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delaminated beam is analyzed as seven Euler-Bernoulli beams connected at the 

delamination boundaries. The continuity and equilibrium conditions are satisfied between 

the adjoining regions of the beams. Lower and upper bounds of the natural frequencies of 
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generalized solutions for vibration and buckling of delaminated composites. The relation 

between the square of the natural frequency of the delaminated beam and the axial 

compressive load is also investigated. Results show a linear relation between the square 

of the “constrained mode” and “free mode” frequencies of the simply supported beam and 

the axial compressive load. A non-linear relation is observed between the square of the 

“free mode” frequencies of a clamped-clamped beam and axial compressive load due to 
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1. Introduction 

 

Delamination is a common failure mode in layered structures. It may arise due to the 

loss of adhesion between two layers of the structure, interlaminar stresses arising from 

geometric or material discontinuities, or mechanical loadings (e.g. compression, impact, 

vibration, fatigue loadings). The presence of delamination may significantly reduce the 

stiffness and strength of the structures, which will influence the vibration characteristics 

and load carrying capacity of the structures.  

Many analytical models have been reported to study the vibration of delaminated 

composite laminates [1]. The ‘free mode’ model by Wang et al. [2] and the ‘constrained 

mode’ model by Mujumdar and Suryanarayan [3] are among the earliest models 

presented to study the vibration of delaminated beams. The ‘free mode’ model assumes 

that the delaminated layers vibrate ‘freely’ and will have different transverse 

deformations, whereas, the ‘constrained mode’ model assumes that the delaminated layers 

are ‘constrained’ to have identical transverse deformations but are free to slide over each 

other in the axial direction except at their ends. To address both assumptions, as well the 

opening in the modeshapes found in experiments by Shen and Grady [4], Luo and 

Hanagud [5] presented an analytical model using the Timoshenko beam theory and 

piecewise-linear springs, where the spring stiffness between the delaminated layers would 

then be equal to zero (0) for the ‘free mode’ and infinity (∞) for the ‘constrained mode’.  

Studies on buckling of delaminated composites have been presented by many 

researchers. Huang and Kardomateas [6] presented an analytical solution based on the 

‘free mode’ assumption for the buckling of beam-plates with two delaminations. This was 

used to study the effects of the delamination sizes and locations on the buckling load of 

the beam-plates. Lim and Parsons [7] studied the buckling of beams with two fully 
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overlapping delaminations (double delaminations) by using the energy method and the 

‘free mode’ assumption. S-shaped buckling modes or second buckling modes were 

observed for certain delamination lengths when two delaminated layers are of equal 

thickness. Shu [8] developed an exact solution to study the buckling of beams with 

double delaminations.  A comparison between the results of the energy method and exact 

solution showed that higher buckling loads were obtained by using the exact solution in 

cases when S-shaped buckling modes occurs. However, the results of the exact solution 

only displayed single-hump modes or first buckling mode rather than the S-shaped mode. 

Many works have been presented for buckling of beams and plates with multiple 

delaminations [6-14]. However, most of these works focused mainly on the use of the 

“free mode” assumption. Few works have considered both the “free mode” and 

“constrained mode” assumptions in their work. Wang et al. [10] used the ‘free mode’ and 

the ‘constrained mode’ assumptions to study the buckling of multiple delaminated beams. 

These two assumptions have also been used for a beam with two nonoverlapping 

delaminations [13] and two enveloped delaminations [14], where the “free mode” and 

“constrained mode” assumptions were used as lower bound and upper bound solutions, 

respectively. 

Similarly, many works have been presented to study the vibration of multiple-

delaminated composite laminates [1, 15-23]. Shu [15] presented an analytical solution for 

a sandwich beam with double delaminations. His study emphasized on the influence of 

the contact mode, ‘free’ and ‘constrained’, between the delaminated layers and the local 

deformation at the delamination fronts. Della and Shu [16] further investigated a beam 

with double delaminations by using the ‘free mode’, the ‘partially constrained mode’ and 

the ‘constrained mode’ assumption. Lestari and Hanagud [17] developed an analytical 

model by using the Euler-Bernoulli beam theory and piecewise-linear springs to study a 
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composite beam with multiple delaminations. Lee et al. [18] studied a composite beam 

with arbitrary lateral and longitudinal multiple delaminations by using the ‘free mode’ 

assumption. Shu and Della [19,20] and Della and Shu [21] developed analytical solutions 

using the ‘free mode’ and ‘constrained mode’ assumptions to study composite beams with 

multiple delaminations. Their study emphasized on the influence of a second short 

delamination on the first mode and second mode bending frequencies and the 

corresponding mode shapes of the beam. 

Relatively few works for the vibration of delaminated composite laminates relative to 

their buckled states have been reported in the literature. Chen [24] developed analytical 

solutions for the free vibration of isotropic beam-plates with a single symmetric 

delamination in the prebuckled and postbuckled states. The ‘constrained mode’ 

assumption was used for prebuckling conditions, whereas, the ‘free mode’ assumption 

was used for the postbuckling conditions. Chen et al. [25] developed an analytical model 

to study the vibration of prebuckled composite beam with arbitrary delamination location 

by using the classical laminate theory and the ‘constrained mode’ assumption, which have 

been validated with experimental data. Chang et al. [26] presented a model using an 

elastic foundation analysis. The delaminated plate was treated as a plate on a continuously 

distributed support, but with added transverse forces in the delamination region. The 

elastic foundation was represented by an infinite set of parallel springs with no shear 

coupling between them. 

