
n 

 
 
 
 
 
Fourier, G., and Biswal, R. (2015) Minuscule Schubert varieties: poset polytopes, 
PBW-degenerated demazure modules, and Kogan faces. Algebras and 
Representation Theory, 18(6), pp. 1481-1503 
 
There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 
 
 
 
 
 
 
 
 

http://eprints.gla.ac.uk/108509/ 
     

 
 
 
 
 
 
Deposited on: 17 February 2016 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



MINUSCULE SCHUBERT VARIETIES: POSET POLYTOPES,

PBW-DEGENERATED DEMAZURE MODULES, AND KOGAN FACES

REKHA BISWAL AND GHISLAIN FOURIER

Abstract. We study a family of posets and the associated chain and order polytopes associ-
ated. We show that the order polytope is a maximal Kogan face in a rectangular Gelfand-Tsetlin
polytope. On the other hand, for any rectangular highest weight and any Weyl group element
of sln, we construct a poset such that the character of the corresponding Kogan face is the
character of the corresponding Demazure module.
We prove that the chain polytope parametrizes a monomial basis of the associated PBW-graded
Demazure module and further, that the Demazure module is a favourable module. Thus, we
obtain for any minuscule Schubert variety another flat degeneration into a toric projective va-
riety which is projectively normal and arithmetically Cohen-Macaulay.
We provide a nessecary and sufficient condition on the Weyl group element such that the two
toric varieties are isomorphic.

Introduction

[Fou15b, IL14] Toric degenerations of Schubert varieties have been studied quite a lot in
the last decades. The most famous might be the degeneration via Gelfand-Tsetlin polytopes,
see for example [GL96]. There are various other degenerations, for example for every reduced
decomposition of the longest Weyl group element [AB04]. Here is our approach to degenerations
of minuscule Schubert varieties, e.g. Schubert varieties of a fixed Grassmannian Gr(i, n+ 1).
Consider the lattice points in the rectangle of height i and width n− i, where the left column is
labeled by 1, the right column by i, the bottom row by n and the top row by i. We consider the
partial order induced by the cover relation (k, j) ≥ (k+1, j), (k, j−1), so (k, j) is bigger than any
of its right and/or upper neighbor. For a fixed sequence of integers ` = i−1 ≤ `1 ≤ . . . ≤ `i ≤ n
we consider the subposet P` of lattice points in the right upper corner, e.g. (k, j) with i ≤ j ≤ `k.
Stanley ([Sta86, Lit98]) has associated to each finite poset two polytopes, the order polytope
and the chain polytope. Let N = |P`| =

∑
(`k + 1− i), then these polytopes are in our case

O` := {(x) ∈ RN | xa ≤ xb if a < b , 0 ≤ xa ≤ 1 ∀ a, b ∈ P`}

C` := {(x) ∈ RN | 0 ≤ xa1 + . . .+ xas ≤ 1 ∀ chains a1 < . . . < as ∈ P`}.
The two polytopes are related as follows:

(1) The Ehrhart polynomial is the same for both polytopes ([Sta86]).
(2) C` and O` are normal (Corollary 1.8).
(3) C` is Gorenstein ⇔ O` is Gorenstein ⇔ P` is a pure poset (Corollary 5.5 and [Sta78]).
(4) C` is unimodular equivalent to O` if and only if `i−1 < i + 2 or `i−2 < i + 1. ([HL12],

Lemma 5.3).

Let sln+1 = n− ⊕ h⊕ n+, V (mωi) the simple module with highest weight mωi, vm a highest
weight vector. For any w ∈ W = Sn+1, the Weyl group, the extremal weight space in V (mωi)
of weight w(mωi) is one-dimensional.
We denote the n+⊕h-submodule generated by this space Vw(mωi), called the Demazure module.
Certainly Vwτ (mωi) = Vw(mωi) for any τ ∈ Si × Sn+1−i and hence we can always assume that
w is of minimal length among all representatives of its class in W i := Sn+1/Si × Sn+1−i.
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2 REKHA BISWAL AND GHISLAIN FOURIER

Let n6−−w = w−1(n+)w ∩ n− and denote −R−w the set of roots in n−w . R−w is equipped with a
natural partial order, α ≥ β, if their difference is again a positive root and then R−w is isomorphic
to some P`w with length(w) = N and vice versa, there exists such a w for all sequences `

(Proposition 2.3). Via conjugation with w−1 we can identify Vw(mωi) with U(n−w).vm.

Let us briefly recall the PBW filtration on the universal enveloping algebra and the induced
filtration on M = w−1Vw(mωi)w (this can be found more general in [FFL13a]):

U(n−w)s := 〈xi1 · · ·xir | r ≤ s, xij ∈ n−w〉 ; Ms := U(n−w)s.vm.

The associated graded module is denoted Ma and S(n−w) acts cyclic on this module. This implies
that there exists I ⊂ S(n−w) with Ma ∼= S(n−w)/I. For s ∈ ZN≥0 we associate f s =

∏
α∈R−w f

sα
α ∈

S(n−w). The first main theorem of this paper is:

Theorem. Let w ∈W i and m ≥ 0.

(1) {f s.vm | s ∈ mC`w} is a basis of (U(n−w).vm)a.

(2) I is generated by
(
U(n+).{fm+1

α |α ∈ R−w}
)
∩ S(n−w).

(3) {w(f s).vw(mωi) | s ∈ mC`w} is a basis of Vw(mωi).

(4) Suppose w ≤ τ ∈W i, then mC`w is a face of mC`τ .

(5) Let w0 be the longest element in W i, then mC`w0
= P (mωi), the polytope defined in

[BD15].

This theorem is analog to previous results for simple modules (w being the longest Weyl group
element) in the An-type case ([FFL11a]), Cn-type case ([FFL11b]), in both case over the inte-
gers ([FFL13b]), for cominuscule weights ([BD15]), for Demazure modules for triangular Weyl
group elements (including Kempf elements) in the An-type case ([Fou14]), partial results are also
known for fusion products of simple modules ([Fou15a]). There is a particular interest in the
graded character of these modules due to the conjectured connection to Macdonald polynomials
([CF13, BBDF14]).

The famous Gelfand-Tsetlin polytope GT (λ) parametrizes a monomial basis of V (λ) [?]. In
[Kog00] certain faces of this polytope were studied and the Weyl group type of such a face
was introduced. Then [KST12] showed that the Demazure character of Vw(λ∗) for a regular λ
is equals to the character of the union of all faces of type ww0 (here w0 denotes the longest
element in W ).
We adapt the notion of Kogan faces to the special case λ = mωn+1−i and w0 the respresentative
of minimal length in W i, then we can show:

Theorem. Let w ∈W i, τ = ww−10 , m ≥ 0.

