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Abstract. We consider Pareto-optimal matchings (POMs) in a many-
to-many market of applicants and courses where applicants have prefer-
ences, which may include ties, over individual courses and lexicographic
preferences over sets of courses. Since this is the most general setting
examined so far in the literature, our work unifies and generalizes sev-
eral known results. Specifically, we characterize POMs and introduce
the Generalized Serial Dictatorship Mechanism with Ties (GSDT) that
effectively handles ties via properties of network flows. We show that
GSDT can generate all POMs using different priority orderings over the
applicants, but it satisfies truthfulness only for certain such orderings.
This shortcoming is not specific to our mechanism; we show that any
mechanism generating all POMs in our setting is prone to strategic ma-
nipulation. This is in contrast to the one-to-one case (with or without
ties), for which truthful mechanisms generating all POMs do exist.

Keywords: Pareto optimality, many-to-many matching, serial dictator-
ship, truthfulness

1 Introduction

We study a many-to-many matching market that involves two finite disjoint
sets, a set of applicants and a set of courses. Each applicant finds a subset of
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2014-463 (Ocěláková) and OTKA grant K108383 (Fleiner). The authors gratefully
acknowledge the support of COST Action IC1205 Computational Social Choice.



courses acceptable and has a preference ordering, not necessarily strict, over
these courses. Courses do not have preferences. Moreover, each applicant has a
quota on the number of courses she can attend, while each course has a quota
on the number of applicants it can admit.

A matching is a set of applicant-course pairs such that each applicant is
paired only with acceptable courses and the quotas associated with the applicants
and the courses are respected. The problem of finding an “optimal” matching
given the above market is called the Course Allocation problem (CA). Although
various optimality criteria exist, Pareto optimality (or Pareto efficiency) remains
the most popular one (see, e.g., [1, 2, 9, 17]). Pareto optimality is a fundamental
concept that economists regard as a minimal requirement for a “reasonable”
outcome of a mechanism. A matching is a Pareto optimal matching (POM)
if there is no other matching in which no applicant is worse off and at least
one applicant is better off. Our work examines Pareto optimal many-to-many
matchings in the setting where applicants’ preferences may include ties.

In the special case where each applicant and course has quota equal to one,
our setting reduces to the extensively studied House Allocation problem (HA)
[13, 1], also known as the Assignment problem [11, 5]. Computational aspects of
HA have been examined thoroughly [2, 16] and particularly for the case where
applicants’ preferences are strict. In [2] the authors provide a characterization
of POMs in the case of strict preferences and utilize it in order to construct
polynomial-time algorithms for checking whether a given matching is a POM and
for finding a POM of maximum size. They also show that any POM in an instance
of HA with strict preferences can be obtained through the well-known Serial
Dictatorship Mechanism (SDM) [1]. SDM is a straightforward greedy algorithm
that allocates houses sequentially according to some exogenous priority ordering
of the applicants, giving each applicant her most-preferred vacant house.

Recently, the above results have been extended in two different directions.
The first one [15] considers HA in settings where preferences may include ties.
Prior to [15], few works in the literature had considered extensions of SDM to
such settings. The difficulty regarding ties, observed already in [18], is that the
assignments made in the individual steps of the SDM are not unique, and an
unsuitable choice may result in an assignment that violates Pareto optimality.
In [6] and [18] an implicit extension of SDM is provided (in the former case for
dichotomous preferences, where an applicant’s preference list comprises a single
tie containing all acceptable houses), but without an explicit description of an
algorithmic procedure. [15] describe a mechanism called the Serial Dictatorship
Mechanism with Ties (SDMT) that combines SDM with the use of augmenting
paths to ensure Pareto optimality. In an augmentation step, applicants already
assigned a house may exchange it for another, equally preferred one, to enable
another applicant to take a house that is most preferred given the assignments
made so far. They also show that any POM in an instance of HA with ties can be
obtained by an execution of SDMT and also describe the so-called Random Serial
Dictatorship Mechanism with Ties (RSDMT) whose (expected) approximation
ratio is e

