w.r.t. α(t).

Problem Formulation: Consider a model M that esti-
mates the SCP function f : R2d → N given training pairs
(q, y) drawn from the unknown p(q, y), i.e., y = f(q).
Model M learns the mapping from query pattern space to
cardinality domain by minimizing the risk function J (α)
with respect to loss L(y, ŷ). A loss function can be, e.g., λ-
insensitive L(y, ŷ) = max{|y − ŷ| − λ, 0}, λ > 0, 0-1 loss
L(y, ŷ) = I(y 6= ŷ) with I be the indicator function, squared
loss (y − ŷ)2, or absolute |y − ŷ|. The fundamental problems
of the ML model for SCP are:

Problem 1: Given set B and pairs (q, y), incrementally
learn a model M which minimizes J (α).

M should adapt to changes in p(q) and p(y|q) since query
distribution is not necessarily static.

Problem 2: Given a trainedM and change in p(q), derive
an incremental algorithm for adaptingM’s parameter such that
M minimizes J (α).

M should be up-to-date as B gets updated, i.e., p(q, y)
changes due to updates / insertions / deletions.

Problem 3: Given a trained M and updated B, derive an
incremental algorithm for adapting M’s parameter such that
M minimizes J (α).

IV. SET CARDINALITY PREDICTIVE LEARNING

Our objective is a ML modelM to incrementally (i) quan-
tize (cluster) the query pattern space, (ii) learn the association
q → y and (iii) predict the set cardinality given an unseen
query. The novelty of our model is the introduction of two
simultaneous incremental learning tasks: Task 1: incremental
query space quantization (UCL/SOM; unsupervised learning);
Task 2: incremental local learning of the q → y association
within the region of these neurons (HCL; supervised learning).
The parameters of the Task 1 are neurons wj ∈ L and the
parameters of the Task 2 are the (local) cardinality prototypes

yj associated with each wj . The yj reside on a regression
lattice C such that the j-th index of wj refers to the j-
th index of yj . The overall parameter set for model M is
α = ({wj}, {yj}), j = 1, . . . ,M .

Figure 1 shows the idea of both simultaneous tasks. Con-
sider the presence of a random pair (q, y). Projection: query q
is projected onto its winner neuron wj ∈ L. Based on Task 1,
neuron wj adapts (moves). Association: Simultaneously (Task
2) the corresponding prototype yj ∈ C moves towards (gets
updated) to y governed by a feedback update rule based on
stochastic negative partial derivative (introduced later). Both
tasks simultaneously converge; see Theorem 1. Neuron wj

converges to the centroid of a local region Dj ⊂ R2d (see
Centroid Theorem in [21]) and its corresponding yj converges
to the median of the image of Dj ; see Theorem 2. Prediction:
M based on L ‘locates’ the winner neuron and, based on
C, predicts the cardinality using Kernel regression over the
cardinality prototypes. Feedback: The prediction result feeds
C during learning for updating cardinality prototypes.

We adopt SOM for UCL since based on topology preser-
vation we can claim that: if queries q and q′ are similar
due to being projected onto the same neuron of L, then
their selectivities on C are likely to be similar, too. This
argument cannot be claimed by any other UCL method (e.g., k-
means or fuzzy c-means clustering), which does not guarantee
topological ordering of quantization vectors.

wj

q

wi

wk

Neuron lattice L Cardinality lattice C

Query space

query

neuron

Kernel regression
feedback

Fig. 1. Projection-association-prediction-feedback: Simultaneous UCL and
HCL over lattices L and C.

We firstly define the distance between queries, the SCP
function ŷ = f(q, α) and the loss function L(y, ŷ). Consider
two range queries q,q′ normalized firstly in [0, 1]2d (only for
simplicity in our analysis).

Definition 3: The normalized Euclidean distance between
queries q and q′ is ‖q − q′‖2 = 1√

2d

∑d
i=1 (ai − a′i)

2
+

(bi − b′i)
2, where 1√

2d
is a normalization factor since 0 ≤

‖q− q′‖2 ≤
√

2d.

