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ABSTRACT

Sensitive documents are those that cannot be made pub-
lic, e.g., for personal or organizational privacy reasons. For
instance, documents requested through Freedom of Informa-
tion mechanisms must be manually reviewed for the presence
of sensitive information before their actual release. Hence,
tools that can assist human reviewers in spotting sensitive
information are of great value to government organizations
subject to Freedom of Information laws. We look at sensi-
tivity identification in terms of semi-automated text classifi-
cation (SATC), the task of ranking automatically classified
documents so as to optimize the cost-effectiveness of human
post-checking work. We use a recently proposed utility-
theoretic approach to SATC that explicitly optimizes the
chosen effectiveness function when ranking the documents
by sensitivity; this is especially useful in our case, since sen-
sitivity identification is a recall-oriented task, thus requiring
the use of a recall-oriented evaluation measure such as F2.
We show the validity of this approach by running exper-
iments on a multi-label multi-class dataset of government
documents manually annotated according to different types
of sensitivity.

1. INTRODUCTION
Government documents may be deposited in archives for
public viewing after a period of years, or released into the
public domain through Freedom of Information mechanisms.
However, documents containing sensitive information should
not be released, as they may reveal personal information,
thereby infringing on someone’s privacy, or reveal informa-
tion that may offend other countries.

Classically, for paper documents, the identification of sen-
sitive documents has taken place using human reviewers.
However, with limited government budgets, the adoption of
text classification techniques that aid in the identification of
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sensitive documents is attractive, since it can increase the
efficiency of human reviewers. The possibility of treating
sensitivity review as an automated text classification task
has recently been shown in [7], where text classifiers were
used in order to automatically detect sensitive documents,
and where“sensitive”can have different interpretations (e.g.,
defence-related issues, or issues related to law enforcement).

The task of sensitivity identification bears strong resem-
blances with “review for privilege” in e-discovery [8], where
expert attorneys must check that “privileged” (i.e., sensi-
tive) information is not accidentally disclosed to a request-
ing party in the context of a civil litigation process [3, 10].
Another task that bears resemblances with sensitivity iden-
tification is record anonymisation, as when e.g., medical
records have to be anonymised before they are released for
epidemiological studies; in this case, sensitive information
such as patients’ names and medical doctors’ names have
to be spotted in order to be redacted [9]. Sensitivity iden-
tification and privilege identification are text classification
tasks, while record anonymisation is an information extrac-
tion task. Notwithstanding the differences, all these cases
are characterized by the fact that the costs of accidental
disclosure of sensitive information are high.

In this paper we follow in the steps of [7] and investigate
automatic techniques for aiding sensitivity review. How-
ever, while [7] was concerned with automatically classifying
documents by sensitivity, here we are concerned with aiding
a human annotator who validates (i.e., inspects and cor-
rects where appropriate) these automatically classified doc-
uments, with the goal of maximizing the cost-effectiveness
of the annotator’s work. In other words, while [7] was con-
cerned with “Step 1” in the workflow, we tackle “Step 2”.

We frame the task of aiding our human annotator as a
semi-automatic text classification (SATC) task. SATC (see
[2, 5, 6]) is defined as the task of ranking a set D of auto-
matically classified textual documents in such a way that, if
a human annotator validates the documents in a top-ranked
portion of D with the goal of increasing the overall classifi-
cation accuracy of D, the expected increase in accuracy is
maximized. Therefore, we envisage our annotators as vali-
dating documents by sensitivity, starting from the top of the
ranked list we generate, and working downwards (until they
are confident that the dataset has been cleared up, or until
the budget for annotation work has been spent).

We approach SATC by adopting the utility-theoretic ap-
proach of [2] (hereafter: U-Theoretic). Essentially, U-Theo-
retic ranks the automatically labelled documents by taking
two factors into consideration, i.e.,



1. the probability that the document has been misclassi-
fied by the classifier (documents with high probability
of misclassification should be ranked higher, since no
benefit will occur from validating a correctly classified
document), and

2. the increase (or gain) in the overall accuracy of the
automatically labelled set that occurs if the document
is validated (documents that bring about a higher gain
should be ranked higher).

Concerning (2), while the same gain occurs from validating
either a true positive (TP) or a true negative (TN) – this
gain is 0, since the human annotator will not change their
labels – the gain that occurs from validating a false positive
(FP) or a false negative (FN) may be, as shown in [2], differ-
ent. When the two gains are different, the utility-theoretic
approach tested in this paper:

• is indeed different from an approach based on (1) only,
which we describe as the purely probabilistic approach
(indeed, the two approaches instead coincide when the
two gains are the same), and

• is intuitively superior to the latter, since the goal of
SATC is increasing the overall labelling accuracy of D,
and this means that we must bring to bear the increase
in this overall labelling accuracy that validating a given
document brings about.