e−1 with respect to the maximum-size POM.
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The second direction [9] extends the results of [2] to the many-to-many setting
(i.e., CA) with strict preferences, while also allowing for a structure of applicant-
wise acceptable sets that is more general than the one implied by quotas; namely,
[9] assumes that each applicant selects from a family of course subsets that
is downward closed. This work provides a characterization of POMs assuming
that the preferences of applicants over sets of courses are obtained from their
(strict) preferences over individual courses in a lexicographic manner; using this
characterization, it is shown that deciding whether a given matching is a POM
can be accomplished in polynomial time. In addition, [9] generalizes SDM to
provide the Generalized Serial Dictatorship (GSD) mechanism, which can be
used to obtain any POM for CA under strict preferences. The main idea of GSD
is to allow each applicant to choose not her most preferred set of courses at
once but, instead, only one course at a time (i.e., the most preferred among
non-full courses that can be added to the courses already chosen). This result is
important as the version of SDM where an applicant chooses immediately her
most preferred set of course cannot obtain all POMs.

Our contribution. In the current work, we combine the directions appearing
in [15] and [9] to explore the many-to-many setting in which applicants have
preferences, which may include ties, over individual courses. We extend these
preferences to sets of courses lexicographically, since lexicographic set preferences
naturally describe human behavior [12], they have already been considered in
models of exchange of indivisible goods [9, 10] and also possess theoretically
interesting properties including responsiveness [14].

We provide a characterization of POMs in this setting and introduce the
Generalized Serial Dictatorship Mechanism with Ties (GSDT) that generalizes
both SDMT and GSD. SDM assumes a priority ordering over the applicants,
according to which applicants are served one by one by the mechanism. Since
in our setting applicants can be assigned more than one course, each applicant
can return to the ordering several times (up to her quota), each time choosing
just one course. The idea of using augmenting paths [15] has to be employed
carefully to ensure that during course shuffling no applicant replaces a previously
assigned course for a less preferred one. To achieve this, we utilize methods and
properties of network flows. Although we prove that GSDT can generate all
POMs using different priority orderings over applicants, we also observe that
some of the priority orderings guarantee truthfulness whereas some others do
not. That is, there may exist priority orderings for which some applicant benefits
from misrepresenting her preferences. This is in contrast to SDM and SDMT in
the one-to-one case in the sense that all executions of these mechanisms induce
truthfulness. This shortcoming however is not specific to our mechanism, since
we establish that any mechanism generating all POMs is prone to strategic
manipulation by one or more applicants.

Remark. [4] presented a general mechanism for computing Pareto optimal out-
comes in hedonic games which includes the many-to-many matching problem
with ties. However their mechanism was not presented in a form that is specific
to our setting and no explicit bound for the time complexity was given in [4].
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applicant quota preference list course quota

a1 2 ({c1, c2}, {c3}, ∅) c1 2

a2 3 ({c2}, {c1, c3}, ∅) c2 1

a3 2 ({c3}, {c2}, {c1}) c3 1

Table 1. An instance I of ca.

Organization of the paper. In Section 2 we define our notation and termi-
nology. The characterization is provided in Section 3, while GSDT is presented
in Section 4. A discussion on applicants’ incentives in GSDT is provided in Sec-
tion 5. Missing proofs can be found in the full version of this paper [8].

2 Preliminary definitions of notation and terminology

Let A = {a1, a2, · · · , an1
} be the set of applicants, C = {c1, c2, · · · , cn2

} the set of
courses and [i] denote the set {1, 2, . . . , i}. Each applicant a has a quota b(a) that
denotes the maximum number of courses a can accommodate into her schedule,
and likewise each course c has a quota q(c) that denotes the maximum number
of applicants it can admit. Each applicant finds a subset of courses acceptable
and has a transitive and complete preference ordering, not necessarily strict,
over these courses. We write c �a c′ to denote that applicant a (strictly) prefers
course c to course c′, and c 'a c′ to denote that a is indifferent between c and c′.
We write c �a c′ to denote that a either prefers c to c′ or is indifferent between
them, and say that a weakly prefers c to c′.