Yin and Jane [27] presented an analytical solution using the ‘free mode’ assumption 

for the vibration of postbuckled isotropic beam with a delamination located 

symmetrically about the beam center, which was extended by Jane and Chen [28] for 

delaminated beam-plates with arbitrary delamination location. Chang and Liang [29] 

presented an analytical solution for postbuckled delaminated isotropic beam-plates. Based 
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on the revised boundary conditions and governing partial differential equations, the 

natural frequencies and mode shapes of the postbuckled delaminated beam-plates were 

determined by using separation of variables. The above models [27-29] neglected the 

transverse shear deformation effect, which was found to have a significant influence on 

the buckling load and the post-buckling deformation by Chen [24] and Chen and Goggin 

[30]. 

Lu and Hanagud [31] presented an analytical solution for composite beams with two 

delaminations subjected under axial compressive load. The ‘free mode’ assumption and 

the Timoshenko beam theory were used. Their results showed that the natural frequency 

and the mode shape were significantly affected by long and thin delaminations. Lee et al. 

[32] presented an analytical method for composite beam-columns with multiple 

delaminations. The ‘free mode’ assumption and the Euler-Bernoulli beam theory were 

used. Experiments were conducted to validate the results of the analytical model. Jane 

and Harn [33] presented approximate solutions by using the ‘constrained mode’ 

assumption for beams with multiple delaminations. A series solution to the governing 

equations of motion was used for simply supported beams, whereas, the Ritz method was 

used for clamped-clamped beams. Della and Shu [34,35] presented analytical solutions 

for isotropic beams with two overlapping delaminations [34] and enveloped 

delaminations [35] by using both the “free mode” and “constrained mode” assumptions. 

Earlier studies by Amba-Rao [36] and Galef [37] on the free vibration of axially 

compressed undelaminated beam showed that for a simply supported beam, the linear 

relation between the natural frequency and the axial compressive load can be expressed as 

 
2

0

0 11 crP P             (1) 

where ω is the natural frequency of the axially compressed beam, 0  is the natural 

frequency of beam without compressive loading, 0

1P  is the axial compressive load and  
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crP  is the buckling load of the beam. The natural frequency vanishes  (ω = 0.0)  when the 

axial load  0

1 cr
P P   is equal to the normalized buckling load. Further study by Bokaian 

[38] showed that this relation is applicable to other beam-columns with either simply 

supported or sliding end condition and can roughly describe the variation for clamped-

clamped beams. 

Based on the above literature survey, a study on the vibration of axially compressed 

composite beams with two overlapping delaminations has not been presented in the 

literature, and the relationship between the square of the natural frequency of the 

delaminated beam and its buckling load has not been fully understood. In this research, 

analytical solutions are developed to study the free vibration of composite beams with 

two-overlapping delaminations under axial compressive loading. The lower bound and 

the upper bound solution are identified by assuming totally ‘free’ and totally ‘constrained’ 

deformations of the delaminated layers, respectively. These two bounds can be useful to 

gauge the working range of the natural frequencies of the delaminated beam and provide 

guidelines for practical applications. The present analytical solutions can also be used to 

for pure buckling or vibration analysis. In addition, the linear relation between the square 

of the natural frequencies of the simply supported and clamped-clamped delaminated 

beams and the axial compressive loading are investigated.  

The research is presented as follows. Firstly, the vibration of a composite beam with 

two overlapping delaminations under axial compressive loading is formulated. Secondly, 

the present results are verified with the published analytical results on the vibration and 

buckling of delaminated beams. Finally, the vibration of the delaminated composites 

beams under axial compressive loading is studied.  
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2. Formulation 

 

In this section the analytical solution to the vibration of prebuckled beams with two 

overlapping delamination is formulated. Fig. 1 shows a beam with length  L  and 

thickness  H1  with two overlapping delaminations. The upper and the lower delamination 

have the lengths of  a1  and  a2, respectively, and located at distances  d1  and  d2  away 

from the center of the beam, respectively. The delaminated beam is analyzed as seven 

beams connected at the delamination boundaries. The two delaminations divide the beam 

into three layers with thickness  H3,  H4 and  H5. The Euler-Bernoulli beam theory is used 

to analyze each of the beams and both the ‘free mode’ and the ‘constrained mode’ 

assumption are used. 