Note that the gains from validating TPs and TNs are differ-
ent (as shown in Equations (3) and (4) below) when accuracy
is measured via functions such as F1 (which pays equal im-
portance to precision and to recall). However, this is even
more true when using metrics that give more importance
to recall than to precision (or vice versa), since the imbal-
ance between the gains deriving from validating a FP or a
FN is even higher. This is indeed our case, since sensitiv-
ity identification is a recall-oriented task (there is a higher
cost involved in missing a sensitive document than in erro-
neously catching a non-sensitive document), which means
that a measure (such as e.g., F2) that emphasizes recall over
precision needs to be adopted.

Hence, in this paper, our application of the utility-theoretic
approach for semi-automated text classification to the recall-
oriented task of sensitivity identification, brings two contri-
butions: (i) it verifies the utility-theoretic approach on the
more difficult task of sensitivity identification, and (ii) it
moves the state-of-the-art in sensitivity identification from
automatic text classification to an assistive approach that
can benefit the efficiency of an annotator examining docu-
ments for sensitivities. The rest of the paper is structured
as follows. In Section 2 we describe our approach to top-
ranking sensitive information via semi-automated text clas-
sification. Section 3 describes our experiments carried out
on a dataset of documents annotated according to different
types of sensitivity. Section 4 provides concluding remarks.

2. SATC SENSITIVITY IDENTIFICATION
The U-Theoretic approach described in [2] tackles SATC in a
“multi-label multi-class” context, i.e., there is a set of classes
C = {c1, . . . , c|C|} with |C| > 1 (this makes it a “multi-class”
problem) and each document di may belong to zero, one, or
several among the classes in C (this makes it a “multi-label”
problem). The U-Theoretic approach assumes that binary
classifiers hj , one for each cj ∈ C, have classified the set

of unlabelled documents (which, for the purpose of our ex-
periments, will here be equated with the test set Te), also
returning a confidence score for each classification decision;
the binary decisions returned by classifier hj will be collec-
tively denoted as hj(Te).

U-Theoretic ranks documents in terms of total utility, i.e.,

U(di) =
∑

cj∈C

Uj(di) (1)

where Uj(di) (class-specific utility) is defined as:

Uj(di) =
∑
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Here, P (ωi
j) is the system’s estimate of the probability that

event ωi
j occurs, tpij is the event “di is a true positive for

cj”, and fpij , fn
i
j , tn

i
j are defined similarly. If the classifier

is a probabilistic one, the P (ωi
j)’s are the posterior prob-

abilities directly generated by the classifier (e.g., if di is a
positive example of cj , then P (tpij) is P (cj |di), P (fni

j) is

(1−P (cj |di)), and P (fpij) = P (tni
j) = 0). If the classifier is

not a probabilistic one, these probabilities can be obtained
from the confidence scores output by the classifier via the
application of a generalized logistic function (see [2, Section
3.3] for details).

In Equation (2), G(ωi
j) is the gain, defined as the av-

erage increase in the value of the evaluation function that
derives when an event of type ωi

j occurs, where the average
is computed across all documents of the same type (e.g., if
ωi
j ≡ fpij , the average is computed across all of the false pos-

itives for cj). For instance, we take G(fpij) to be the average
increase in the accuracy of Te that derives by correcting a
false positive for cj – i.e. removing from Te a false positive
and adding to Te a true negative – calculated as:

G(fpij) =
1

FPj

(FFP
1 (hj(Te))− F1(hj(Te)))

=
1

FPj

(
2TPj

2TPj + FNj

−
2TPj

2TPj + FPj + FNj

)

(3)

where by TPj we indicate the number of true positives for
class cj (and analogously for FPj , FNj , TNj).We assume
F1 to be the chosen evaluation function, where F1(hj(Te))
denotes the value of F1 computed on hj(Te), and where by
FFP
1 (hj(Te)) we indicate the value of F1 that would derive

by correcting all false positives in hj(Te) (i.e., turning all of
them into true negatives). Similarly, we take G(fni

j) to be:

G(fni
j) =

1

FNj

(FFN
1 (hj(Te))− F1(hj(Te)))

=
1

FNj

(
2(TPj + FNj)

2(TPj + FNj) + FPj

−

2TPj

2TPj + FPj + FNj

)

(4)

Here, the values of TPj , FPj , FNj , TNj are unknown (since
in a real application the true labels of the examples we have
automatically classified are unknown), but may be estimated
via k-fold cross-validation (see [2, Sect. 3.4] for details).

Note that the method generates a single ranking (accord-
ing to the document scores computed via Equation (1)), and
not |C| different ones; this allows the human annotator to
scan the document list only once, validating a document for
all the classes in C before moving on to the next document.