Because of indifference, each applicant divides her acceptable courses into
indifference classes such that she is indifferent between the courses in the same
class and has a strict preference over courses in different classes. Let Cat denote
the t’th indifference class, or tie, of applicant a where t ∈ [n2]. We assume that
Cat = ∅ implies Cat′ = ∅ for all t′ > t. Let the preference list of any applicant a
be the tuple of sets Cat , i.e., P (a) = (Ca1 , C

a
2 , · · · , Can2

); occasionally we consider
P (a) to be a set itself and write c ∈ P (a) instead of c ∈ Cat for some t. We
denote by P the joint preference profile of all applicants, and by P(−a) the joint
profile of all applicants except a. Under these definitions, an instance of CA is
denoted by I = (A,C,P, b, q). Such an instance appears in Table 1.

A (many-to-many) assignment µ is a subset of A × C. For a ∈ A, µ(a) =
{c ∈ C : (a, c) ∈ µ} and for c ∈ C, µ(c) = {a ∈ A : (a, c) ∈ µ}. An assignment
µ is a matching if µ(a) ⊆ P (a), |µ(a)| ≤ b(a) for each a ∈ A and |µ(c)| ≤ q(c)
for each c ∈ C. We say that a is exposed if |µ(a)| < b(a), and is full otherwise.
Analogous definitions of exposed and full hold for courses.

For an applicant a and a set of courses S, we define the generalized char-
acteristic vector χa(S) as the vector (|S ∩ Ca1 |, |S ∩ Ca2 |, . . . , |S ∩ Can2

|). We as-
sume that for any two sets of courses S and U , a prefers S to U if and only if
χa(S) >lex χa(U), i.e., if and only if there is an indifference class Cat such that
|S ∩ Cat | > |U ∩ Cat | and |S ∩ Cat′ | = |U ∩ Cat′ | for all t′ < t. If a neither prefers
S to U nor U to S, then she is indifferent between S and U . We write S�aU if
a prefers S to U , S 'a U if a is indifferent between S and U , and S �a U if a
weakly prefers S to U .
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A matching µ is a Pareto optimal matching (POM) if there is no other match-
ing in which some applicant is better off and none is worse off. Formally, µ is
Pareto optimal if there is no matching µ′ such that µ′(a) �a µ(a) for all a ∈ A,
and µ′(a′)�a′µ(a′) for some a′ ∈ A. If such a µ′ exists, we say that µ′ Pareto
dominates µ.

A deterministic mechanism φ maps an instance to a matching, i.e. φ : I 7→ µ
where I is a CA instance and µ is a matching in I. A randomized mechanism
φ maps an instance to a distribution over possible matchings. Applicants’ pref-
erences are private knowledge and an applicant may prefer not to reveal her
preferences truthfully. A deterministic mechanism is truthful if all applicants
always finds it best to declare their true preferences, no matter what other ap-
plicants declare. A randomized mechanism φ is universally truthful if it is a
probability distribution over deterministic truthful mechanisms.

3 Characterizing Pareto optimal matchings

Manlove [16, Sec. 6.2.2.1] provided a characterization of Pareto optimal match-
ings in HA with preferences that may include indifference. He defined three
different types of coalitions with respect to a given matching such that the ex-
istence of either means that a subset of applicants can trade among themselves
(possibly using some exposed course) and ensure that, at the end, no one is
worse off and at least one applicant is better off. He also showed that if no such
coalition exists, then the matching is guaranteed to be Pareto optimal. We show
that this characterization extends to the many-to-many setting, although the
proof is more complex and involved than in the one-to-one setting.

In what follows we assume that in each sequence C no applicant or course
appears more than once.

An alternating path coalition w.r.t. µ comprises a sequence C = 〈cj0 , ai0 , cj1 ,
ai1 , . . . , cjr−1

air−1
, cjr 〉 where r ≥ 1, cjk ∈ µ(aik) (0 ≤ k ≤ r − 1), cjk 6∈ µ(aik−1

)
(1 ≤ k ≤ r), ai0 is full, and cjr is an exposed course. Furthermore, ai0 prefers
cj1 to cj0 and, if r ≥ 2, aik weakly prefers cjk+1

to cjk (1 ≤ k ≤ r − 1).
An augmenting path coalition w.r.t. µ comprises a sequence C = 〈ai0 , cj1 , ai1 ,