When dealing with mixed-type data points, e.g., consisting
of categorical & continuous attributes, we can adopt other
distance metrics [24]; this does not spoil the generality of
quantization. Consider the winner neuron wj ∈ L and its
corresponding cardinality prototype yj ∈ C to a random query
q. Neuron wj and query q have the same dimensionality
2d. The SCP f is not only based on yj , but also on the



contribution of neighboring yi defined by a topographical
neighborhood of winner wj . This is achieved by a kernel
function Kε(‖ri−rj‖2) over the normalized location vectors ri
and rj (i.e., ‖ri‖, ‖rj‖ ≤ 1) of the associated neurons wi and
wj of lattice L, respectively. That is, ŷ = f(q, α) is produced
by the Nadaraya-Watson Kernel regression model:

ŷ = f(q, α) =

∑M
i=1Kε(‖ri − rj‖)yi∑M
i=1Kε(‖ri − rj‖)

(1)

with j = arg minwi∈L‖q − wi‖2. Kernel Kε(x) = 0.75 ·(
1− (x−0.5

ε )2
)
· I(|x − 1

2 | ≤ ε) is the Epanechnikov ker-
nel function shifted to 0.5 and scaled by 0 < ε � 0.5.
Obviously other kernel functions can be also adopted e.g.,
uniform, triangular, quadratic, with Epanechnikov being most
commonly used kernel. Predicted cardinality is estimated by
a kernel smoothing of those cardinality prototypes whose
associated neurons are topographically close (w.r.t. ε) to winner
neuron. Given actual y and predicted ŷ as in (1), we adopt
the loss L(y, ŷ) = |y − ŷ| because it is widely used for
evaluating the prediction error in SCP as in [9], [18], and
[19]. Topographically close neurons w.r.t. location vectors also
imply close neurons w.r.t. Euclidean distance. However, the
adoption of a Kernel function over the distance of neurons
in R2d could assume query components to be isotropically
Gaussian, which is not a general case when d is relatively
large. We distinguish three phases for the proposed ML model:
the learning, prediction and update phase.

Learning Phase: In the learning phase of M we are
given a sequence of pattern pairs (q(1), y(1)), (q(2), y(2)), . . .
Query patterns q(t) are used for quantizing the query space
(over L) and cardinalities y(t) are used for learning the
q → y association (over C). Upon the presence of a pattern
pair (q(t), y(t)) the winner wj(t) ∈ L is determined by
j = arg minwi∈L‖q(t) − wi(t)‖. After the projection of
q to winner wj , the model M updates in an incremental
manner the winner and all its neighbors of lattice L such
that they approach the query pattern q with a magnitude
of β(t)h(i, j; t). In the same time, cardinality y is used for
updating the corresponding yj ∈ C along with all prototypes
yi ∈ C associated with the neighbors of winner neuron wj

with the same magnitude. Therefore, the update rule for each
yi is governed by the loss function L(y, ŷ) = |y − ŷ| we aim
to minimize with ŷ defined in (1).

Theorem 1: Given pattern pair (q(t), y(t)), modelM con-
verges to the optimal parameter α, which minimizes the risk
function J (α) with respect to loss function L(y, ŷ) = |y− ŷ|
and ŷ is defined in (1), if neuron wi(t) ∈ L and its associated
prototype yi(t) ∈ C are updated as

∆wi(t) = β(t)h(i, j; t) (q(t)−wi(t)) (2)

∆yi(t) = β(t)h(i, j; t)
Kε(‖ri − rj‖)∑M
k=1Kε(‖rk − rj‖)

sgn (y(t)− ŷ(t))(3)

where sgn(·) is the signum function, β(t) is the learning rate
and h(i, j; t) is the neighborhood function, j is the index of
the winner neuron wj(t) of pattern query q(t) and predicted
ŷ(t) is determined by (1).