3. EXPERIMENTS
In this section we report on experiments that we have con-
ducted in order to test how well U-Theoretic performs on the
task of sensitivity identification.

3.1 Experimental setting
For our experiments we have used the same dataset as used
in [7]. This dataset contains 1,111 government records sam-
pled from a larger corpus of documents addressing interna-
tional relations. Unlike the rest of the corpus, which is still
unlabelled, these 1,111 records have been manually labelled
by government experts according to two types of sensitivity
identified in the UK’s Freedom of Information Act 20001,
namely “Section 40”, which deals with the occurrence of per-
sonal information and“Section 27”, which describes material
damaging to international relations. Of the 1,111 judged
records, 104 were judged to be sensitive for Section 27 and
86 for Section 40 (see [7] for more details on this dataset).

For each of the 1,111 records we use the same features em-
ployed in [7] for text classification purposes. In particular,
we use the contents of the document represented as a vector
of term frequencies, along with four other features, namely
the presence of dictionary last names, presence of interna-
tionally famous persons as listed in DBpedia (e.g., Royal
Family, government leaders, etc.), number of subjective sen-
tences as identified by the OpinionFinder toolkit [11], and
a risk score for the record depending on the countries men-
tioned within the record. Again, see [7] for more details on
the feature representations used.

As a measure of classification accuracy we use F2, an in-
stance of the well-known Fβ function defined as:

Fβ =
(β2 + 1)TP

(β2 + 2)TP + (β2 + 1)FN + FP

F2 =
5TP

6TP + 5FN + FP

(5)

We adopt F2 since (as already observed in the introduction)
ours is a recall-oriented task, and F2 is a standard choice for
this kind of tasks. Note that, as a consequence, in Equa-
tions (3) and (4) we use F2 (and its definition from Equa-
tion (5)) in place of F1; in other words, for us a gain G(ωi

j)
is defined in terms of increases in F2 (and not F1) obtained
from the annotator’s validation activity.

As the learning algorithm we use SVMs, c.f. Joachims’
SVM-light implementation [4]; in all our experiments we use
a linear kernel. Due to the imbalance of the training data,
we oversample each training set by generating duplicates
of sensitive records until we obtain the same numbers of
sensitive and non-sensitive records in the training set. This
solution (see e.g., [1]) turns out to be effective in improving
the SVM performance despite its simplicity, especially when
the number of the minority class examples is small. (Initial
experiments we have performed without oversampling have
yielded radically worse accuracy results.)

We perform our experiments using repeated random sub-
sampling validation, i.e., (a) we generate multiple (in our
case: 10) random training / test splits of the original dataset
(in our case: always using 80% of the data for training and
20% for testing), (b) for each such split we train our classi-
fiers on the training set and (c) classify + rank the test data
using the trained classifier, and finally (d) we compute the

1http://www.legislation.gov.uk/ukpga/2000/36/contents

final effectiveness results as the average effectiveness across
the different splits.

For each of the 10 splits, as a substep of step (b) we per-
form parameter optimization on the training data. We do
this by first optimizing (via 10-fold cross-validation, and in-
dependently for each class) the C parameter of SVMs, which
determines the tradeoff between the training error and the
margin. Then, using the value of C deemed optimal we
optimize the parameter of the generalized logistic function
(used for calibrating the P (ωi

j) needed in Equation (2) –
see Section 2) via a second 10-fold cross-validation phase (in
this phase we also obtain the estimates of TPj , FPj , FNj ,
TNj which are needed for computing G(fpij) and G(fni

j) in
Equations (3) and (4)). The test sets are then classified and
ranked by employing the parameter values deemed optimal.

In order to evaluate the effectiveness of our approach,
we use the ENERM

ρ (ξ) (“expected normalized error reduc-

tion”) measure proposed in [2]. ENERM
ρ (ξ) measures the

reduction in classification error (of the automatically la-
belled document set) obtained when a human annotator
validates (i.e., inspects and corrects where appropriate) the
top-ranked documents in the ranking generated by ranking
method ρ; here, the M superscript stands for “macroaver-
aging”, to indicate that the error is computed for each class
separately and the results are then averaged. ENERM

ρ (ξ) is
based on a probabilistic user model, and ξ represents the ex-
pected percentage of the ranking that the human annotator
inspects; for instance, ENERM

ρ (0.10) examines a scenario
in which the expected number of documents that the user
validates is one tenth of the entire automatically labelled set.

In ENERM
ρ (ξ), “classification error”may be measured ac-

cording to any desired measure of error; differently from
[2], which used (1 − F1), we obviously use (1 − F2). The
values on which ENERM

ρ (ξ) ranges are a strict subset of
[0,1], with better rankings corresponding to higher values of
ENERM

ρ (ξ). We refer the reader to [2, Section 4] for more

details on ENERM
ρ (ξ).