(1) There is a unique maximal Kogan face Fτ (mωn+−i) of type τ in GT (mωn+1−i).
(2) The character of Fτ (mωn+1−i) is equals to the character of Vw(mωi).
(3) The defining poset structure on Fτ (ωn+1−i) is isomorphic to P`w and so

Fτ (mωn+1−i) = mO`w .

Let U be the group of invertible strictly upper triangular matrices (with Lie algebra n+) and
Ua be the algebraic group of dimU-copies of the additive group.
Let ≺ be a total order on the set of positive roots, which extends to a homogeneous lexicographic
order on U(n+). The associated graded space Vw(mωi)

t of the induced filtration on Vw(mωi) is
then a Ua-module such that all graded components are at most one-dimensional and there is a
unique monomial basis of this space. We call the monomials of this basis essential. Vw(mωi)
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is called favourable if there exists a normal polytope whose lattice points are exactly the es-
sential monomials and the lattice points in the n-th dilation parametrize a basis of the Cartan
component of the n-times tensor product of Vw(mωi) ([FFL13a]). We can show:

Proposition. Vw(mωi) is a favourable module.

Vw(mωi) is a U-module, while Vw(mωi)
a, Vw(mωi)

t are Ua-modules. We set

Xa
w := Ua.[m] ⊂ P(Vw(mωi)

a) ; Xt
w := Ua.[m] ⊂ P(Vw(mωi)

t).

Then the proposition implies

Corollary. Xt
w is a flat toric degeneration of Xa

w and both are flat degenerations of Xw into
projectively normal and arithmetically Cohen-Macaulay varieties.

On the other hand, as shown in [GL96], the Gelfand-Tsetlin polytope induces a toric de-

generation Xgt
w of the Schubert variety. Using our results on the order and chain polytope we

deduce:

Corollary. Let w ∈ W i. Xt
w and Xgt

w are isomorphic as toric varieties if and only if there is
no reduced decomposition of w of the form w = . . . (si−1si−2)(si+1sisi−1)(si+2si+1si).

It would be interesting to compare other toric degenerations of Schubert varieties to Xt
w,

as there is for any reduced decomposition of the longest Weyl group element an induced toric
degeneration. This will be part of research in the future.

Acknowledgements G.F. is funded by the DFG priority program ”Representation theory”.
Both authors would like to thank the Centre de recherches mathématiques in Montreal for the
hospitality during the thematic semester ”New direction in Lie theory”, where this cooperation
has been started.

1. Posets and polytopes

We introduce a poset P` and consider two polytopes associated to this poset. Let 1 ≤ i ≤ n
be two fixed integer and ` an ascending sequence of integers

` := (i− 1 ≤ `1 ≤ . . . ≤ `i ≤ n) , we set `0 := i− 1.

Let P` be the poset with vertices

{xk,j | 1 ≤ k ≤ i , i ≤ j ≤ `k}
and relations:

xk1,j1 ≥ xk2,j2 :⇔ k1 ≤ k2 and j1 ≥ j2.
Then P` has a unique minimal element xi,i and several maximal elements {xk,`k | `k 6= `k−1}.
The number of vertices in P` is

N :=
i∑

k=1

`k − i+ 1.

Example 1.1. Let i = 4, n = 6, ` = (4, 5, 6, 6), then P`:

x1,4 → x2,4 → x3,4 → x4,4
↑ ↑ ↑
x2,5 → x3,5 → x4,5

↑ ↑
x3,6 → x4,6

(here an arrow x −→ y iff x covers y). The maximal elements are x1,4, x2,5, x3,6.
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1.1. Chain and order posets. Stanley ([Sta86]) has associated two polytopes with each finite
poset. We recall these two polytopes in our context. The first one, which is well known and
studied is the order polytope

O` := {(sk,j) ∈ (R≥0)N | sk,j ≤ 1 for all k, j , sk1,j1 ≥ sk2,j2 if xk1,j1 > xk2,j2 , }

We see straight that this is a [0, 1]-polytope and hence bounded.
The second polytope is the chain polytope

C` := {(sk,j) ∈ (R≥0)N |
∑
p

skp,jp ≤ 1 for all chains xk1,j1 > . . . > xks,js}

Of course it is enough to consider only maximal chains. Again, this polytope is bounded as
every xk,j is in a maximal chain and hence bounded.

Remark 1.2. We should remark here that this construction has been generalized to marked
posets by [ABS11], also related to PBW filtrations. But for our purpose the polytopes defined by
Stanley will be enough. In fact, there is still a strong connection between marked chain polytopes
and PBW degenerated Demazure modules on one hand and marked order polytopes and Gelfand-
Tsetlin polytopes on the other hand, as for example shown in [ABS11] for the longest Weyl group
element. The connection between certain the PBW-graded Demazure modules and the marked
chain polytope has been investigated for certain Weyl group elements ([Fou14]). We expect this
connection for all Weyl group elements, this is part of ongoing research.

The order and the chain polytope share several interesting properties. For any t ∈ Z≥1 we
denote

O`(t) := |tO` ∩ (Z≥0)N | , C`(t) := |tC` ∩ (Z≥0)N |.
Then it is a classical result due to Ehrhart that both functions are actually polynomials, called
the Ehrhart polynomials.

Theorem ([Sta86]). For all `, the two polynomials coincide: O`(t) = C`(t).

This implies that the t-dilation of the polytopes O`, C` do have the same number of lattice
points.

1.2. Faces of the polytopes. Another result due to Stanley is concerned with the number of
vertices, or 0-dimensional faces, in these polytopes.

Lemma ([Sta86]). The number of vertices in O` and C` coincide.

While the higher dimensional faces are way more complicated to understand, we can at least
give formulas for the number of facets, the n− 1-dimensional faces.

Lemma 1.3. Let ` = (i− 1 ≤ `1 ≤ . . . ≤ `i ≤ n), then the number of facets of O` is:

1 + ]{k | `k 6= `k+1}+ 1 +
∑
`k≥i

(`k − i) +
∑
k<i

(`k + 1− i)

and the number of facets of C` is:

N +
∑

`k 6=`k−1

(
`k − k
i− k

)
(here we set `0 = i− 1).
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Proof. In [Sta86], it is shown that the number of facets in the order polytope is equal to the
number of cover relations plus the number of minimal elements plus the number of maximal
elements. Further, the number of facets in the chain polytope is equal to the number of vertices
(of the poset) plus the number of maximal chains in the poset. The easy computation of these
numbers proves the lemma. �

Example 1.4. We turn again to Example 1.1. i = 4, n = 6, ` = (4, 5, 6, 6). Then the number
of facets in the order polytope O` is

1 + 2 + 1 + (4− 4) + (5− 4) + (6− 4) + (6− 4) + (5− 4) + (6− 4) + (7− 4) = 15,

while the number of facets in the chain polytope C` is

9 +

(
3

3

)
+

(
5− 2

4− 2

)
+

(
6− 3

4− 3

)
= 9 + 1 + 3 + 3 = 16.