Proof: We derive the analysis of convergence correspond-
ing to lattices L and C. We verify whether quantization error
‖w − q‖22 and loss L(y, ŷ) = |y − ŷ| actually decreases

as the learning phase proceeds, converging eventually to a
stable state. The convergence is evaluated through the average
expected loss E =

∫
W
∑

wi∈L h(i, j)‖wi − q‖22dp(W) +∫
Y
∑
yi∈C h(i, j)|y − ŷ|dp(Y) being taken over an infinite

sequence of W = {q(1),q(2), . . .} and corresponding Y =
{y(1), y(2), . . .} and p(W), p(Y) is the pdf of W and Y ,
respectively. Since both pdfs are unknown and sequences Y
andW are actually finite we use the Robbins-Monro (RM) [23]
stochastic approximation for E minimization to find an optimal
value for each wi, yi, i = 1, . . . ,M . Based on RM the stochas-
tic sample E(t) of E is E(t) =

∑
wi∈L h(i, j; t)‖wi(t) −

q(t)‖22 +
∑
yi∈C h(i, j; t)|y(t) − ŷ(t)|. E(t) has to decrease

at each new pattern at t by descending in the direction of its
(partial) negative gradient. Hence, the SGD rule for each wi is
∆wi(t) = − 1

2β(t) ∂E(t)
∂wi(t)

and for yi is ∆yi(t) = −β(t) ∂E(t)
∂yi(t)

,
where β(t) satisfies

∑∞
t=0 β(t) = ∞ and

∑∞
t=0 β

2(t) < ∞
[21]. From the partial derivatives of E(t) we obtain the update
rules (2) and (3) for parameter set α.

Note that the update rule (3) for prototypes yi(t) involves
the current prediction ŷ(t) of the model during the t-th pattern
pair in the learning phase. Naturally we update each yi(t)
in an on-line supervised regression fashion, in which we
take the prediction ŷ(t) in (1) as feedback. From (3) we
observe that neighbor yi(t) of yj(t) is adapted by its relative
contribution provided by the kernel function, which is rational
since yi(t) contributes with the same magnitude to the SCP. If
y(t) > ŷ(t), then yi(t) increases linearly with its contribution
to SCP approaching the actual y(t). On the other hand, i.e.,
y(t) < ŷ(t), yi(t) decreases to move away from ŷ(t) and
approaches y(t). When the current prediction error is zero,
i.e., L(y(t), ŷ(t)) = |y(t) − ŷ(t)| = 0, there is no update on
the cardinality prototypes. Neuron wi(t) moves toward pattern
query q(t) to follow the trend. Obviously, the more similar a
pattern query q and a neuron wi are, the less wi gets updated.
If ε is selected such that Kε(‖ri − rj‖) = 0, i 6= j, then we
obtain ∆yj ∼ sgn(y− yj) in which only yj of the winner wj

is updated. We provide the following theorem:

Theorem 2: If ỹj is the median of the partition Yj cor-
responding to the image of region Dj of winner wj then
P (yj = ỹj) = 1 at equilibrium.

Proof: Let yj correspond to wj and assume the image
of Dj ⊂ R2d to subspace Yj ⊂ N via the SCP y = f(q).
The median ỹj of Yj satisfies P (y ≥ ỹj) = P (y ≤ ỹj) = 1

2 .
Suppose that yj has reached equilibrium, i.e., ∆yj = 0, which
holds with probability 1. By taking the expectations of both
sides and replacing ∆yj with the update rule sgn(y − yj):

E[∆yj ] =

∫
Yj

sgn(y − yj)p(y)dy = P (y ≥ yj)
∫
Yj
p(y)dy −

P (y < yj)

∫
Yj
p(y)dy = 2P (y ≥ yj)− 1.

Since ∆yj = 0 thus yj is constant, then P (y ≥ yj) = 1
2 ,

which denotes that yj converges to the median of Yj .