. . . , cjr−1
air−1

, cjr 〉 where r ≥ 1, cjk ∈ µ(aik) (1 ≤ k ≤ r−1), cjk 6∈ µ(aik−1
) (1 ≤

k ≤ r), ai0 is an exposed applicant, and cjr is an exposed course. Furthermore, ai0
finds cj1 acceptable and, if r ≥ 2, aik weakly prefers cjk+1

to cjk (1 ≤ k ≤ r−1).
A cyclic coalition w.r.t. µ comprises a sequence C = 〈cj0 , ai0 , cj1 , ai1 , . . . , cjr−1

, air−1〉 where r ≥ 2, cjk ∈ µ(aik) (0 ≤ k ≤ r−1), and cjk 6∈ µ(aik−1
) (1 ≤ k ≤ r).

Furthermore, ai0 prefers cj1 to cj0 and aik weakly prefers cjk+1
to cjk (1 ≤ k ≤

r−1). (All subscripts are taken modulo r when reasoning about cyclic coalitions).
We define an improving coalition to be an alternating path coalition, an

augmenting path coalition or a cyclic coalition. Given an improving coalition C,
the matching

µC = (µ \ {(aik , cjk) : δ ≤ k ≤ r − 1}) ∪ {(aik , cjk+1
) : 0 ≤ k ≤ r − 1}} (1)

is defined to be the matching obtained from µ by satisfying C (δ = 1 in the case
that C is an augmenting path coalition, otherwise δ = 0).

5



The following theorem gives a necessary and sufficient condition for a match-
ing to be Pareto optimal.

Theorem 1. Given a CA instance I, a matching µ is a Pareto optimal matching
in I if and only if µ admits no improving coalition.

4 Constructing Pareto optimal matchings

We propose an algorithm for finding a POM in an instance of ca, which is
in a certain sense a generalization of Serial Dictatorship thus named ‘General-
ized Serial Dictatorship with ties’ (GSDT). The algorithm starts by setting the
quotas of all applicants to 0 and those of courses are set at the original values
given by q. At each stage i, the algorithm selects a single applicant whose orig-
inal capacity has not been reached, and increases only her capacity by 1. The
algorithm terminates after B =

∑
a∈A b(a) stages, i.e., once the original capaci-

ties of all applicants have been reached. In that respect, the algorithm assumes
a ‘multisequence’ Σ = (a1, a2, . . . , aB) of applicants such that each applicant
a appears b(a) times in Σ; e.g., for the instance of Table 1 and the sequence
Σ = (a1, a1, a2, a2, a3, a2, a3), the vector of capacities evolves as follows:

(0, 0, 0), (1, 0, 0), (2, 0, 0), (2, 1, 0), (2, 2, 0), (2, 2, 1), (2, 3, 1), (2, 3, 2).

Let us denote the vector of applicants’ capacities in stage i by bi, i.e., b0 is the
all-zeroes vector and bB = b. Clearly, each stage corresponds to an instance Ii

similar to the original instance except for the capacities vector bi. At each stage
i, our algorithm obtains a matching µi for the instance Ii. The single matching
of stage 0—the empty matching, is a POM in I0. The core idea is to modify µi−1

in such way that if µi−1 is a POM with respect to Ii−1 then µi is a POM with
respect to Ii. To achieve this, the algorithm relies on the following flow network.

Consider the digraph D = (V,E). Its node set is V = A ∪ T ∪ C ∪ {σ, τ}
where σ and τ are the source and the sink and vertices in T correspond to the
ties in the preference lists of all applicants; i.e., T has a node (a, t) per applicant
a and tie t such that Cat 6= ∅. Its arc set is E = E1 ∪ E2 ∪ E3 ∪ E4 where E1 =
{(σ, a) : a ∈ A}, E2 = {(a, (a, t)) : a ∈ A,Cat 6= ∅}, E3 = {((a, t), c) : c ∈ Cat }
and E4 = {(c, τ) : c ∈ C}. The graph D for the instance of Table 1 appears in
Figure 1.