 

2.1. ‘Free mode’ 

The governing equations for the free vibrations of a delaminated beam under axial 

compressive loading using the Euler-Bernoulli beam theory are  

 
4 2 2

0

4 2 2
0i i i

i i i i

w w w
D A P

x t x


  
  

  
  (i = 1 – 7)                (2) 

where Di (i = 1 – 7) is the bending stiffness of beam i, wi(x,t) is the midplane deflection of 

beam i,  ρi is the mass density, Ai is the cross-sectional area of the beam, 0

iP  is the axial 

compressive force at the static prebuckled state and 0 0 0 0 0

1 2 3 4 6   P P P P P , 0 0 0

2 4 5 P P P  

and 0 0 0

6 3 5 P P P . The mechanical properties of the composite beams are determined 

using the classical laminate theory [39] and are given as 

( )

11 11 1

1

( ) ( )
in

i k

i k k k

k

A A b Q z z 



                            (3)  
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( ) 3 3

11 11 1

1

( ) ( )
3

in
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k

b
D D Q z z 



           
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   
 

 
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11

E

E


            

and where  ( )

11

iA  is the extensional stiffness,  ( )

11

iD  is the bending stiffness,  11

kQ   is the 

coefficient stiffness of the lamina,  b  is the width,   ni  is the number of plies, E11 and E22 

are the longitudinal and transverse Young’s moduli, respectively, 12G  is the in-plane 

shear modulus, 12   and  21   are the longitudinal and transverse Poisson’s ratio, 

respectively,     is the angle of the  k-th  lamina orientation and  zk  and  zk – 1  are the 

locations of the k-th lamina with respect to the midplane of the i-th beam, as shown in 

Fig. 2.  

Substituting ( , ) ( )sin( )i i i iw x t W x t  for free vibration in Eq. (2), and eliminating the 

trivial solution sin(ωt) = 0, it follows that  

0 2'''' '' 0i i i i i i iDW P W A W      (i = 1 – 7)                      (4) 

where ω is the natural frequency, Wi is the mode shape and prime ( ' ) denotes 

differentiation with respect to the x-coordinate. The generalized solutions for the 

differential equation in Eq. (4) are 
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  cos sin cosh sinh   
       

          
       

i i i i i i i i i

x x x x
W x C S CH SH

L L L L
        (5) 

where 

 
 

2
0 0 2

2 2
4

2

i i i i i

i

i

P P A D
L

D

 


 
              (6) 

 
2

0 0 2

2 2
4

2

i i i i i

i

i

P P A D
L

D

 


  
              (7) 

By applying the 4 boundary conditions and the 24 continuity conditions, the 28 unknown 

coefficients Ci, Si, CHi and SHi  can be determined.  

The appropriate boundary conditions that can be applied at the supports, x = x1 and         

x = x4, are 0iW   and ' 0iW  , if the end of the beam is clamped; 0iW   and '' 0iW  , if 

simply supported where i = 1 and 7.  

The continuity conditions for deflection and slope at the delamination boundary        

x = x2 are 

1 2 3 W W W                 (8) 

1 2 3' ' ' W W W                (9) 

The continuity for shear and bending moments at the delamination boundary  x = x2  are 

1 1 2 2 3 3''' ''' '''DW D W D W                              (10) 

31 2 1
1 1 2 2 3 3 2 3'' '' ''

2 2 2 2

HH H H
DW D W D W P P

  
        

   
                        (11) 

Each of the delamination boundaries x = x3, x = x4 and x = x5 provides 6 equations and a 

total of  24  equations can be set up for all the delamination boundaries.  Five axial forces 

2P , 3P , 4P , 5P  and 6P   that appear in the moment continuity condition are still unknown, 

so additional five equations are needed. At x = x2 and x = x5, from the axial force balance, 

we have 
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1 2 3 0P P P                (12)

 7 4 6 0P P P                (13) 

At x = x3 and x = x4, from the axial force balance, we have 

2 4 5P P P                (14) 

6 3 5P P P                (15) 

If the beam does not vibrate, 2P , 3P , 4P , 5P  and 6P  are all zero, because they are defined 

as the axial forces present during the vibration of the beam. The axial length of the beam 

between x = x2 and x = x5 remains equal before and during vibration (Fig. 3). This leads to 

the following equations. 

     71 2 2 4 4
1 2 2 2 3 4 7 5 2 4' ' '

2 2 2 2 2 2
o o

HH H H H H
W x L W x L W x L L

    
             

     
   (16) 

     

 

5 6 51 2 2
1 2 2 2 3 5 6 4

6 7
6 7 5 2 5 6

' ' '
2 2 2 2 2 2

'
2 2

o o o

H H HH H H
W x L W x L W x

H H
L W x L L L

    
           

     

 
      

 

       (17) 

     3 3 6 61
1 2 3 6 4 6 7 5 3 6' ' '

2 2 2 2 2 2
o o

H H H HH H
W x L W x L W x L L

     
             

     
     (18) 

where ioL  represents the length of the ith beam segment before vibration and  Hi  is the 

thickness of the ith beam segment.  If we let iL  represent the deformed length of the ith 

beam segment, then we have 

 
11

i io
i io i

PL
L L

A
    (i = 2 – 6)          (19) 

Substituting Eq. (19) into Eqs. (16) to (18) leads to 

     2 2 4 4 71 2 2 4 4
1 2 2 3 7 5(2) (4)

11 11

' ' '
2 2 2 2 2 2

o oP L P L HH H H H H
W x W x W x

A A

    
            

