
Antigen-based immunotherapy (AIT) for autoimmune
and allergic disease
Megan KL MacLeod1 and Stephen M Anderton2

Available online at www.sciencedirect.com

ScienceDirect
Autoimmune and allergic diseases are major causes of

morbidity. Antigen-based immunotherapy (AIT) is

immunologically the most satisfying means of specifically

targeting only those T cells driving disease, thereby inducing

antigen-specific immune tolerance, with the lowest adverse

risk profile. AIT is highly effective in rodent models of T cell-

driven inflammation and is now in clinical trials. The range of

approaches to applying AIT in the clinic prevents a consensus

on the molecular basis for this form of tolerance. In particular,

there has been a paucity of information on how pre-activated

effector and memory T cells respond to AIT. New, advanced

murine models of AIT are beginning to deliver such information

at the cellular, biochemical, transcriptional and epigenetic

levels.

Addresses
1 University of Glasgow, Institute of Infection, Immunity and

Inflammation, Sir Graeme Davies Building, 120 University Place,

Glasgow G12 8TA, UK
2 University of Edinburgh, MRC Centre for Inflammation Research,

Queen’s Medical Research Institute, 47 Little France Crescent,

Edinburgh EH16 4TJ, UK

Corresponding author: MacLeod, Megan KL

(Megan.Macleod@glasgow.ac.uk)

Current Opinion in Pharmacology 2015, 23:11–16

This review comes from a themed issue on Immunomodulation

Edited by Stephen M Anderton and Simon Fillatreau

For a complete overview see the Issue and the Editorial

Available online 22nd May 2015

http://dx.doi.org/10.1016/j.coph.2015.05.003

1471-4892/# 2015 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction
Autoimmune diseases and allergic conditions are caused

by inappropriate immune responses that attack either

self-tissues or innocuous environmental antigens, respec-

tively. Most current treatments for these conditions target

the symptoms of the diseases rather than offering cures.

Many of these treatments, especially in the context of

autoimmunity, lead to significant immunodeficiency that

can expose the patient to severe, sometimes life-threat-

ening, infections. Such disease-modifying drugs are usu-

ally given over a long period of time, often for the lifetime

of the individual. By contrast, specifically removing or

modifying only those immune cells that drive the allergic
www.sciencedirect.com 
or autoreactive immune response could lead to a perma-

nent cessation of the disease — a cure.

The CD4+ T cells believed to initiate and drive many

autoimmune and allergic conditions are activated through

their cell surface T cell receptor (TCR) that specifically

recognises the self-antigen or allergen. By targeting the

TCR, AIT aims to silence the damaging T cells whilst

leaving the rest of the immune system intact. Success in

animal studies and historical allergy treatments in humans

has led to clinical studies in both fields. Here we will

consider recent examples of AIT in both animal and

human studies and discuss the underlying immunological

mechanisms.

Immune tolerance — a physiologic basis for
immunotherapy
T cells gain their heterodimeric TCR through random

gene re-arrangement during thymic development. This is

essential to generate a broad repertoire of T cells that can

respond to the variable array of pathogens the host will be

exposed to over a lifetime. TCR gene re-arrangement also

generates T cells with the potential to be activated by

self-peptides. Many of these potentially destructive T

cells are deleted during negative thymic selection [1].

This ‘central tolerance’ is not complete, however. In all

individuals, some self-reactive T cells mature and migrate

to the periphery where, if activated, they have the poten-

tial to cause autoimmunity. To prevent this, ‘peripheral

tolerance’ mechanisms regulate T cell activation to both

self and innocuous foreign antigens, such as the dietary

and environmental antigens that can cause allergy.

A key mechanism by which peripheral tolerance is main-

tained is the presentation of antigen in non-inflammatory

contexts. Full T cell activation requires two signals stem-

ming from cell surface receptors delivered when the T

cell interacts with an antigen presenting cell (APC).

Signal 1 is provided by TCR binding to short antigenic

peptides presented by MHC molecules. Signal 2 (costi-

mulation) is delivered by a number of different receptor–
ligand pairs, upregulated in inflammatory environments.

Delivery of signal 1 alone leads to T cell tolerance either

as a consequence of T cell death, modulation of the T

cell’s ability to respond to further activation (often called

anergy), or the T cell gains regulatory function, capable

of suppressing the activation of other immune cells

(Figure 1) [2–4]. AIT aims to mimic these natural tolero-

genic processes by delivery of the appropriate self- or

allergen-derived peptide in the absence of inflammatory
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T cell activation requires two signals. CD4+ T cells are tolerised if they encounter their antigen (signal 1) presented by an antigen presenting cell

(APC) that has not been activated. Inflammation and/or infection cause APCs to upregulate costimulatory molecules that deliver signal 2 to T cells.