We follow [2] in using, as the baseline for our experiments,
a probabilistic (as opposed to utility-theoretic) system that
ranks documents according to the probability of misclassifi-
cation only, i.e., the documents most likely to be misclassi-
fied are top-ranked. This is obtained by using U-Theoretic

with both G(fpij) and G(fni
j) set to 1. This is a “lower

bound” baseline, which we expect the U-Theoretic approach
to outperform. Along with [2], we also report two “upper
bound”, idealised baselines (named Oracle1 and Oracle2),
that we expect our system to underperform; both baselines
are versions of the U-Theoretic approach endowed with fore-
knowledge (Oracle1 has foreknowledge of the true values of
TPj , FPj , FNj , TNj and can thus compute G(fpij) and

G(fni
j) precisely, while Oracle2 even has foreknowledge of

the true labels in the test set, and can thus use binary val-
ues in place of probabilities in Equation (2)). These two
“upper bound” baselines thus indicate how far U-Theoretic

is from the ideal performance.

3.2 Results
The results of our experiments are reported in Table 1,
for three different values of ξ. As an example, the result
ENERM

ρ (0.05) = 0.215 obtained by U-Theoretic can ap-
proximately be interpreted as saying that, when using this
ranking method, by only validating 5% of the automatically
classified documents an annotator is expected to obtain a



Table 1: Results of different ranking methods in

terms of ENERM
ρ (ξ), for ξ ∈ {0.05, 0.10, 0.20}, with F2

as the measure of classification error. Improvements

are relative to the baseline.

ξ = 0.05 ξ = 0.10 ξ = 0.20
Baseline 0.189 0.263 0.306
U-Theoretic 0.215 (+14%) 0.283 (+8%) 0.316 (+3%)
Oracle1 0.223 (+18%) 0.289 (+10%) 0.321 (+5%)
Oracle2 0.517 (+174%) 0.629 (+139%) 0.647 (+111%)

reduction in classification error (measured in terms of (1-
F2)) strictly higher than 0.2152.

The first interesting fact we may observe is that the utility-
theoretic method substantially outperforms the baseline, with
achieved improvements with respect to it ranging from +3%
to +14%. A second interesting fact is that the results of the
utility-theoretic method are very close to the results of Ora-

cle1, an idealized method that has foreknowledge of the true
values of TPj , FPj , FNj , TNj ; this means that U-Theoretic
does a good job in estimating these quantities.

Note that the improvements obtained by U-Theoretic over
Baseline are lower than the ones (even exceeding +100%)
reported in [2] for training sets of comparable size. The likely
reason is that classification by sensitivity is much harder
than classification by topic (which is the task [2] tackles), as
shown by the fact that the SVM classifiers of [2] obtain (for
training sets of comparable size) F1 = 0.527 while our SVM
classifiers here obtain (as an average across the 10 test sets)
F2 = 0.213. We conjecture that a classifier (such as ours)
that obtains lower classification accuracy also generates less
reliable confidence scores, which are the key input to U-

Theoretic. We can thus expect U-Theoretic to achieve even
bigger margins on the probabilistic baseline once training
sets are larger and (as a consequence) both the classification
accuracy and the quality of the confidence scores are higher.

While the improvements we have obtained are substantial,
there are reasons to believe that in realistic applications,
characterized by much larger unlabelled sets than the one
we had access to, the improvements would be even larger; in
fact, as [2] shows, the larger the set to be ranked, the more
U-Theoretic shines with respect to the baseline.

4. CONCLUSION
The sensitivity review of “digital-born” textual records is an
important process for Freedom of Information initiatives at
the heart of the open-government agenda. Framing sensi-
tivity identification as an automatic text classification task
is challenging, as noted in previous work [7]. For this rea-
son, assistive techniques that can aid a sensitivity reviewer
– such as semi-automatic text classification (SATC) – play
an important role. In this work, we investigate the applica-
bility of the utility-theoretic approach for SATC, previously
proposed in [2]. Our experiments indicate that, when rank-
ing documents in order to maximize the cost-effectiveness
of human post-inspection work for sensitivity identification,
there are clear benefits to gain from using a utility-theoretic
approach instead of the purely probabilistic approach.

2We say “strictly higher than 0.215” because ENERM
ρ (ξ)

does not measure the “absolute” reduction in error, but a
normalized version of it where we factor out the reduction
in error (equal to 5%, i.e., 0.050) we would obtain by using a
random ranker. The improvement obtained by U-Theoretic

is thus 0.215+0.050=0.265.
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