     
      (20) 
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   

   

2 2 5 5 6 6 51 2 2
1 2 2 3(2) (5) (6)

11 11 11

6 5 6 7
6 4 7 5

' '
2 2 2 2

' '
2 2 2 2

o o oP L P L P L HH H H
W x W x

A A A

H H H H
W x W x

  
         

   

   
      
   

             (21) 

     3 3 6 6 3 3 6 6 71
1 2 6 4 7 5(3) (6)

11 11

' ' '
2 2 2 2 2 2

o oP L P L H H H H HH
W x W x W x

A A

     
            

     
    (22)  

The total number of boundary and continuity conditions is 28, which is equal to the total 

number of unknown coefficients  Ci, Si, CHi and SHi. A non-trivial solution exists only 

when the determinant of the coefficient matrix vanishes. The natural frequencies can be 

obtained as eigenvalues and the mode shapes, as eigenvectors.  

 

2.2. ‘Constrained  mode’ 

The ‘constrained mode’ analysis is simplified by the assumption that the delaminated 

layers are ‘constrained’ to have the same transverse deformations. The delaminated beam 

is analyzed as five beam segments I – V (Fig. 1). The governing equations are 

4 2 2
0

14 2 2
0i i i

i i i

w w w
D A P

x t x


  
  

  
  (i = I – V)                   (23) 

where 

 I VD D                               (24) 

2 3IID D D                                (25) 

3 4 5IIID D D D                               (26) 

4 6IVD D D                                (27) 

1 1I I V VA A A                 (28) 

2 2 3 3II IIA A A                               (29) 

3 3 4 4 5 5III IIIA A A A                                (30) 
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4 4 6 6IV IVA A A                               (31) 

The generalized solutions for the ‘constrained mode’ are identical in form to the ‘free 

mode’. The unknown coefficients Ci, Si, CHi and SHi, however, are reduced to 20 

coefficients which can be determined from the 4 boundary conditions and the 16 

continuity conditions. 

The boundary conditions for the ‘constrained mode’ are identical to the boundary 

conditions of the ‘free mode’. The continuity conditions for deflection, slope, shear and 

bending moments at x = x2  are,  

I IIW W                (32) 

' 'I IIW W               (33) 

''' '''I I II IID W D W                         (34) 

 31 2 1
2 3'' ''

2 2 2 2
I I II II

HH H H
D W D W P P

  
       

   
                    (35) 

Similarly, we can derive the continuity conditions at x = x3, x = x4 and x = x5. For the 

‘constrained mode’, the boundary and continuity conditions provide 20 homogeneous 

equations for 20 unknown coefficients Ci, Si, CHi and SHi. 

 

2.3. Lower bound and upper bound of the natural frequency 

In the present research, the delaminated layers, beams 2 – 6, are assumed to vibrate 

independently (‘free mode’) or vibrate together (‘constrained mode’). In general, a 

delaminated layer maybe constrained by another layer. Lou and Hanagud [5] and Lestari 

and Hanagud [7] presented analytical models using piecewise-linear springs to simulate 

the ‘open’ and ‘closed’ behavior between the delaminated layers. The spring stiffness 

would then be equal to zero (0) for the ‘free mode’ and infinity (∞) for the ‘constrained 

mode’.  However, such analysis is tedious and complex. For multiple delaminations, the 
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solution will be very lengthy and the order of complexity will render an exact solution 

impossible. In the present research, we propose to estimate the lower bound and upper 

bound of the natural frequency by using the ‘free mode’ and ‘constrained mode’, 

respectively. The accuracy of such approximations, however, needs to be further studied 

through experiments or numerical schemes. 

 

3. Results and Discussions 

 

3.1. Verification 1: Vibration of a cantilever beam with a single delamination 

To verify the accuracy of the present analytical solutions on vibration of delaminated 

beams, a comparison is made with published results on a cantilever composite beam 

single delamination, which was studied by Shen and Grady [4] The beam is made of 

T300/934 graphite/epoxy cantilever beam with a  [0˚/90˚]2s stacking sequence. The 

dimensions of the 8-ply beam are 127 X 12.7 X 1.016 mm
3
. The material properties for 

the lamina are:  E11 = 134 GPa,  E22 = 10.3 GPa,  G12 = 5 GPa,  ν12 = 0.33  and  ρ = 1.48 X 

10
3
 kg/m

3
. All the delaminations are at midspan and the lengths are 25.4 mm, 50.8 mm, 

76.2 mm and 101.6 mm. The locations of the delaminations along the thicknesswise 

direction are shown in Fig. 4.  