T cells that receive both signals 1 and 2 become activated and differentiate into effector cells. In the context of infection, effector T cells co-

ordinate the clearance of invading pathogens. If the T cells recognise allergen or self-antigens, the host can develop allergy or autoimmune

disease respectively. If a T cell receives a tolerising TCR signal in advance of encountering its antigen presented by an activated APC, the T cell

will not become fully activated — it is tolerant.
signals. This attractively simple concept belies a complex

process which requires extensive knowledge of the target

antigen; the location, phenotype and function of the

‘disease-causing’ T cells; and an ability to track these

T cells to evaluate the success of any treatment.

Allergy
For over 100 years [5], immunotherapy has been practiced

in allergic individuals. Initially involving crude allergen

extracts, antigens are now carefully prepared to reduce

adverse events. Allergen-derived peptides rather than

whole antigens are often used as peptide immunotherapy

(PIT), particularly as these can be selected not to cross

link allergen-specific IgE, a process that can lead to

enhanced rather than reduced allergic symptoms, includ-

ing anaphylactic shock [6]. Increasing the dose of the

allergen over a period of months to years is thought to

modulate the allergen specific immune response includ-

ing inducing a switch from an IgE dominated antibody

response to IgG [7] and/or production of the regulatory

cytokine interleukin (IL)-10 [8]. More recent advances in

the ability to track allergen-specific T cells in the blood of

patients undergoing immunotherapy suggest that AIT

causes the deletion, rather than the modulation, of the

disease causing T cells [9��,10��].
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The route of delivery of the immunotherapy is likely to

affect the dose of antigen that reaches the immune

system. In Europe, the sublingual route is approved for

allergy immunotherapy while the subcutaneous route is

approved in the USA [5]. While the efficacies of these

two routes have rarely been compared directly, a recent

meta-analysis indicates that tablets designed to treat

grass pollen allergy and subcutaneous delivery of pollen

antigens can each reduce symptoms of rhinoconjuncti-

vitis to a similar extent [11�]. Delivery of antigen can

also be increased by either direct injection into lymph

nodes with the aid of ultrasound or by binding the

antigen to particular adjuvants such as aluminium hy-

droxide [7,12].

Autoimmune disease
In allergy, the inciting antigen is usually well-defined.

This is far from the case for many autoimmune diseases.

Considerable progress has been made in recent years in

the identification of potential antigens in many autoim-

mune conditions [13–20]. However, pinning down the

specificity of the T cells that cause these diseases is a

complex process, further confused by the accumulation of

different antigenic targets as the disease progresses, a

process known as epitope spreading [21].
www.sciencedirect.com
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Despite these complexities, a number of human trials

have taken place or are currently ongoing. Individuals

considered at risk of diabetes have been given insulin or

the pancreatic enzyme, glutamine decarboxylase, Gad-

65, in an attempt to remove or modify the immune cells

that cause pancreatic b-cell destruction (reviewed in

[22]). These studies have found no delay in, or modifica-

tion of, disease progression. Such trials, as Harrison et al.
suggest, are unlikely to provide meaningful data without

biomarkers to evaluate the impact of the therapy [22].

Similar approaches have been made to reduce disease

progression in individuals with multiple sclerosis. Myelin

peptides delivered alone, in the context of self-MHC

molecules, or chemically fixed to patient cells have had a

variety of effects from some reduction in relapses, no

effect, or, in some cases, serious hypersensitivity

(reviewed in [23]). Hypersensitivity responses were

found in studies aiming to modulate the T cell response

using peptides with a slightly altered sequence compared

to the self peptide. Such altered peptide ligands (APLs)

have different TCR-binding affinities and consequently

provide altered signals for T cell activation leading to

quantitative and/or qualitative changes in the T cell

response. These effects are often specific for individual

TCRs, which makes clinical translation from reductionist

animal models to outbred human populations with more

complex TCR repertoires inevitably unreliable.

Modulation of T cell responses has also been observed in

rheumatoid arthritis (RA) patients given a peptide from

dnaJ, a heat shock protein, which shares similarities with

the RA ‘shared epitope’ [24,25]. Oral delivery of this

peptide led to improved clinical responses and a shift

from inflammatory to regulatory cytokine production. By

contrast, intranasal delivery of a potential RA autoanti-

gen, human cartilage glycoprotein-39, failed to provide

any additional benefit compared to placebo [26]. More

recent phase 1 studies in RA patients, and also in diabetic

patients, have delivered the tolerising antigen using

patient derived APCs. Dendritic cells (DCs), a key pop-

ulation of APCs, are differentiated from the patient’s

blood cells in the presence of tolerogenic signals, incu-

bated with antigens before transfer back into the patient

[27,28]. Such approaches ensure that the antigen is tar-

geted to APCs that are likely to interact with the disease-

causing T cells and can ameliorate disease in animal

models by either reducing T cell effector responses

and/or increasing immune regulation [29,30�]. Likewise,

antigen can be targeted to DCs by binding it to nano-

particles. Such approaches have been successfully used in

animal models of allergy and autoimmunity [31�,32�].