We see that these numbers are not equal in general, in fact in [HL12] the following equivalences
are proven

Theorem. The following are equivalent

(1) The number of facets in O` and C` is the same.
(2) The poset P` does not contain a subposet {x1, x2, x3, x4, x5} such that x1, x2 > x3 >

x4, x5.
(3) The polytopes O` and C` have the same f -vector.
(4) The polytopes O` and C` are unimodular equivalent.

Remark 1.5. The condition that the poset does not contain a subposet {x1, x2, x3, x4, x5} such
that x1, x2 > x3 > x4, x5 translates in our case to: `i−2 < i+ 1 or `i−1 < i+ 2.

1.3. Dilations and normality. Here we consider dilations of our polytopes, for any m ∈ Z≥1:

mO` = {(sk,j) ∈ (R≥0)N | sk1,j1 ≥ sk2,j2 if xk1,j1 > xk2,j2 , sk,j ≤ m∀ k, j}

mC` = {(sk,j) ∈ (R≥0)N |
∑
p

skp,jp ≤ m for all chains xk1,j1 > . . . > xks,js}.

Lemma 1.6. For any m ∈ Z≥1, then we have for the Minkowski sum of the lattice points:

(m+ 1)C` ∩ ZN≥0 =
(
mC` ∩ ZN≥0

)
+
(
C` ∩ ZN≥0

)
Proof. Let s ∈ (m+ 1)C` ∩ ZN≥0, and denote

supp(s) = {xk,j : sk,j 6= 0}.
Then supp(s) is again a poset. If M denotes the subset of minimal elements in supp(s), then
the elements of M are pairwise incomparable. We define t ∈ ZN≥0 with tk,j = 1 if xk,j ∈ M ,
tk,j = 0 else.
Since the elements of M are pairwise not comparable, every chain in P` has at most one element

from M . So t ∈ C` ∩ ZN≥0. To prove the theorem, it is enough to show that s− t ∈ mC` ∩ ZN≥0.
Let P be a maximal chain in P`. Then∑

xk,j∈P
sk,j ≤ m+ 1,

and so if P ∩M 6= ∅ then ∑
xk,j∈P

sk,j − tk,j ≤ m. (1)
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Suppose now P ∩ M = ∅. Let xk,j be the minimal element in P with sk,j 6= 0, then by
construction of M , there exists xk′,j′ ∈M with xk′,j′ < xk,j and sk′,j′ 6= 0. So we can construct
a new chain P ′ consisting of {xp,q ∈ P |xp,q ≥ xk,j} ∪ {xk′,j′}. Then∑

xk,j∈P
sk,j <

∑
xk,j∈P ′

sk,j

and since P ′ ∩M 6= ∅ we have with (1)∑
xk,j∈P

sk,j − tk,j ≤
∑

xk,j∈P ′
sk,j − tk,j ≤ m.

This implies that s− t ∈ mC` ∩ ZN≥0. �

The following should be well-known from the literature, we include the proof for the readers
convenience:

Lemma 1.7. For any m ∈ Z≥1:

(m+ 1)O` ∩ ZN≥0 =
(
mO` ∩ ZN≥0

)
+
(
O` ∩ ZN≥0

)
Proof. Let s ∈ (m+ 1)O` ∩ ZN≥0, then we define t ∈ ZN≥0 as

tk,j :=

{
1 if sk,j 6= 0

0 if sk,j = 0

Since s ∈ (m+ 1)O` ∩ ZN≥0, we have sk,j 6= 0⇒ sk′,j′ 6= 0 for all xk′,j′ > xk,j . This implies that

t ∈ O` ∩ ZN≥0. It is furthermore obvious that

s− t ∈ mO` ∩ ZN≥0.

�

We can deduce from here easily for all n,m ≥ 1:

(m+ n)O` ∩ ZN≥0 =
(
mO` ∩ ZN≥0

)
+
(
nO` ∩ ZN≥0

)
and

(m+ n)C` ∩ ZN≥0 =
(
mC` ∩ ZN≥0

)
+
(
nC` ∩ ZN≥0

)
.

Corollary 1.8. For fixed 1 ≤ i ≤ n and ` : The polytopes O` and C` are both normal.

2. Some combinatorics on roots

2.1. Preliminaries. We consider sln+1(C) with the standard triangular decomposition b⊕n− =
n+ ⊕ h ⊕ n−. We denote the set of roots R, the positive roots R+, the simple roots αi for
i = 1, . . . , n. Then any positive root is of the form

αi,j = αi + . . .+ αj .

The set of positive roots of An can be arranged in a lower triangular matrix where entries of the
i-th row are α1,i, ..., αi,i and entries of the j-th column are αj,j to αj,n.
The set of dominant, integral weights is denoted P+, the set of integral weights P and the
fundamental weights ωi for i = 1, . . . , n. In terms of the dual of the canonical basis of the
diagonal matrices in Mn+1(C), we can write ωi = ε1 + . . .+ εi and αi = εi − εi+1.
For all α ∈ R+, we fix a sl2-triple {eα, fα, hα := [eα, fα]}.
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2.2. Weyl group combinatorics. Let us denote W the Weyl group, generated by the reflection
at simple roots. We can identify W with the symmetric group Sn+1 via the action on εi and
hence we write any w ∈W as a permutation

w =

(
1 2 3 . . . n n+ 1

w(1) w(2) w(3) . . . w(n) w(n+ 1)

)
,

Let us fix i ∈ {1, . . . , n}, then the stabilizer StabW (ωi) is isomorphic to Si × Sn+1−i, and we
denote

W i = W/StabW (ωi) and w0 the longest element in W i.

Each coset in W/StabW (ωi) has a unique representative of minimal length and we choose our
favorite reduced decomposition for this representative (Proposition 2.2). In abuse of notation
we identify each coset with its minimal representative, so we write w ∈W i.
For w ∈W let us denote

R−w = w−1(R−) ∩R+.

Then it well-known (and can be easily verified) that |R−w | is equal to the length w and

R−w = {αk,j ∈ R+ | 1 ≤ k < j + 1 ≤ n+ 1 and w(j + 1) < w(k)}. (2)

We denote the subalgebra spanned by the root vectors of roots in −R−w
n−w := 〈fα |α ∈ R−w〉.

Let w ∈W i, then we denote for 1 ≤ k ≤ i:
`k = max{i− 1} ∪ {j | i ≤ j ≤ n and αk,j ∈ w−1(R−) ∩R+}.