Since the formulation is for two overlapping delaminations, the frequency is 

approximated by having  a2 = 5 X 10
-5

 L  and  d2  =  a1/2. The axial compressive load is 

0

1 0P . The fundamental frequencies of the ‘free mode’ and ‘constrained mode’ are 

shown in Tables 1 – 3. A good agreement is obtained between the frequencies predicted 

by the present solution and the experimental and analytical (‘constrained mode’) results 

by Shen and Grady [4] and analytical results by Luo and Hanagud [5].  
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3.2. Verification 2: Buckling of a clamped-clamped beams with a single and double 

delaminations 

The second verification is performed on the buckling of clamped-clamped beams 

with a single delamination [6] and two delaminations [7,8]. Since the formulation is for 

two overlapping delaminations, the single delamination is approximated by having by 

having  a2 = 5 X 10
-5

 L   and  d2  =  a1/2  and the two fully overlapping delaminations is 

approximated by having a1 = a2  and  d2  =  5 X 10
-5

 L. Figs. 5 and 6 show the non-

dimensional ‘free mode’ frequency  λ  of a beam with a single delamination versus the 

normalized compressive load 0

1P , where 

 
2

4 41 1

1

A
L

D

 
                          (36) 

0 0
0 21 1

1 2

14
 

cr

P P
P L

P EI
              (37) 

and where the axial compressive load 0

1P  is normalized with respect to the buckling load 

of an undelaminated beam crP . 

When the ‘free mode’ frequency is zero  (λ = 0.0), 0

1P  corresponds to the buckling 

load. As shown in Fig. 5, the buckling loads for the beam with a single delamination 

agree well with the results of Huang and Kardomateas [6]  (Table 4). The buckling loads 

for the beam with two delaminations (Fig. 6) are also shown to agree well with the results 

of Lim and Parsons [7] and Shu [8] (Table 5). It should be noted that the ‘free mode’ 

assumption was used in the above studies on delamination buckling [6–8].  

As shown in Table 4, for a/L = 0.2, 0.3, 0.4, the results using the energy method (Lim 

and Parsons [7]) are lower than the results using an exact solution (Shu [8]). Lim and 

Parsons’ results correspond to the mode 2 buckling load (Fig. 5) resulting in the S-mode 

shapes. Whereas, Shu’s results [8] correspond to the mode 1 buckling load resulting in the 
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single hump mode shapes. The solution presented by Lim and Parsons [7] computes for 

the lowest eigenvalue, and thus, S-mode shapes were observed in their results. 

  

3.3. Vibration of delaminated composite beam under axial compressive load 

Fig. 7 shows the influence of the normalized compressive load 0

1P  on the non-

dimensional mode 1 frequency  λ of the simply supported composite beam with two 

overlapping delamination delaminations. The overlapping delamination is located at  d2/L 

= a1/2L and the lengths are a2 = 0.2L, as shown in Fig. 7 (a), and 2 = 0.4L, as shown in 

Fig. 7 (b). When the ‘free mode’ frequency is zero  (λ = 0.0), 0

1P  corresponds to the lower 

bound solution of the buckling load, and when the ‘constrained mode’ frequency is zero, 

0

1P  corresponds to the upper bound solution of the buckling load. As shown in   Fig. 7, A 

monotonic relation is observed between the natural frequency  λ  and the compressive 

load  0

1 / dP P , for both ‘constrained mode’ and ‘free mode’, λ  first decreases slowly as 

0

1P  increases, and then it decreases drastically as 0

1P  approaches the buckling load.   

Fig. 8 shows the influence of the normalized compressive load 0

1P  on the non-

dimensional mode 1 frequency  λ of the clamped-clamped composite beam with two 

overlapping delamination delaminations. The overlapping delamination is located at  d2/L 

= a1/2L and the lengths are a2 = 0.2L, as shown in Fig. 8 (a), and 2 = 0.4L, as shown in 

Fig. 8 (b). When the ‘free mode’ frequency is zero  (λ = 0.0), 0

1P  corresponds to the lower 

bound solution of the buckling load, and when the ‘constrained mode’ frequency is zero, 

0

1P  corresponds to the upper bound solution of the buckling load. As shown in   Fig. 8, 

for both ‘constrained mode’ and ‘free mode’, λ first decreases slowly as 0

1P  increases, 

and then it decreases drastically as 0

1P  approaches the buckling load.   
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The difference between the ‘constrained mode’ and ‘free mode’ frequencies increases 

as 0

1P  increases, as shown in Figs. 7 and 8. However, the difference is less significant for 

simply supported beams (Fig. 7) than clamped-clamped beams (Fig. 8). This difference 

can be explained by the opening in the ‘free mode’ mode shapes, as shown in Figs. 9 and 

10. The opening increases as the difference between the two frequencies increases. A 

large opening corresponds to a large difference between the two frequencies, whereas, a 

small opening corresponds to a small difference. Figs. 9 and 10 also show the influence of 

the normalized compressive load 0

1P  on the ‘free mode’ mode shape of the beam. It is 

observed that as 0

1P  increases the opening in the ‘free mode’ mode shape increases. 

However, the opening is lesser for simply-supported beam than clamped-clamped beam. 