Using digraph D = (V,E), we obtain a flow network N i at each stage i of the
algorithm, i.e., a network corresponding to instance Ii, by appropriately varying
the capacities of the arcs. (For an introduction on network flow algorithms see,
e.g., [3].) The capacity of each arc in E3 is always 1 (since each course may be
received at most once by each applicant) and the capacity of an arc e = (c, τ) ∈
E4 is always q(c). The capacities of all arcs in E1∪E2 are initially 0 and, at stage
i, the capacities of only certain arcs associated with applicant ai are increased by
1. For this reason, for each applicant a we use the variable curr(a) that indicates
her ‘active’ tie; initially, curr(a) is set to 1 for all a ∈ A.

In stage i, the algorithm computes a maximum flow f i whose saturated arcs
in E3 indicate the corresponding matching µi. The algorithm starts with f0 = 0
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Fig. 1. Digraph D for the instance I from Table 1. An oval encircles all the vertices of
T that correspond to the same applicant.

and µ0 = ∅. Let the applicant ai ∈ A be a copy of applicant a considered in stage
i. The algorithm increases by 1 the capacity of arc (σ, a) ∈ E1 (i.e., the applicant
is allowed to receive an additional course). It then examines the tie curr(a) to
check whether the additional course can be received from tie curr(a). To do
this, the capacity of arc (a, (a, curr(a))) ∈ E2 is increased by 1. The network in

stage i where tie curr(ai) is examined is denoted by N i,curr(ai). If there is an
augmenting σ− τ path in this network, the algorithm augments the current flow
f i−1 to obtain f i, accordingly augments µi−1 to obtain µi (i.e., it sets µi to the
symmetric difference of µi−1 and all pairs (a, c) for which there is an arc ((a, t), c)
in the augmenting path) and proceeds to the next stage. Otherwise, it decreases
the capacity of (a, (a, curr(a))) by 1 (but not the capacity of arc (σ, a)) and it
increases curr(a) by 1 to examine the next tie of a; if all (non-empty) ties have
been examined, the algorithm proceeds to the next stage without augmenting the
flow. Note that an augmenting σ−τ path in the network N i,curr(ai) corresponds
to an augmenting path coalition in µi−1 with respect to Ii

A formal description of GSDT is provided by Algorithm 1, where w(e) de-
notes the capacity of an arc e ∈ E and ⊕ denotes the operation of augmenting
along an augmenting path (either relative to a flow or a matching). Observe
that all arcs in E2 are saturated, except for the arc corresponding to the current
applicant and tie, thus any augmenting path has one arc from each of E1, E2

and E4 and all other arcs from E3; as a consequence, the number of courses each
applicant receives at stage i in any tie cannot decrease at any subsequent step.
Also, µi dominates µi−1 with respect to instance Ii if and only if there is a flow
in N i that saturates all arcs in E2.

To prove the correctness of GSDT, we need two intermediate lemmas. Let
et ∈ Rn2 be the vector having 1 at entry t and 0 elsewhere.

Lemma 1. Let N i,t be the network at stage i while tie t of applicant ai is ex-
amined. Then, there is an augmenting path with respect to f i−1 in N i,t if and
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Algorithm 1: Producing a POM for any instance of ca

Input: an instance I of CA and a multisequence Σ
f0 := 0; µ0 := ∅;
for each a ∈ A, curr(a) := 1;
for i = 1, 2, . . . , B do
{

consider the applicant a = ai;
w(σ, a)++;
P := ∅;
while P = ∅ and curr(a) ≤ n2 and Ca

curr(a) 6= ∅ do
{

w(a, (a, curr(a)))++;
P := augmenting path in N i,curr(a) with respect to f i−1;
if P = ∅ then { w(a, (a, curr(a)))- -; curr(a)++};

}
if P 6= ∅ then { f i := f i−1 ⊕P;

µi := µi−1 ⊕ {(a, c) : ((a, t), c) ∈ P for some tie t}; }
otherwise { f i := f i−1; µi := µi−1; }

}
return µB ;

only if there is a matching µ such that

χa(µ(a)) = χa(µi−1(a)) for each a 6= ai and χai(µ(ai)) = χai(µ
i−1(ai)) + et.