Corollary 2.1. Let 1 ≤ k ≤ i and suppose `k ≥ i. Then αk,p ∈ w−1(R−)∩R+ for all i ≤ p ≤ `k.
Suppose further k + 1 ≤ i, then αk+1,`k ∈ w−1(R−) ∩R+.

Proof. Suppose i ≤ `k, then αk,`k ∈ w−1(R−) ∩ R+, which implies by (2): w(`k + 1) < w(k).
Let k ≤ i ≤ p < `k, then we have w(p+ 1) < w(`k + 1), since w is the minimal element modulo
StabW (ωi). This implies w(p+ 1) < w(k) and so αk,p ∈ R−w .
Suppose 1 ≤ k < i ≤ `k, then again w(`k + 1) < w(k). Further w(k) < w(k + 1), since
k + 1 ≤ i and w is the minimal element modulo StabW (ωi). This implies w(`k) < w(k + 1) and
so αk+1,`k ∈ w−1(R−) ∩R+. �

This implies that `k ≤ `k+1 for all k and so we obtain a sequence for each w ∈W i:

`w := (i− 1 ≤ `1 ≤ . . . ≤ `i ≤ n). (3)

Proposition 2.2. Let w ∈W i, `w the corresponding sequence. Then the following is a reduced
decomposition of w:

w = (s`1−(i−1) · · · s1)(s`2−(i−2) · · · s2) · · · (s`i−1−1 · · · si−1)(s`i · · · si)

Proof. Let us denote by w′ the right hand side of the equation, then we have to show

w−1(R+) ∩R− = w′−1(R+) ∩R−.
Since the lengths of both elements are the same, we just have to show that the set of the left
hand side is contained in the set on the right hand side. So let αp,q ∈ w−1(R+) ∩ R−, then by
Corollary 2.1: i ≤ q ≤ `p. Then

(s`p−(i−p) · · · sp) · · · (s`p+1−(i−p−1) · · · sp+1)(s`i · · · si)(αp,q) = −(αp+q−i+αp+q−i+1+...+α`p−(i−p)).

s`p−(i−p) does not appear in the remaining part of w′, which implies w′(αp,q) ∈ R−. This implies

that w′ is a reduced decomposition of w, since the number of elements in w−(R+)∩R− is equals
to the number of reflection in the decomposition. �
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We see immediately that this gives a one-to-one correspondence between W i and the set of
ascending sequences of i integers in the interval bounded by i− 1 and n.

2.3. Order and roots. We have the standard partial order on the set of positive roots, R+,
namely α ≥ β :⇔ α−β ∈ R+. By restriction we obtain a partial order on R−w = w−1(R−)∩R+.
Let w ∈ W i, then we associate via (3) a sequence `w to w. The following proposition is due to
the definition of P`w and Corollary 2.1.

Proposition 2.3. The poset R−w is via the map αp,q 7→ xp,q isomorphic to the poset P`w .

3. PBW-graded modules and their bases

For λ ∈ P+ we denote the simple finite-dimensional highest weight module of highest weight
λ by V (λ), and a non-zero highest weight vector by vλ. Then V (λ) = U(n−).vλ and further
V (λ) decomposes into h-weight space V (λ)µ. For any w ∈ W , the weight space of weight w(λ)
is one-dimensional and we denote a generator of this line vw(λ).

3.1. Demazure modules.

Definition 3.1. For λ ∈ P+, w ∈W , the Demazure module is defined as

Vw(λ) := U(b).vw(λ) ⊂ V (λ).

Note that this is not a g-module but a b-submodule. For w = id , this module is nothing
but Cvλ while for w = w0 we have Vw0(λ) = V (λ). Further, if w1, w2 are representatives of the
same coset in W i, then

Vw1(mωi) = Vw2(mωi).

The Weyl group acts on U(g) as well as on V (λ), so we can consider

w−1(Vw(λ))w ⊂ V (λ).

This is equal to

w−1(U(b).vw(λ))w = U(w−1bw).vλ.

Now w−1bw ⊂ n−w ⊕ n+. Since vλ is a highest weight vector we have n+.vλ = 0. This implies
that

Vw(λ) = w(U(n−w).vλ)w−1.

3.2. PBW filtration. We recall here the PBW filtration. Let u be a finite-dimensional Lie
algebra, then we define a filtration on U(u):

U(u)s := 〈xi1 · · ·xi` |xij ∈ u , ` ≤ s〉.

This induces a filtration on any cyclic u-module M = U(u).m:

Ms := U(u)s.m.

We denote the associated graded module Ma (the PBW graded or degenerated module), which
is a module for the abelianized version of u (the Lie algebra with the same vector space as u
but with a trivial Lie bracket), denoted ua and U(ua) = S(u), the associated graded algebra of
U(u).
In our case, we consider the algebra n−w ⊂ n−, resp. b and the cyclic modules U(n−w).vλ, resp.
Vw(λ). We denote the associated graded modules

(U(n−w).vλ)a , Vw(λ)a. (4)
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We restrict again ourselves to λ = mωi. Since (U(n−w).vλ)a is a cyclic S(n−w)-module, there exists
an ideal Im,w ⊂ S(n−w) such that

(U(n−w).vλ)a ∼= S(n−w)/Im,w.

By classical theory we have f
mωi(hα)+1
α ∈ Im,w. Let us consider the special case w0 here, then

n−w = n− and Vw0(mωi) = V (mωi). It has been shown in [FFL11a] that in this case the filtered
components V (mωi)s are U(b)-modules and especially U(n+)-modules. This implies of course
that V (mωi)

a is a U(n+)-module. In fact n+ acts on S(n−) by differential operators δα (we may
omit here scalars):

δα(fβ) := eα.fβ =

{
fβ−α if β − α ∈ R+

0 if β − α /∈ R+

Then is has been shown in [FFL11a]:

Theorem. Im,w0 = S(n−){U(n+).f
mωi(hα)+1
α |α ∈ R+}.

But this implies that for all w ∈W i:

S(n−w) ∩ {U(n+).fmωi(hα)+1
α |α ∈ w−1(R−) ∩R+} ⊂ Im,w. (5)

3.3. PBW-graded bases. Let w ∈ W , n−w ⊂ n− the Lie subalgebra associated to R−w . Let
s = (sα) ∈ ZN≥0. Then we associate to s the monomial

f s :=
∏
α∈R−w

fsα ∈ S(n−w).

One of the main results of this paper is

Theorem 3.2. Let λ = mωi ∈ P+, w ∈W i, then

(1) {f s.vλ | s ∈ mC`w ∩ ZN} is a basis of (U(n−w).vλ)a,

(2) {
∏
α∈R

−
w
esαw(α).vm | s ∈ mC`w ∩ ZN} is a basis for Vw(λ)a,

(3) Iw,m is generated as a S(n−w)-ideal by S(n−w) ∩ {U(n+).f
mωi(hα)+1
α |α ∈ w−1(R−) ∩R+}.