Figure 11 and 12 shows the variation of the normalized fundamental frequency raised 

to the forth power (λ/λd)
4
 with the normalized buckling load (P1

0
/Pd) for a simply 

supported beam (Fig 11) and clamped-clamped beam (12). The fundamental frequency 

raised to the forth power  λ
4
  is normalized with respect to the frequency of a delaminated 

beam raised to the forth power  λd
4
, while the normalized compressive load  P1

0
  is 

normalized with respect to the buckling load of the delaminated beam  Pd. It should be 

noted that the term  (λ/λd)
4
 has the same value as (ω/ωd)

2
, which was used in Amba-Rao 

[36] and Galef [37]. The delamination length  a1/L  varies from 0.3 to 0.7 for 

delamination length  a2/L = 0.2, and a1/L  varies from 0.3 to 0.5 for  a2/L = 0.4   It can be 

seen that the relation between  (λ/λd)
4
  and  (P1

0
/Pd) can be expressed as (λ/λd)

4
  = 1 - 

P1
0
/Pd, which is identical in form to that of an undelaminated beam, as shown in Eq. (1).  

The results for a clamped-clamped beam are shown in Fig. 12. It can be seen that the 

variation of the square of the normalized fundamental frequency (λ/λd)
4
  (Fig. 12) with the 

normalized compressive load  P1
0
/Pd  becomes nonlinear as the delamination length a1/L  
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increases. However, the equation  
4 0

1/  1 /d dP P     can roughly describe the relation 

between (λ/λd)
4
    and  0

1 dP P   for the ‘constrained mode’ frequencies, as shown in Fig.12 

(a). For the ‘free mode’, the relationship becomes non-linear owing to the large opening 

observes in the ‘free mode’ modeshapes, as shown in Fig.12 (b). 

 

4. Conclusions 

 

Analytical solutions have been developed to study free vibrations of an axially 

loaded composite beam with two overlapping delaminations. The delaminated beam was 

analyzed as seven interconnected Euler-Bernoulli beams and the continuity and boundary 

conditions were satisfied between adjoining beams. Both the ‘free mode’ and the 

‘constrained mode’ assumption in the study of buckling and vibration of delaminated 

laminates were used. These analytical solutions can also be used to analyze pure buckling 

and pure vibration problems. Based on the study, the following conclusions can be drawn: 

1. For both simply supported and clampled-clamped composite beams, the natural 

frequency decreases with increasing axial compressive loads, which drastically 

decreases as the compressive load approaches the buckling load.   

2. For simply supported beams, the square of the ‘constrained mode’ and ‘free mode’ 

frequencies varies linearly with the axial compressive load. Thus, once the natural 

frequency and the buckling load of the delaminated beam are identified, an estimate 

of the natural frequency of the delaminated beam under axial compressive loading can 

be obtained.  

3. For clamped-clamped beams, a linear relation can roughly describe the relation 

between the square of the ‘constrained mode’ frequency and the axial compressive 

load. A non-linear relation is observed between the square of the ‘free mode’ 
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frequency and the axial compressive load due to the large opening between the 

delaminated layers in the ‘free mode’ modeshape.  

 

References 

1. Della CN, Shu D. Vibration of delaminated composite laminates: A review. Appl 

Mech Rev 2007; 60(1):1–20.  

2. Wang JTS, Liu YY, Gibby JA. Vibration of split beams. J Sound Vib 1982;84(4): 

491–502. 

3. Mujumdar PM, Suryanarayan S. Flexural vibrations of beams with delaminations.           

J Sound Vib 1982;125(3):441–461. 

4. Shen MH, Grady JE. Free Vibrations of delaminated beams. AIAA J 

1992;30(5):1361–1370.  

5. Luo H, Hanagud S. Dynamics of delaminated beams. Int J Solids Struct 

2000;37(10):1501–1519.  

6. Huang H, Kardomateas GA. Buckling of orthotropic beam-pates with multiple central 

delaminations. Int J Sol Struct 1998;35(13):1355–1362. 

7. Lim YB, Parsons ID. The linearized buckling analysis of a composite beam with 

multiple delaminations, Int J Sol Struct  1992;30(22):3085–3099. 

8. Shu D. Buckling of multiple delaminated beams. Int J Sol Struct  1988;35(13):1451–

1465. 

9. Wang JTS, Lin CC. Engineering analysis of buckling of delaminated beam plates. 

Compos Struct 1996;34(4):397-407. 

10. Wang JTS, Pu HN, Lin CC. Buckling of beam-plates having multiple delaminations. J 

Compos Mater 1997;31(10);1002-1025. 



 19 

11. Parlapalli MSR, Sylvain D, Shu D, Della CN (2004). Buckling analysis of tri-layer 

beams with multiple separated delaminations. Compos Struct 2004;66(1-4):53–60. 

12. Cappello F, Tumino D. Numerical analysis of composite plates with multiple 

delaminations subjected to uniaxial buckling load. Compos Sci Tech 2006;66(2):264-

272. 

13. Parlapalli MSR, Shu D. Buckling of composite beams with two non-overlapping 

delaminations: Lower and Upper bounds.  Int J Mech Sci 2007;49(7):793-805. 

14. Parlapalli MSR, Shu D, Chai GB. Buckling of composite beams with two enveloped 

delaminations: Lower and upper bounds.  Comput  Struct 2008;86(23–24):2155–2165 

15. Shu D. Vibration of sandwich beams with double delaminations. Compos Sci Tech 

1995;54(1):101–109. 