Lemma 2. Let S �a U and |S| ≥ |U |. If cS and cU denote a least preferred
course of applicant a in S and U , respectively, then S\{cS} �a U\{cU}.

Theorem 2. For each i, the matching µi obtained by GSDT is a POM for
instance Ii.

Proof. We apply induction on i. Clearly, µ0 = ∅ is the single matching in I0 and
hence a POM in I0. We assume that µi−1 is a POM in Ii−1 and prove that µi

is a POM in Ii.
Assuming to the contrary that µi is not a POM in Ii implies that there is

a matching ξ in Ii that dominates µi. Then, for all a ∈ A, ξ(a) �a µi(a) �a
µi−1(a). Since the capacities of all applicants in Ii are as in Ii−1 except for the
capacity of ai that has been increased by 1, for all a ∈ A \ {ai}, |ξ(a)| does
not exceed the capacity of a in instance Ii−1, namely bi−1(a), while |ξ(ai)| may
exceed bi−1(ai) by at most 1.

Moreover, it holds that |ξ(ai)| ≥ |µi(ai)|. Assuming to the contrary, that
|ξ(ai)| < |µi(ai)| yields that ξ is feasible also in instance Ii−1. In addition,
|ξ(ai)| < |µi(ai)| implies that it cannot be ξ(ai) 'ai µi(ai) thus, together with
ξ(ai) �ai µi(ai) �ai µi−1(ai), it yields ξ(ai) �ai µi(ai) �ai µi−1(ai). But then,
ξ dominates µi−1 in Ii−1, a contradiction to µi−1 being a POM in Ii−1.

Let us first examine the case in which GSDT enters the ‘while’ loop and
finds an augmenting path, hence µi dominates µi−1 in Ii only with respect to
applicant ai that receives an additional course. This is one of her worst courses
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in µi(ai) denoted as cµ. Let cξ be a worst course for ai in ξ(ai). Let also ξ′

and µ′ denote ξ \ {(ai, cξ)} and µi \ {(ai, cµ)}, respectively. Observe that both
ξ′ and µ′ are feasible in Ii−1, while having shown that |ξ(ai)| ≥ |µi(ai)| implies
through Lemma 2 that ξ′ weakly dominates µ′ which in turn weakly dominates
µi−1 by Lemma 1. Since µi−1 is a POM in Ii−1, ξ′(a) 'a µ′(a) 'a µi−1(a) for all
a ∈ A, therefore ξ dominates µi only with respect to ai and cξ �ai cµ. Overall,
ξ(a) 'a µi(a) 'a µi−1(a) for all a ∈ A \ {ai} and ξ(ai) �ai µi(ai) �ai µi−1(ai).

Let tξ and tµ be the ties of applicant ai containing cξ and cµ, respectively,
where tξ < tµ because cξ �ai cµ. Then, Lemma 1 implies that there is a path
augmenting f i−1 (i.e., the flow corresponding to µi−1) in the network N i,tξ . Let
also t′ be the value of curr(ai) at the beginning of stage i. Since we examine
the case where GSDT enters the ‘while’ loop and finds an augmenting path,
Ca

i

t′ 6= ∅. Thus, t′ indexes the least preferred tie from which ai has a course in
µi−1, the same holding for ξ′ since ξ′(ai) 'ai µi−1(ai). Because ξ′ is obtained
by removing from ai its worst course in ξ(ai), that course must belong to a
tie of index no smaller that t′, i.e., t′ ≤ tξ. This together with tξ < tµ yield
t′ ≤ tξ < tµ, which implies that GSDT should have obtained ξ instead of µi at
stage i, a contradiction.