The following corollaries are easily deduced from this theorem:

Corollary 3.3. Let mωi ∈ P+, w ∈W , then, by fixing an order in each factor,

{
∏
α∈R−w

esαw(α).vm | s ∈ C
m
`w
∩ ZN}

is a basis for Vw(λ). Further, the character of the Demazure module is given by

charVw(mωi) = ew(mωi)
∑

s∈mC`w∩Z
N

ew(−wt(s)),

where wt(s) :=
∑

α∈R−w sαα.

Corollary 3.4. Let w, τ ∈W i, and suppose τ ≤ w in the Bruhat order.

(1) mC`τ is the face of mC`w defined by setting sα = 0 for all α ∈
(
w−1(R−) \ τ−1(R−)

)
∩R+.

(2) (U(nτ ).vm)a ⊂ (U(n−w).vm)a.

Proof. The first follows straight from the definition of `w and the second from Theorem 3.2 (4)
and the first part. We have certainly by Theorem 3.2 (4), Im,τ ⊂ Im,w and the rest follows from
Corollary 3.4. �
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3.4. Proof for the PBW-graded bases. To prove the theorem we will follow the ideas pre-
sented in [FFL11a, FFL11b, FFL13a, BD15, Fou14] and show that {f s.vλ | s ∈ mC`w ∩ ZN}
spans (U(n−w).vλ)a (Corollary 3.6) and is linear independent in V (λ) (Proposition 3.7).

Proof. We start with proving the spanning property. Since (U(n−w).vλ)a is spanned by applying
all monomials in S(n−w) to vλ, it is clearly enough to prove that if t = (tα) ∈ (Z≥0)N ,then

f tvλ ∈ 〈f svλ : s ∈ mC`w ∩ ZN 〉.

For this we introduce a total order ≺ on the roots in R−w and hence (by Proposition 2.3) on the
poset. We follow here [BD15] and define

xk2,j2 ≺ xk1,j1 :⇔ ((j1 − k1) > (j2 − k2)) or (j1 − k1 = j2 − k2 and k2 < k1) . (6)

Note that this extends our partial order ≤ and is further a totally ordered subset of the or-
dered set considered in [BD15]. We consider the induced homogeneous lexicographical order on
multisets and hence on monomials in S(n−w).

Lemma 3.5. Let p be a chain in P`w and s ∈ ZN≥0 be a multiexponent supported on p only.
Suppose ∑

α∈p
sα > m,

then there exists constants ct ∈ C, t ∈ ZN≥0 such that(
f s +

∑
t≺s

ctf
t

)
.vλ = 0 ∈ (U(n−w).vλ)a.

Proof. We can assume that p is a maximal chain in P`w , say p = {β0, ..., βr}. Then βi ≺ βi+1

and βi+1 − βi ∈ R+ for 0 ≤ i ≤ r. By assumption

|s| :=
r∑
i=0

sβi > m,

which implies that f
|s|
β0
.vλ = 0 ∈ (U(n−w).vλ)a.

Set γi = βi−1 − βi for 1 ≤ i ≤ r and define the operator (following [BD15]):

A = ∂
sβr
γr ...∂

sβ2+...+sβr
γ2 ∂

sβ1+...+sβr
γ1 .

This acts certainly as a differential operator of S(n−). And the key point we will use this that

A.f
|s|
β0
∈ S(n−w).

This follows since all roots αk,j , 1 ≤ k ≤ i, i ≤ j ≤ n with αk,j ≤ β0 (here we use the partial
order) are in fact in w−1(R−) ∩ R+ Corollary 2.1. Now following the arguments of [BD15] we
see that in (U(n−w).vλ)a :

0 = A.f
|s|
β0
.vλ =

(
f s +

∑
t≺s

ctf
t

)
.vλ

which proves the lemma. �

Using this straightening law we have immediately the spanning property:

Corollary 3.6. Let t = (tα) ∈ ZN≥0, then

f tvλ ∈ 〈f svλ | s ∈ mC`w ∩ ZN 〉.
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The proof of Theorem 3.2 is complete with Proposition 3.7: �

Proposition 3.7. The set

{f s.vλ | : s ∈ mC`w ∩ ZN}
is linear independent in (U(n−w).vλ)a.

For the readers convenience we will give two proofs of this proposition, either using the
normality of the polytope or identifying the polytope with a face of a well-studied polytope.

First proof:
We have for any λ, µ ∈ P+: U(n−w).vλ+µ ∼= U(n−w).(vλ ⊗ vµ) ⊂ V (λ) ⊗ V (µ). It has been
shown in [FFL13b] that if Sw(λ) (resp. Sw(µ)) parametrizes linear independent subsets of
(U(n−w).vλ)a, resp. (U(n−w).vµ)a, then Sw(λ) + Sw(µ) parametrizes a linear independent subset
in (U(n−w).vλ ⊗vµ)a.
By Lemma 1.6 we know that for all m,n ≥ 1:(

mC`w ∩ ZN
)

+
(
nC`w ∩ ZN

)
= (m+ n)C`w ∩ ZN .

Now, since {f svλ | : s ∈ mC`w ∩ ZN} is a spanning set of (U(n−w).vmωi)
a (Corollary 3.6), it

remains to show that this set is a basis for the smallest possible case, namely m = 1. The
proposition follows then by induction.

The lattice points in C`w are nothing antichains in R−w (recall, this poset is isomorphic to P`w).
The weight of such an antichain is the sum of the corresponding roots. Now it is straightforward
to see that different antichains do have different weights. So it remains to show that for a given
antichain, fβ1 · · · fβs .vmωi 6= 0 ∈ (U(n−w).vmωi)

a.

For this recall that V (ωi) =
∧iCn+1, and fαi,j .ek = δi,kej+1. Since we are considering an

antichain, the roots β1, . . . , βs are pairwise incomparable, which implies that the root vectors
are acting on pairwise distinct elements of the canonical basis and also the images are pairwise
distinct elements of the canonical basis. This implies that for an antichain fβ1 · · · fβs .vmωi 6=
0 ∈ (U(n−w).vmωi). On the other hand, the degree of this element is obviously equals to s, which
implies that this fβ1 · · · fβs .vmωi 6= 0 ∈ (U(n−w).vmωi)

a.

Second proof :
Claim: mC`w is the face of the polytope mC`w0

defined by sα = 0 for all α /∈ R−w .

Let us see first why this claim proves the proposition. mC`w0
is the same polytope as P (mωi)

defined in [BD15] (in type An). It was proved there that

{f s.vλ |s ∈ P (mωi)} ⊂ V (mωi)
a

is a basis of V (mωi)
a, so especially linear independent. So every subset is linear independent

and the proposition follows once we prove the claim.