16. Della CN, Shu D. Vibration of beams with double delaminations. J Sound Vib 2005; 

282(3-5):919–935. 

17. Lestari W, Hanagud S. Health monitoring of structures: multiple delamination 

dynamics in composite beams. In: Proceedings of the 40
th

 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials 

Conference and Adaptive Structures Forum, St. Louis, MO, April 1999. 

18. Lee S, Park T, Voyiadjis GZ. Vibration analysis of multi-delaminated beams. 

Compos: Part B 2003;34(7):647–659. 

19. Shu D, Della CN. Free vibration analysis of composite beams with two non-

overlapping delaminations. Int J Mech Sci 2004;46(4):509–526. 

20. Shu D, Della CN. Vibrations of multiple delaminated beams. Compos Struc 2004;    

64(3-4):467–477. 

21. Della CN, Shu D. Free vibration analysis of composite beams with overlapping 

delaminations. Eur J Mech A-Solid 2005;24(3):491–503. 

http://www.sciencedirect.com/science/journal/00457949/86/23


 20 

22. Ju F, Lee HP, Lee KH. Free-vibration analysis of composite beams with multiple 

delaminations. Compos Eng 1994;4(7):715–730. 

23. Ju F, Lee HP, Lee KH.  Finite element analysis of free vibration of delaminated 

composite plates. Compos Eng 1995;5(2):195–209. 

24. Chen H-P. Free vibration of prebuckled and postbuckled plates with delamination. 

Compos Sci Tech 1994;51(3): 451–462. 

25. Chen H-P, Tracy JJ, Nonato R. Vibration analysis of delaminated composite 

laminates in prebuckled states based on a new constrained model. J Compos Mater 

1995; 29(2):229–256. 

26. Chang TP, Hu CY, Jane KC. Vibration of delaminated composite plates under axial 

load. Mech Struc Mach 1998; 26(2):195–218. 

27. Yin W-L, Jane KC. Vibration of a delaminated beam-plate relative to buckled states. J 

Sound Vib 1992;156(1):125–140. 

28. Jane KC, Chen CC. Postbuckling deformation and vibration of a delaminated beam-

plate with arbitrary delamination location. Mech Res Comm 1998;25(3):337–351. 

29. Chang T-P,  Liang J-Y. Vibration of postbuckled delaminated beam plates. Int J Sol 

Struct 1998;35(12):1199–1217. 

30. Chen H-P, Goggin PJ. Vibration of a delaminated beam-plate relative to post-

buckling states with shear deformation theory. J Sound Vib  1994;176(2):163–178. 

31. Lu X, Hanagud S. Health monitoring of structures: multiple delamination dynamics in 

composite beams with axial loads. In: Proceedings of the 40
th

 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials 

Conference, St. Louis, MO, April 12-15, 1999. p. 2348–2357.     

32. Jane KC, Harn YC. Vibration of delaminated beam-plates with multiple 

delaminations under axial forces. Mech Struc Mach 2000;28(1): 49–64. 



 21 

33. Lee S, Park T, Voyiadjis GZ. Free vibration analysis of axially compressed laminated 

composite beam-columns with multiple delaminations. Compos: Part B 2002;33(8):  

605–617. 

34. Della CN, Shu D. Vibration of beams with two overlapping delaminations in 

prebuckled states. Compos: Part B 2007;38(2):109–118. 

35. Della CN, Shu D. Free vibration analysis of multiple delaminated beams under axial 

compressive load. J Reinf Plast Compos 2009; 28(11):1365–1381. 

36. Amba-Rao CL. Effect of end conditions on the lateral frequencies of uniform straight 

columns. J Acoust Soc Am 1967;42(2);900-901. 

37. Galef AE. Bending frequencies of compressed beams. J Acoust Soc Am 

1968;44(2):643. 

38. Bokaian A. Natural frequencies of beams under compressive axial loads. J Sound Vib 

1988;126(1):49-65. 

39. Jones RM. Mechanics of composite materials, 2
nd

 ed. Taylor and Francis Inc., 

Philadelphia, 1999. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 22 

Figure captions 

 

Figure 1. A beam with two overlapping delaminations under axial compressive loads. 

 

Figure 2. The i-th beam laminate. 

 

Figure 3. The vibration configuration between x=x2 and x=x5. The lengths of the central 

lines remain unchanged. 

 

Figure 4. Interface locations of the delaminations for a [0/90]2S Graphite/Epoxy 

composite laminate  (Shen and Grady, 1992). 

 

Figure 5. The mode 1 ‘free mode’ frequency λ  versus  the axial compressive load 0

1 crP P  

for a homogeneous clamped-clamped beam with a single delamination, d/L  = 0.0. When 

λ=0, 0

1 crP P  is the buckling load: (a) H2 = 0.2H1; (b) H2 = 0.3H1. 

 

Figure 6. The mode 1 and mode 2 ‘free mode’ frequencies versus the axial compressive 

load 0

1 crP P  for a homogeneous clamped-clamped beam with double delaminations,      

d/L  = 0.0.  Mode 2 buckling loads are lower than the mode 1 buckling loads for             

a/L = 0.2, 0.3, 0.4. 