The learning phase ofM is described in Algorithm 1. The
input is the training set of pairs Q = {(q, y)}, 2-dim. lattices
L and C with M entries, and a stopping threshold θ > 0.
The algorithm processes successive random pattern pairs until
a termination criterion Tt ≤ θ. Tt is the 1-norm between



successive estimates of neurons and cardinality prototypes
Tt =

∑M
i=1 (‖wi(t)−wi(t− 1)‖1 + |yi(t)− yi(t− 1)|) with

‖wi‖1 =
∑2d
k=1 |wik|. The output is parameter set α.

ALGORITHM 1: The Cardinality Learning Algorithm.
Input: training set Q, lattices L, C with M entries,

stopping threshold θ
Output: parameter set α
Initialize (wi(0), yi(0)), i = 1, . . . ,M , t← 0;
repeat

t← t+ 1;
Select randomly a pair (q(t), y(t)) ∈ Q;
j = arg minwi∈L‖q(t)−wi(t)‖2 /*project*/;
Update wi(t),∀i /*quantization*/;
Calculate ŷ(t) /*prediction feedback*/;
Update yi(t),∀i /*adaptation*/;

until Tt ≤ θ;

Prediction Phase Once parameter set α is trained, and
thus no more updates are realized on neurons and cardinality
prototypes, we predict the cardinality ŷ given a random query
q as defined in (1). That is, we proceed with SCP without
executing the incoming query q. Firstly, q is projected onto L
and its winner wj is obtained. If yj is the associated cardinality
in lattice C, the predicted COUNT value is ŷ obtained from (1)
under Kernel regression over a region around yj in lattice C.

Update Phase: Model M deals with Problems 2 and 3
by updating parameter α thus inducing changes on L and C.
The update rules in Theorem 1 yieldM also capable of being
adaptable to both query distribution and data changes. Consider
that the query distribution progressively changes. The model
treats such change by adapting only the winner neuron wj

and corresponding cardinality yj upon the presence of a pair
(q, y) using the rules in Theorem 1. The rationale behind such
update is that wj is moved toward q to capture the changes
in query distribution and, simultaneously, yj moves toward y.
The rate of adaptation βj ∈ (0, 1) in the update phase depends
on the number of times ζj0 neuron wj was a winner during
the learning phase. In this phase, we define the update rate
βj(t) =

ζj0∑M
i=1 ζi0

(1 + t)−1 to prevent neuron and cardinality
prototypes from moving too fast and therefore destabilizing
the update process. Note, here each winner neuron has its own
update rate βj depending on its ‘winning’ history during the
learning phase. Consider now that updates on set B occur. In
this case,M updates only the associated cardinality prototype
yj and leaves the winner wj untouched given a pair (q, y).
That is because, the query distribution is not altered thus M,
which has already quantized the query space, proceeds with
the update of the image of wj only. In this context, yj is
moving toward y as given in (3) with βj defined above in
the query distribution change. Both types of updates require
a change detection mechanism to identify a change in p(q)
and/or in p(q, y). In this paper we assume that this mechanism
is provided thus proposing a framework that treats the updates.
The definition of a change detection mechanism is beyond the
scope of this paper and is in our future research agenda.

V. PERFORMANCE EVALUATION

The query and cardinality prototypes constitute a 2d + 1
dim. vector. The learning algorithm requires O(dM) space.

The computational cost for prototype updates is O(dM). Since
prototypes are updated during learning, the learning phase
requires O(d/θ) [28] iterations to get Tt ≤ θ. After learning,
we obtain SCP in O(d logM) by applying an one-nearest
neighbor search for the winner using a 2d-dim. tree structure
over prototypes in L. Adaptation given a pair requires also
O(d logM) time for searching for the winner. We will show
that by extracting significant knowledge from pairs (q, y) with-
out relying on underlying data, we achieve better predictions
and also adapt to query patterns/data changes.