Proof of the claim: The claim follows similarly to [Fou14, Proposition 2]: every maximal chain
in P`w can be extended to a maximal chain of P`w0

and the restriction of every maximal chain

from P`w0
can be extended to a maximal chain of P`w .

4. Gelfand-Tsetlin polytopes and Kogan faces

We will show in this section, that the order polytope can be identified with a Kogan face of a
Gelfand-Tsetlin polytope. We then show that the character of this face is the character of the
Demazure module corresponding to the chain polytope (of the same poset).
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Denote σ the automorphism of the Dynkin diagram of type An and also the induced auto-
morphism of sln, this induces also an autormorphism on the character lattice by then σ(αi) =
ασ(i) = αn+1−i. For w ∈W we have

σ(charVw(λ)) = charVσ(w)(σ(λ)). (7)

This duality is implicitly used in our construction of Kogan faces. For simplicity, our definition
of the character of a Kogan face reflects this automorphism.

We recall here briefly Gelfand-Tsetlin polytopes (or Cetlin or Zetlin), e.g. the marked order
polytopes(see [ABS11]) corresponding to the following poset:
The set of vertices is {xk,j | 0 ≤ k ≤ n, 1 ≤ j ≤ n+ 1− k} and the cover relations are

xk−1,j ≥ xk,j ≥ xk−1,j+1

for all k, j. We do arrange the vertices in a triangle, where the k-th row is {xk,1, . . . , xk,n+1−k}.
In the example n = 2:

x0,3x0,2x0,1

x1,1 x1,2

x2,1

Let λ =
∑
miωi and set s0,j = mn + . . .+mj . Then the Gelfand-Tsetlin polytope associated

to λ is defined as

GT (λ) = {(sk,j) ∈ Rn(n+1)/2 | sk−1,j ≥ sk,j ≥ sk−1,j+1}.

Let s ∈ GT (λ), then we define the weight of s as

wt s :=
n∑
k=0

n+1∑
j=i

(sk+1,j − sk,j)εk+1

where we set sp,q = 0 if xp,q is not a vertex of the Gelfand-Tsetlin poset. Note, that we are
dualizing the usual weight of a point in the Gelfand-Tsetlin polytope. Let S be any subset of
the lattice points of GT (λ), then we define

charS :=
∑
s∈S

ewt s.

4.1. Kogan faces. We consider certain faces of the Gelfand-Tsetlin polytope introduced by
Kogan [Kog00]. These faces are given by setting some of the inequalities to equalities. We
denote

Ai,k : xi,k = xi+1,k.

Let F be a face defined by some of these inequalities. One can associate a Weyl group element
to this face as follows:
We start with the identity element and from the bottom row to the top row of the Gelfand-
Tsetlin polytope. In each row we go from left to right, for every equality Ak,j we multiply sk+j
to the right end. The resulting Weyl group element w(F ) is called the type of the face.
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Example 4.1. Let F be the face defined by

• •••

• • •

• •

•A
A
A

A
A
A

A
A
A

A
A
A

Then w(F ) = s3s2s1s2.

Note that different faces may have the same type. In the following we will see how such faces
are related.
Let F be a reduced face such that Aj,k, Aj,k+1, Aj+`,k+1 are not equalities of the face for some
j, k, ` but all Aj′,k′ with j + 1 ≤ j′ ≤ j + ` − 1, k′ ∈ {k, k + 1} and Aj+`,k are equalities in F .
Then we can substitute the equality Aj+`,k by the equality Aj,k+1 without changing the type of
the face. We call ` the size of the move.

••

• •

•A
A
A

•

=⇒

••

• •A
A
A

• •

••

• •

•A
A
A

•A
A
A

•A
A
A

•

=⇒

••

• •A
A
A

•A
A
A

•A
A
A

• •

Figure 1. Ladder moves of size 1 and 2

Proposition. [Kog00] Suppose F, F ′ do have the same type, then there are ladder moves (as
above or their inverses) such that F can be transformed into F ′. There is a unique reduced
Kogan face Fw of type w such that all other Kogan faces of type w can be obtained by such
ladder moves replacing Aj+`,k by Aj,k+1. This face is called the Gelfand-Tsetlin face of type w.

Corollary 4.2. Let

τ = (s`i+1 · · · sn) · · ·
(
s`k−i+k+1 · · · sn−(i−k)

)
· · · (s`1−i+2 · · · sn−i+1)
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(in each bracket, the sequence of simple roots is strictly increasing) then the Gelfand-Tsetlin face
Fτ is given by the equalities:

i⋃
k=1

{A`k−i+k,1, . . . , A`k−i+k,n−`k}.

We see that if Aj,k is an equality of the Gelfand-Tsetlin face Fτ , then Aj,k−1 is also an equality
of the face:

•••

• •A
A
A

•

=⇒

•••

•A
A
A

•A
A
A

•

4.2. Implicit equations and maximal faces. In this paper we are considering modules of
rectangular highest weight. So if λ = mωi and w ∈ W , then we are considering here the
Gelfand-Tsetlin polytope GT (ωn+1−i) (due to (7)). σ induces an bijection W i ↔ Wn+1−i, let
w0 then the longest element in W i, then σ(w0) = w−10 is the longest element in Wn+1−i. We

are interested here in another bijection, namely w 7→ ww−10 . Then

(
s`1−(i−1) · · · s1

)
· · · (s`i · · · si) 7→ (s`i+1 · · · sn) · · ·

(
s`1−(i−1)+1 · · · sn−i+1

)
.

Since the highest weight is not regular, we have certain implicit equations in each face (in
contrast to explicit equations defined by fixing the type of the face). In every face we have the
following equations due to the fixed highest weight:

{Ak,j | k + j ≤ n− i} ∪ {Ak,j | j ≥ n− i+ 1} (8)

Now as x0,j = m for j ≤ n− i+ 1 and x0,j = 0 for j > n− i+ 1 we have

xk,j = m if k + j ≤ n− i+ 1 ; xk,j = 0 if j ≥ n− i+ 2. (9)

This basically cuts of the upper left and the upper right corner of the Gelfand-Tsetlin triangle.
But there are more implicit equations. Suppose Ak,j is an (implicit or explicit) equation of a
face with xk,j = m, then we have the implicit equations: Ak+1,j−1, . . . , Ak+j−1,1. Further if Ak,j
is an (explicit or implicit) equation with xk,j = m, then all Ak−p,j are implicit equations for
p = 0, . . . , k.
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••

• • •A
A
A

• •

•

=⇒

••

• • •A
A
A

• •A
A
A

•A
A
A

•••

• •

•A
A
A

=⇒

•••

•A
A
A

•

•A
A
A

Figure 2. Implicit equations

For fixed 0 ≤ k ≤ n we consider the diagonal starting in xk,1 and pointing in direction of the
upper right corner, xk,1, xk−1,2, . . . ...:

•• ••

• • •

• •

•

Then the first entries in each diagonal are fixed (via implicit or explicit equations) and equal
to m. We denote the number of such element in the k-th column ck (there might be of course
diagonals with ck = 0). Then certainly ck = k + 1 for 0 ≤ k ≤ n − i. Even more we have for
n− i ≤ k ≤ n−1 : ck ≥ ck+1 (due to the implicit equations). This implies that the elements xk,j
which are fixed by some implicit or explicit equations and equals to m form a staircase pattern
above the lower right bound of the Gelfand Tsetlin pattern.