As in allergy trials, the ability to track the target T cell

population will be crucial to evaluate the success, and

investigate the mechanisms of, disease modification.

Recent studies using MHC class II tetramers containing
www.sciencedirect.com 
RA-associated peptides show that, while healthy con-

trols and RA patients have similar numbers of RA-rele-

vant T cells, the T cell populations from patients are

more likely to have a memory T cell phenotype [33].

Memory T cells are generated following immune

responses and may, as discussed below, present a more

complex challenge to immunotherapy.

Mechanisms of action
Many animal studies have investigated the mechanisms

of tolerance induction following AIT (Figure 2 and

reviewed in [34]). Recent full genome transcriptional

analysis of T cells exposed to a dose escalation of peptide

suggest that, as in some of the human trials discussed

above, AIT shifts T cells towards production of the

regulatory cytokine, IL-10 [35��]. In other experimental

scenarios, a single high dose of AIT can drive T cells to

apoptosis [36].

Many of these studies have, however, investigated the

mechanisms of AIT in the context of naı̈ve T cells.

Allergen or autoreactive T cells either involved in ongo-

ing or previous disease will be effector or memory T cells.

These previously activated T cells show responses that

are distinct from those of naı̈ve T cells. Critically, they

can be activated by lower levels of antigen and do not

necessarily require costimulatory signals to make an

effector response [37]. These differences suggest that

effector and memory T cells will fail to be tolerised by

AIT, instead potentially causing more immune-driven

damage.

Our recent studies have investigated the consequences of

exposing memory T cells to AIT. In a mouse allergy

model, this response varied depending on the phenotype

of the targeted memory cells with effector memory T cells

undergoing a greater reduction in their subsequent

responses than central memory T cells [38��]. This might

have consequences for when best to apply AIT in seasonal

allergies. Effector memory T cells would be expected to

be dominant during active allergen exposure, whereas

immune memory during the ‘off-season’ might be main-

tained predominantly by central memory T cells. A good

knowledge of the target cell population is, therefore,

likely to be key to selecting the most effective treatment

strategy. Similarly, while memory T cells proved to be

initially resistant to AIT, they were altered such that

further activation led to apoptosis [39��]. These data

suggest that memory cells retain information about their

activation history which affects their subsequent

responses. Potentially this cellular memory is retained

via epigenetic changes to the cell’s DNA. Indeed, we

recently demonstrated that effector T cells silenced by

AIT must express the cell surface protein, PD-1 [40��].
Ligation of this inhibitory receptor serves to diminish

TCR-driven T cell activation/function and its expression

is usually tightly related to TCR ligation. AIT led to DNA
Current Opinion in Pharmacology 2015, 23:11–16
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Mechanisms of action of AIT. AIT can alter the responses of allergen- or self-reactive T cells via a number of mechanisms. In some cases, the

pathologic T cells are deleted following recognition of antigen on tolerising APCs. Alternatively, these T cells can be modulated either

differentiating into regulatory T cells that can suppress the immune response, or altering their effector response by decreasing inflammatory

cytokine production or increasing expression of immunomodulatory molecules such as IL-10 or PD-1.
demethylation within the PD-1 gene promoter, enabling

long-term expression of the receptor. These data begin to

provide a molecular basis for the loss of pathogenic T cell

function following AIT.

Future perspectives
From its demonstrated effectiveness in rodent models of

autoimmune and allergic diseases, AIT has reached im-

plementation in clinical trials. Key to translational success

will be rigorous interrogation of molecular mechanisms,

particularly in T effector and T memory cells. The use of

peptide-MHC tetramer staining can identify epitope-

specific T cell in a range of human diseases, most notably

allergies where the inciting antigen is well characterized.

This remains more of a challenge for autoimmune dis-

eases with complex autoaggressive T cell repertoires. A

variety of treatment regimes — routes, doses, delivery

systems and proteins versus peptides — are being trialled.

Reaching a consensus from the likely different outcomes

will be challenging at the molecular level. It is necessary

to specifically focus on those T cells with TCRs recog-

nizing the therapeutic antigen. Low cell yields from

patients will make large scale, unbiased, ‘omics’ analyses

impractical. For this we must rely on more advanced

mouse models that allow retrieval of sufficient material

(tolerant T cells) to identify alterations in key genes/

pathways that then can be interrogated more easily in

human studies. These might provide useful biomarkers

(in concert with tetramer staining) for confirming the
Current Opinion in Pharmacology 2015, 23:11–16 
establishment of tolerance and, importantly, for signs

that it is beginning to wane, prompting renewed immu-

notherapy.
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