We now turn to study the model’s performance sensitivity
over real and synthetic datasets on (i) SCP accuracy, (ii) ca-
pability of adapting to query patterns and/or data changes (iii)
storage requirements, (iv) number of training pairs, and (iv)
construction and prediction time. We also provide a compar-
ative assessment of our query-driven model with data-centric
approaches, despite their failure to address our desiderata in
our setting. The approaches are: (i) GenHist histograms [9],
(ii) the learning framework for STHs [20], (iii) ISOMER STH
[19], (iv) STHoles [18], and (v) sampling [15]. The relative
percentage SCP error e = |y−ŷ|

y is used in [11], [9] and [20]
and we adopt it here to enable direct comparisons.

Datasets & Workloads: The following real datasets are
used since they were adopted by the competing approaches
above, in order to enable objective direct comparison of our
model against these works. The real dataset RS2 refers to the
forest Cover dataset from UCI Machine Learning Repository
(MLR)1. We use RS2 for comparison with STHoles (d = 4)
and GenHist (d ∈ {4, 5, 8, 10}). All points in RS2 are nor-
malized as in the GenHist paper [9]. The real dataset RS3
refers to the Census dataset [29] from UCI MLR consisting
of 3-dim. points scaled in [0,1] and used for comparison with
[20] and STHoles and ISOMER. RS1 is also a real dataset
taken from the UCI MLR2 containing real-valued multivariate
points with d ∈ {2, 4}. We use RS1 for comparison against the
sampling method in [15] and also for our sensitivity analysis.
Moreover, we use the SD1 synthetic dataset for our sensitivity
analysis, which contains 5 · 109 3-dim. real points drawn from
a mixture of 20 Gaussians with random mean/variance in each
dimension. The ranges of the three attributes are 102, 103, 107,
respectively, obtaining points with variety in domain ranges.
We generate the training set Q and evaluation set E . Set E is
generated independently ofQ, thus assuring completely unseen
queries. The Q size is a very small fraction γ ∈ [1‰, 1%]
of the size of set |B|. Based on |Q| we define the number of
neurons for lattice L (and C). This is the minimum information
required by our model to be initialized, thus, M = |Q|. Also,
|E| is a factor δ ∈ [1, 100] of |Q|. Q contains a number of
K query subspaces Qk ⊂ R2d, where each Qk, k = 1, . . . ,K,
is characterized by a query pattern-generator (ck,vk, `k). The
center of each q of Qk, for each dimension i, is sampled from a
Gaussian distribution N (cki, vki) with mean cki, variance vki,
and radius `ki. That is the lower bound aki = xki − `ki and
upper bound bki = xki + `ki, where center xki ∼ N (cki, vki).
The volume of each query 2`ki is drawn uniformly at random
from 1% to 25% of the range of the i-th dimension. A random
query q is generated as follows: a Qk is selected uniformly
at random from K query spaces with equal probability 1

K .

1kdd.ics.uci.edu/summary.data.type.html
2http://archive.ics.uci.edu/ml/machine-learning-databases/00235/



TABLE I. PARAMETERS

Parameter (Default) Value/Range
Data dimension d {2,3,4,5,8,10}

Dataset size |B| 2,075,259 (RS1), 545,424 (RS2), 210,138 (RS3)
5 · 109 (SD1)

No. of neurons M γ|B|, γ = {1‰, 2‰, 5‰, 1%}
Training set size |Q| M
Evaluation set size |E| δ|Q|, δ = 1, . . . , 100
Query subspaces K {10,100,1000}
Convergence threshold θ 10−3

Then, from Qk we obtain the lower, upper and volume values
for all attributes. Since we wish to study changes in p(q),
we alter the mean value and variance of all query spaces in
each workload. M is trained with Q and at some time during
evaluation, we alter all parameters of Qk,∀k, thus queries are
drawn now from different distributions. We also generate query
workloads with the exact same way described in STHoles
paper itself [18]. All queries are hyper-rectangles included in
a hypercube of volume 1% of the data domain. There are two
types of workloads: (i) Gauss workload (GWL) in which the
query center follows a multi-gaussian distribution independent
of the data distribution and has an average volume of 1% of the
data domain. (ii) Uniform workload (UWL) in which the query
center follows a uniform distribution in the data domain and
has an average volume of 1% of the data domain. Moreover,
the workload WL1 for ISOMER, EquiHist and SpHist [20]
is generated with the exact same way as generated in [20]
where center ci = ai+bi