Let τ = ww−10 = (s`i+1 · · · sn) · · ·
(
s`k−i+k+1 · · · sn−(i−k)

)
· · · (s`1−i+2 · · · sn−i+1) (in each bracket,

the sequence of simple roots is strictly increasing) and suppose F is the Gelfand-Tsetlin face Fτ ,
then it is easy to see that

cτk =

{
k + 1 if k ≤ n+ 1− i
n− `k if k > n+ 1− i

(10)

and there are no equations (implicit or explicit) for the variables xk,j , with

n+ 1− i ≤ k ≤ n , n+ 1− `k ≤ j ≤ n+ 1− i.

Proposition 4.3. Let F be a face of the Gelfand-Tsetlin polytope GT (mωn+1−i) with w(F ) = τ ,
then ck ≥ cτk and there are no further equations (implicit or explicit) for the variables xk,j, with
n+ 1− i ≤ k ≤ n, ck + 1 ≤ j ≤ n+ 1− i for all k.
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Proof. We will use Proposition 4.1 to prove this by induction. The statement is certainly true
for Fτ and suppose the statement is true for F . We consider F ′ obtained from F by a ladder
move replacing Aj+`,k by Aj,k+1. There are two cases to be considered:

• The ladder move is of size ` > 1 (Figure 4.1). So we have Aj,k, Aj,k+1, Aj+`,k+1 are not
explicit equations of F but all Aj′,k′ with j + 1 ≤ j′ ≤ j + ` − 1, k′ ∈ {k, k + 1} and
Aj+`,k are equalities in F . Let F ′ be obtained by replacing Aj+`,k by Aj,k+1.
By assumption, for j′ = j + ` − 1, k′ = k + 1, we have that Aj+`−1,k+1 is an explicit
equation of the faces F and F ′. Then we have, see Figure 4.2, Aj+`,k as an implicit face
of F ′. Further, since by assumption Aj+1,k+1 is an explicit face of F and F ′, and since
by induction the equalities of F form the described pattern, we have Aj,k+1 is an implicit
equation in F . This implies that F = F ′.
• The ladder move is of size ` = 1 (Figure 4.1). Then Aj,k, Aj,k+1, Aj+1,k+1 are not

explicit equations of F . Suppose we have fixed xj,k+1 = m in F by an implicit or explicit
equation. Then Aj+1,k is an implicit equation in F ′ and hence F ′ ⊂ F (they may differ
only by the equation Aj,k+1).
Suppose xj,k+1 is not fixed by an implicit or explicit equation in F . Then by induction
Aj−1,k+1 is not an implicit or explicit equation of F . But then Aj,k is not an implicit
equation of F , while xj+1,k = m by assumption. So Aj,k has to be an explicit equation
which is a contradiction (since we are considering ladder moves here and therefore Aj,k
is not an explicit equation).

�

The set of Kogan faces of type τ is partially ordered by inclusion. From the proof of Propo-
sition 4.3 we have immediately the following lemma:

Corollary 4.4. Ladder moves on Kogan faces are compatible with this partial order. So if F, F ′

are Kogan faces of type τ and F ′ is constructed through a ladder move from F , then F ′ ⊂ F .
Especially, F ⊂ Fτ the Gelfand-Tsetlin face of type τ .

The goal of the section was to prove the following lemma which follows immediately from
Corollary 4.4:

Lemma 4.5. Let w = (s`1−(i−1) · · · s1) · · · (s`i · · · si), then there is a unique maximal Kogan face

Fww−1
0

(ωn+1−i) ⊂ GT (ωn+1−i) of type ww−10 .

Corollary 4.6. Let w ∈ W i, then Fww−1
0

(ωn+1−i) is isomorphic to the order polytope O`w .

Further Fww−1
0

(mωn+1−i) is isomorphic to the m-th dilation of the order polytope.

Proof. The proof is straightforward. We see that by (10) the free variables in Fww−1
0

(ωn+1−i)

form a pattern inside a rectangle of width i and height n − i, and the heights of the columns
are `k − (k − 1). So the pattern is the same as the pattern of the poset P`w (see (10)). The
inequalities defining the Gelfand-Tsetlin polytope are obviously the cover relation of the poset
P`w . Which implies that Fww−1

0
(ωn+1−i) is isomorphic to the order polytope O`w . The statement

about the m-dilation follows straight from this. �

4.3. Kogan face and Demazure character. We finish the section as promised, showing that
the character of the maximal Kogan face is the character of a corresponding Demazure module.

Lemma 4.7. Fix w ∈W i and consider the maximal Kogan face Fww−1
0

(mωn+1−i) ⊂ GT (mωn+1−i),

then
charVw(mωi) = charFww−1

0
(mωn+1−i).
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Proof. Let us recall the well-known identification of lattice points in the Gelfand-Tsetlin polytope
with semi–standard Young Tableaux. Due to our definition of the weight of a Gelfand-Tsetlin
pattern, we identify the lattice points in GT (mωn+1−i) with semi–standard Young Tableaux of
shape mωi (e.g. m coloumns of height i).
Let s ∈ GT (mωn+1−i), then we associate the following product of Kashiwara operators

As :=
(
f
m−sn+1−i,1
n−(i−1) · · · fm−s1,n+1−i

1

)
· · ·
(
f
m−sn−k,1
n−k · · · fm−si−k,n+1−i

i−k

)
· · ·
(
f
m−sn,1
n · · · fm−si,n+1−i

i

)
.

The map s 7→ As.bmωi , where bmωi is the Kashiwara-Nakashima tableaux of weight mωi, is
the well-known weight preserving bijection between lattice points in GT (mωn+1−i) and semi–
standard Young Tableaux of shape mωi.

Let s ∈ Fww−1
0

(mωn+1−i), and consider the k-th factor of As, As,k = f
m−sn−k,1
n−k · · · fm−si−k,n+1−i

i−k .