 

Figure 7. Influence of the axial compressive load  0

1 crP P   on the mode 1 frequency  λ  of 

a simply-supported composite beam with two overlapping delaminations, d1/L  = 0.0. 

When λ=0, 0

1 crP P  is equal to the normalized buckling load: (a) a2/L = 0.2; (b) a2/L = 0.4. 

 

Figure 8. Influence of the axial compressive load  0

1 crP P   on the mode 1 frequency  λ  of 

a clamped-clamped composite beam with two overlapping delaminations, d1/L  = 0.0. 

When λ=0, 0

1 crP P  is equal to the normalized buckling load: (a) a2/L = 0.2; (b) a2/L = 0.4. 

 

Figure 9. ‘Free mode’ mode shapes of a simply supported composite beam with two 

overlapping delaminations with H2 = H3 =0.25H1. 

 

Figure10. ‘Free mode’ mode shapes of a clamped-clamped composite beam with two 

overlapping delaminations with H2 = H3 =0.25H1. 

 

Figure 11. Variation of the square of the normalized mode 1 frequency   
4

/ d   of a 

simply supported beam with normalized compressive load  0

1 dP P   for various 

delamination lengths  with  H2 = H3 =0.25H1  and  d1/L = 0.0 for both  ‘Constrained 

mode’ and  ‘Free mode’. 

 

Figure 12. Variation of the square of the normalized mode 1 frequency   
4

/ d   of a 

simply supported beam with normalized compressive load  0

1 dP P   for various 

delamination lengths  with  H2 = H3 =0.25H1  and  d1/L = 0: (a)  ‘Constrained mode’ ; (b)  

‘Free mode’. 
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Figure 2. The i-th beam laminate. 
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Figure 6  
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Figure 8.  
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Figure 9 
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Figure 10 

Della CN 
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Figure 11 
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Figure 12 
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Table 1 

Interface 1 frequencies (Hz) 

 

 

Delamination Present   Shen and Grady [4]   Luo and 

Hanagud [5]  

length  Cons   Free  Exp 1 Exp 2 Exp 3 Cons  Cons Free 

  

 

 

Intact  81.88 81.88        79.88 79.88 79.75 82.04        81.86 81.86         

  

25.4   mm 80.47 80.47        78.38    79.13   77.00 80.13        81.84 81.84 

50.8   mm 75.36 75.36       74.38    75.00    76.75 75.29        76.81   76.81         

  

76.2   mm 66.14 66.13        68.25    66.25   66.38 66.94        67.64    67.64 

101.6 mm 55.67 55.67        57.62    57.50    57.50 57.24        56.95    56.95         

  

 

 

 

Table 2 

Interface 2 frequencies (Hz) 

 

 

Delamination Present
b
   Shen and Grady [4]   Luo and 

Hanagud [5] 

length  Cons   Free  Exp 1    Exp 2    Exp 3 Cons  Cons Free 

  

 

Intact  81.88 81.88        79.88   79.88    79.75 82.04        81.86    81.86          

  

25.4   mm 80.58 80.58        78.38    78.38    76.63 81.39        80.86     80.86 

50.8   mm 75.81 75.81        75.13  75.25    75.00 78.10        76.62     76.62          

  

76.2   mm 67.05 67.05        64.00    70.00    69.88 71.16        68.80     68.80 

101.6 mm 56.86 56.86        45.75    49.75   49.50 62.12        59.34     59.34          

  

 

 

 

 

Table 3 

Interface 3 frequencies (Hz) 

 

 

Delamination Present
b
   Shen and Grady [4]   Luo and 

Hanagud [5] 

length  Cons   Free  Exp 1    Exp 2    Exp 3 Cons  Cons Free 
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Intact  81.88 81.88        79.88   79.88    79.75 82.04        81.86   81.86         

   

25.4   mm 81.53 81.53            79.63    80.13    80.63 81.46        82.02    82.01 

50.8   mm 80.13 80.09        79.50    81.88    77.88 79.93        80.79    80.74         

  

76.2   mm 77.03 76.75        75.63    77.13    78.13 76.71        77.82    77.52 

101.6 mm 72.28 70.92            73.38    73.63     70.38 71.66        73.15    71.73         

  

 

 
 

 

 

 

 

 

 

Table 4 

Normalized buckling loads for clamped-clamped beams with a single delamination [6]. 

 

 

Delamination  H2 = 0.2H1  H2 = 0.3H1   

length, a/L   

         

 

0.20       0.927   0.992    

0.30       0.437   0.858    

0.40       0.247   0.531    

0.50       0.159   0.347  

   

 

 

 

 

 

Table 5 

Normalized buckling loads for clamped-clamped beams with two delaminations,  

H2 = H3 = 0.3H1, H4 = 0.4H1. 

 

 

Delamination  Energy   Exact    

length, a/L  method [7]   solution[8]         

 

0.20     0.894   0.984   

0.30       0.592   0.802    

0.40       0.505   0.506    

0.50       0.335   0.237     
 

 

 

 