2 of each dimension i = 1, . . . , d is
selected uniformly at random from [0,1]. A q is d-dim. hyper-
rectangle centered at ci and with volume bi−ai at most 20% of
[0,1]. For GenHist, we create two workloads WL2 and WL3 in
exactly the same way as generated in [9]. WL2 contains queries
whose centers are chosen uniformly at random in the data
domain [0, 1]d. WL3 contains queries with zero lower bound
ai = 0, i = 1, . . . , d and upper bound a randomly chosen point
[b1, . . . , bd]

> ∈ [0, 1]d. Table I shows the parameters.

Accuracy of Prediction & Time: Figure 2 shows the
percentage SCP error e for our model against number of
neurons M = |Q| = γ|B| (corresponding to M ∈
{2075, 4150, 10376, 20752}) and factor δ (|E| = δ|Q|) for dif-
ferent number of query subspace K over RS1 with d = (2, 4).
Our model achieves very low error as M increases, however,
an increase in M (M > 5000) does not significantly improve
the SCP accuracy, thus, there is no need to store a higher
number of neurons. A fraction of γ = 2‰ of |B| results to SCP
error lower than 5% for d = 2, 3, 4. Furthermore, our model
depends on the number of query subspaces. For K = 1000, the
error increases indicating that M should increase the lattice
resolution (increment of M ) to capture all variety of query
spaces. Nonetheless, for K ≥ 100, γ = 2‰, M exhibits a
robust behavior in terms of error. The error remains constant
with an increase in the evaluation set size |E| for all γ in Figure
2 (right). This is expected sinceM has captured the statistical
characteristics of query patterns, thus being able to deal with
numerous unseen queries. Figure 3 (left) shows the impact of
M on error when the range of attributes A1, A2 and A3 in the
3-dim. SD1 varies significantly; δ = 100. In Figure 3(right)
we observe that M obtains constant error against correlation
coefficient ρ ∈ {0, 0.3, 0.6, 0.9} among the attributes in SD1.
Here, ρ quantifies the Pearson correlation coefficient between
A1 and A2, and between A1 and A3. M does not depend

on the attributes ranges and any correlation among attributes,
since it relies only on the query patterns.
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Fig. 2. Error vs. (left) neurons (d = 2, 4) and (right) factor δ (d = 4); RS1.

We measure the learning time (in seconds) in Figure 4(left)
of M for different number of neurons and query subspaces
over RS1 (d = (2, 4)) on a PC Intel Core i5 CPU at 3.40GHz,
16 GB RAM. Our model stops learning when Tt > θ, which
converges quicker and, especially, for M ≤ 5000, it takes
up to five seconds to converge; M < 5000 is adequate for
obtaining very low error compared to other models (as it
will be shown later). The construction time depends on the
number query subspaces K (variability of patterns). When
K increases, our model must learn a ‘richer’ query space,
thus more training pairs are needed to converge. Moreover,
the construction time depends on dimension d (‘curse of
dimensionality’). The higher the dimension of a neuron (which
is 2d) the more computations are required for updates. The
SCP prediction time in milliseconds for a random query q
ranges from 0.06ms to 0.159ms when 103 ≤M ≤ 2 · 104.
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Adaptation: Consider the following experimental scenario
in Figure 5 (left) repeated 100 times: M is trained with
K = 100 query subspaces over SD1. During prediction, M
receives queries one at a time generated by a workload where



we randomly change the query pattern-generators’ values of
all query subspaces thus being different with those used for
training. After the first 50 queries, we alter the query subspaces
and observe that M adapts to this change after the next 20
queries. At the 120th query we alter again the query subspaces
and observe after the next 30 queries M has adjusted again
to follow the new subspaces and so on. We experiment with
dataset updates by randomly changing 25% of data in B
progressively up to 100% total change. Figures 5 (right) shows
the error vs. a stream of queries. We alter, consequently, the
25% of B at the 50th, 120th, 180th and 230th query.M adapts
after (on average) 30 queries.
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Fig. 5. Error vs. query streams (left) changing K = 100 query subspaces,
(right) progressively update 25% of the dataset up to 100%; K = 100, SD1.