We have seen that we have certain implicit and explicit equations in the face, setting some of
the sk,j = m. Then by (10):

As,k = f
m−s`i−k−k,1
`i−k−k · · · fm−si−k,n+1−i

i−k . (11)

Recall the revised Demazure character formula (see [?, ?]), for given τ = si1 · · · sir and λ ∈ P+:

charVτ (λ) =
∑

b∈Tτ (λ)

ewt b (12)

where

Tτ (λ) = {f t1i1 · · · f
ts
is
.bλ | tj ≥ 0}.

So the character of the Demazure module is equals to the character of the Demazure crystal
Tτ (λ).
Recall that w = (s`1−(i−1) · · · s1) · · · (s`i · · · si) and so we see from (11) immediately that for any
lattice point s ∈ Fww−1

0
(mωn+1−i):

As.bmωi ∈ Tw(mωi).

Now, by Corollary 4.6, we have Fww−1
0

(mωn+1−i) = mO`w , and especially the number of lattice

points is equal. On the other hand, the number of lattice points in mO`w is equal to the
number of lattice points in C`w (Theorem 1.1). Again, this is equal to the dimension of Vw(ωi)
(Theorem 3.2), which is nothing but |Tw(mωi)| (by (12)). But this implies that

{As.bmωi | s ∈ Fww−1
0

(mωn+1−i)} = Tw(mωi),

and this finishes the proof. �

Remark 4.8. This has been shown for regular λ in [KST12], using an interpretation of De-
mazure operators in terms of Kogan faces. We are convinced that their methods do apply also
in the case of rectangular weights.

5. Degenerations

5.1. Demazure modules are favourable modules. In [FFL13a], the notion of favourable
modules has been introduced, let us recall this here briefly and show that the Demazure modules
Vw(mωi) are favourable n+-modules.
We denote the group of upper triangular matrices with determinant equals to 1 by U, then
n+ is the corresponding Lie algebra. Let M an U-module such that there exists m ∈ M with
M = U(n+).m. Let {x1, . . . xN} be an ordered basis of n+ and we fix an induced homogeneous
lexicographic order on monomials in U(n+). This induces a filtration on M

Mp := 〈fq.m |q � p〉C
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where in the associated graded module any graded component is at most one-dimensional. We
say p is essential if Mp/M<p is non-zero and denote the set of essential monomials es(M). We
can view this as a subset in ZN≥0.
M is called a favourable U-module if there exists a convex polytope P (M) ⊂ ZN whose set of
lattice points S(M) is equal to es(M) and

|nS(M)| = dimU(n+).m⊗n ⊂M⊗n.

Lemma 5.1. Let w ∈ W , λ = mωi, then Vw(mωi) is a favourable U-module via the polytope
C`w .

Proof. Recall the total order � on R−w (6). By applying w to the roots in −R−w and extending
then arbitrary to all other positive roots we obtain a total order on R+. Then we have seen
Theorem 3.2 that

{
∏
α∈R

−
w

esαw(α).vλ | s ∈ C
m
`w
∩ ZN}

is a basis of the associated graded space Vw(mωi)
a and by the straightening law Lemma 3.5, we

see that this is actually a basis of Vw(mωi)
t and so the lattice points in C`w are the essential

monomials. Since C`w is normal and

Vw((m+ n)ωi) ∼= U(n+).vw(mωi) ⊗ vw(nωi) ⊂ Vw(mωi)⊗ Vw(nωi)

we see that also the second condition for a favourable module is satisfied. �

Recall, that Ma denotes the associated PBW-graded module of M , and we denote M t the
associated graded module of M with respect to the filtration induced by �. Then Ma,M t are
both modules for Ua, which is the algebraic group of N -copies of the abelian group, as well as
cyclic modules for S(n+), the symmetric algebra of the vector space n+. We denote

Xw := U.[vmωi ] ⊂ P(Vw(mωi)) ⊂ P(V (mωi)) = Gr(i, n+ 1)

the minuscule Schubert variety associated to ωi and w, and the degenerated Schubert varieties

Xa
w := Ua.[vmωi ] ⊂ P(Vw(mωi)

a) ; Xt
w := Ut.[vmωi ] ⊂ P(Vw(mωi)

t).

With Lemma 5.1 we can use the main theorem in [FFL13a, Main Theorem] to deduce

Theorem 5.2. Let w ∈W , λ = mωi, then

(1) Xt
w is a toric variety.

(2) Xt
w is a flat degeneration of Xa

w and both are flat degenerations of Xw.
(3) Xt

w, X
a
w are both projectively normal and arithmetically Cohen-Macaulay varieties.

(4) The polytope C`w is the Newton-Okounkov body for Xw and its abelianized version.

5.2. Comparison with Gelfand-Tsetlin degenerations. Let λ = mωi, w ∈W i, `w = (`1 ≤
. . . ≤ `i) be the corresponding sequence (3). We want to compare the toric degenerations
obtained through the Gelfand-Tsetlin polytope (here O`w) and our polytope obtained via the
PBW-grading (C`w). We can apply Theorem 1.2 to P`w .

Lemma 5.3. Let w ∈ W i and `w the associated sequence. The toric variety obtained via the
Gelfand-Tsetlin polytope is isomorphic to Xt

w if and only if `i−2 < i+ 1 or `i−1 < i+ 2.

We can reformulate the conditions of the lemma. The normal fans are non-isomorphic if and
only if there is a reduced decomposition of w of the form

w = . . . (si−1si−2)(si+1sisi−1)(si+2si+1si).
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Remark 5.4. It would be interesting to see how the degenerations studied in [Lit98, AB04],
induced from a reduced decomposition of the longest Weyl group element, are related to our de-
generations. So is the degeneration through the PBW filtration actually a new one or isomorphic
to a previous known one. Nevertheless, one advantage of our construction is that a lot of data
are given very explicit, like the facet, the vertices etc.

5.3. Gorenstein polytopes. For the sake of completion let us finish with a brief view towards
Gorenstein polytopes.
Let w ∈ W i and suppose P`

w
is a pure poset (or ranked poset), e.g. all maximal chains have

the same length. Then a result by Stanley [Sta78, Theorem 5.4] gives that the order polytope
O`w is a Gorenstein polytope, e.g. a integer dilation of the polytope is (up to translation by a
vector) reflexive. This is equivalent to the fact that the h∗-vector of O`w is symmetric ([Sta78]).
Let us translate this condition to our context:
Denote {`j1 , . . . , `js} ⊂ {`1 ≤ . . . ≤ `i} the subset such that `jp 6= `jp−1. Then all maximal
chains have the same length if and only if `jp − jp is the same integer for all p = 1, . . . , s.
Since O`w and the chain polytope have the same Ehrhart polynomial, they also have the same
h∗-vector.

Corollary 5.5. Let w ∈W i, then the order polytope O`w and the chain polytope C`w are Goren-
stein polytopes if and only if there exists K such that for all j = 1, . . . , i:

`j − j = K or `j = `j−1.
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