Models Comparison: We provide a comparative assess-
ment against several data-centric approaches. Despite their
shortfalls explained earlier, we again aim to demonstrate our
model’s advantages. Sampling techniques, e.g., [14], [15],
sample points from B randomly and uniformly without replace-
ment, thus obtaining the sample B′. The cardinality values for
B′ are used as estimates of SCP over B. We obtain B′ by
adopting the reservoir sampling algorithm [15]. STHoles [18]
uses QFRs to build histograms and requires, for each query and
histogram bucket, the computation of the number of rows in
the intersection of the query and bucket regions. These detailed
row counts are usually not obtainable from the actual queries,
thus, STHoles must insert artificial predicates to specify the
bucket boundaries. ISOMER [19] is a feedback-driven STH,
using the information-theoretic principle of maximum entropy
to approximate the p(x). The obtained histogram might have
Θ(n) buckets, given n QFRs, thus getting a histogram with
n′ � n, ISOMER heuristically has to eliminate up to (n−n′)
QFRs; this discards valuable QFR information with impact on
SCP accuracy. The framework for STHs in [20] uses QFRs as
training pairs by introducing (i) the EquiHist algorithm, which
learns a fixed size-bucket Equi-width histogram and (ii) the
SpHist algorithm, which adopts Haar wavelets and compressed
sensing for treating the histogram learning problem as a sparse-
vector recovery problem. GenHist in [9] estimates the p(x) by
allowing the buckets to overlap and assuming that within each
bucket, p(x) is approximated by the average data density of the
bucket. We chose GenHist [9] as a highly regarded histogram
method for real-valued data, significantly outperforming the
wavelets-based [11], MHIST-2 [12], m-d Kernels and attribute
value independence-based methods.

The SCP error of the sampling method shown in Figure
4(right) is high compared with our method over 4-dim. data
from RS1 for different query subspaces K given exactly the
same number of stored points (we obtain similar results for

d = 2 not shown for space limitations) with M = 1%|B|, |E| =
100|Q|. The sample size is |B′| = M(2 + 1

d ) d-dim. points
since our model stores M neurons of 2d + 1 dimension (2d
is for query prototype plus the cardinality prototype). The
sampling method stores points of d dimensions. Note that
sampling-based SCP apart from being inappropriate in data
access restricted scenarios, cannot adapt to updates in query
patterns / data. Also, the average SCP time per query for
sampling is 33.6s with RS1 and 445s with SD1 compared to
0.109ms with RS1 and 0.14ms with SD1 in our model. Note,
our model does not depend on the size of set B, which is our
fundamental characteristic.

We compare our model with STHoles using the same RS2
and RS3 as used in [18] over both workloads GWL and
UWL constructed with the same way as in [18]. Figure 6(a)
shows the SCP error for our model and STHoles over RS2
(d = 4) using UWL and GWL having the same memory
capacity of 1 kilobyte. (A d-dim. STHoles histogram with
B buckets requires 2dB values for bucket boundaries, B
values for frequencies, and 2B tree-structure pointers [18];
recall our model requires M(2d + 1) values.) The training
workload for both models consists of 1000 pairs and used
1000 different evaluation pairs. For both workloads, our model
achieves significantly lower error than STHoles with less error
obtained over GWL. That is because, queries in GWL form
clusters of queries, through whichM can identify such clusters
via lattice L. With UWL, queries are uniformly distributed thus
resulting to a perfect arrangement of neurons on lattice L with
homogeneously spread neurons. Similar comparison results are
obtained using RS3 with GWL and UWL; Figure 6(b).

We now compare our model with EquiHist, SpHist and
ISOMER using the same RS3 as used in [20]. We generate
a training set Q = γ|B|, γ ∈ [2‰, 6‰], and a different
evaluation set E to compute the SCP error based on WL1,
with |E| = 2.5%|B|. We compare the performance of all
models with SpHist, EquiHist and ISOMER using B = 64
buckets. Each of the buckets, in each dimension consists of
two boundary values and one value for the frequency. Thus
each corresponding histogram stores B(2d+ 1) = 448 values.
Figure 6(c) shows the impact of |Q| on error for SpHist,
EquiHist, ISOMER, and our model (with M = 64 neurons
thus exactly the same number of stored values). Our model
achieves by far the lowest error than the other approaches for
all |Q|. Because, as SpHist, EquiHist, and ISOMER attempt
to tune a histogram with more QFRs thus estimate p(x|y,q),
our model extracts and learns significant information of WL1
by implicitly estimating p(y|q). Our model can also obtain the
same error with fewer pattern pairs thus there is no need for
larger numbers of neurons. Figure 6(d) shows the SCP error
in RS3 against stored values for our model (corresponding to
M ∈ [20, 257]), SpHist, EquiHist, and ISOMER after training
them with |Q| = 1‰|B|. Our model obtains low error with
very low storage, while the more information is stored by
SpHist, and ISOMER the lower the error they achieve but up
to a certain number of stored values.

Our model is compared against GenHist over RS2 d =
(5, 10) (as used in [9]) and workloads WL2 and WL3. Figure
7 shows the SCP error against stored values using WL2 and
WL3 (similar results are obtained over 4- and 8-dim. points
but are not shown due to space limitations). We vary the
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Fig. 6. Error of STHoles and our model for GWL/UWL over (a) RS2, d = 4,
(b) RS3, d = 3. Error of ISOMER, EquiHist, SpHist, and our model for WL1
over RS3 (d = 3) against (c) number of training pairs and (d) stored values.

training set size such that |Q| = γ|B| with γ ∈ [2‰, 1%]
and γ ∈ [1‰, 1.5%], for d = 5 and d = 10, respectively.
The evaluation set size |E| = δ|Q| with δ ∈ [5, 50] and
δ ∈ [65, 1100], for d = (5, 10), respectively. In our model,
this corresponds to M = [100, 484] and M = [64, 400],
respectively. In GenHist, the stored values B(2d+ 1) refer to
the information stored for B buckets, each one represented by
the triple: lower and upper value of the bucket and number
of data points in bucket for each dimension. Our model
outperforms GenHist by a wide margin for WL2 and for WL3.
GenHist is unaware of the way query patterns are generated.
This reflects the basic difference of our approach compared
to histograms for SCP. Note also that both workloads refer
to uniformly at random queries and our model outperforms
GenHist in terms of SCP accuracy given the same memory
size. An increase in M does not significantly contribute to
better SCP accuracy, thus we could use fewer neurons to learn
WL2 and WL3.
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Fig. 7. Error vs. stored values of our model and GenHist (left) d = 5, (right)
d = 10; RS2 using WL2 & WL3.

VI. CONCLUSIONS

We introduce a novel perspective and solution for the
problem of Set Cardinality Prediction. The fundamental unique
characteristic of our approach is that it is query-driven. This

is especially important for big data settings, as an increase in
the underlying dataset size is largely inconsequential for our
method’s efficiency and accuracy. The contributed ML model
extracts knowledge and learns from previous queries and their
results and predicts the cardinality of the answer set based on
similar previous queries. The model quantizes the query space
and forms a regression plane through learning the q → y
association. Our model also efficiently adapts to query-pattern
and data updates. Our comprehensive experiments showcased
the model’s robustness and that our model achieves very small
error rates with small memory footprints outperforming the
data-centric state-of-the-art. In addition to these advantages,
the proposed model represents the only solution applicable to
general modern big data environments, which may include data
nodes/owners placing access restrictions (e.g., for sensitive
data) and/or where data accesses may be too costly to execute
(e.g., in a cloud setting).
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