It remains to examine the cases where, at stage i, GSDT does not enter the
‘while’ loop or enters it but finds no augmenting path. For both these cases,
µi = µi−1, thus ξ dominating µi means that ξ is not feasible in Ii−1 (since it
would then also dominate µi−1). Then, it holds that |ξ(ai)| exceeds bi−1(ai) by
1, thus |ξ(ai)| > |µi(ai)| yielding ξ(ai) �ai µi(ai). Let tξ be defined as above
and t′ now be the most preferred tie from which ai has more courses in ξ than
in µi. Clearly, t′ ≤ tξ since tξ indexes the least preferred tie from which ai has
a course in ξ. If t′ < tξ then the matching ξ′, defined as above, is feasible in
Ii−1 and dominates µi−1 because ξ′(ai) �ai µi−1(ai), a contradiction; the same
holds if t′ = tξ and ai has in ξ at least two more courses from tξ than in µi.
Otherwise, t′ = tξ and ai has in ξ exactly one more course from tξ than in µi;
that, together with |ξ(ai)| > |µi(ai)| and the definition of tξ, implies that the
index of the least preferred tie from which ai has a course in µi−1 and, therefore,
the value of curr(ai) in the beginning of stage i, is at most t′. But then GSDT
should have obtained ξ instead of µi at stage i, a contradiction. ut

The following statement is now direct.

Corollary 1. GSDT produces a POM for instance I.

To derive the complexity bound for GSDT, let us denote by L the length of
the preference profile in I, i.e. the total number of courses in the preference lists
of all applicants. Notice that |E3| = L and neither the size of any matching in I
nor the total number of ties in all preference lists exceeds L.

Within one stage, several searches in the network might be needed to find a tie
of the active applicant for which the current flow can be augmented. However, one
tie is unsuccessfully explored at most once, hence each search either augments
the flow thus adding a pair to the current matching or moves to the next tie.
So the total number of searches performed by the algorithm is bounded by the
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size of the obtained matching plus the number of ties in the preference profile,
i.e. it is O(L). A search requires a number of steps that remains linear in the

number of arcs in the current network (i.e., N i,curr(ai)), but as at most one arc
per E1, E2 and E4 is used, any search needs O(|E3|) = O(L) steps. This leads
to a complexity bound O(L2) for GSDT.

Next we show that GSDT can produce any POM.

Theorem 3. Given a CA instance I and a POM µ, there exists a suitable pri-
ority ordering over applicants Σ given which GSDT can produce µ.

5 Truthfulness of mechanisms for finding POMs

It is well-known that the SDM for HA is truthful, regardless of the given priority
ordering over applicants. We will show shortly that GSDT is not necessarily
truthful, but first prove that this property does hold for some priority orderings
over applicants.

Theorem 4. GSDT is truthful given Σ if, for each applicant a, all occurrences
of a in Σ are consecutive.

Proof. W.l.o.g. let the applicants appear in Σ in the following order

a1, a1, . . . , a1︸ ︷︷ ︸
b(a1)-times

, a2, a2, . . . , a2︸ ︷︷ ︸
b(a2)-times

. . . , ai−1, ai−1, . . . , ai−1︸ ︷︷ ︸
b(ai−1)-times

, ai, ai, . . . , ai︸ ︷︷ ︸
b(ai)-times

, . . .

Assume to the contrary that some applicant benefits from misrepresenting her
preferences. Let ai be the first such applicant in Σ who reports P ′(ai) instead of
P (ai) in order to benefit and P ′ = (P ′(ai),P(−ai)). Let µ denote the matching
returned by GSDT using ordering Σ on instance I = (A,C,P, b, q) (i.e. the
instance in which applicant ai reports truthfully) and ξ the matching returned
by GSDT using Σ but on instance I ′ = (A,C,P ′, b, q). Let s = (Σ`<ib(a`)) + 1,
i.e., s is the first stage in which our mechanism considers applicant ai. Let j be
the first stage of GSDT such that ai prefers ξj to µj , where s ≤ j < s+ b(ai).

Given that applicants a1, . . . , ai−1 report the same in I as in I ′ and all
their occurrences in Σ are before stage j, Lemma 1 yields µj(a`) 'a` ξj(a`)
for ` = 1, 2, . . . , i− 1. Also µj(a`) = ξj(a`) = ∅ for ` = i+ 1, i+ 2, . . . , n1, since
no such applicant has been considered before stage j. But then, all applicants
apart from ai are indifferent between µj and ξj , therefore ai preferring ξj to µj

implies that µj is not a POM in Ij , a contradiction to Theorem 2. ut

The next result then follows directly from Theorem 4.

Corollary 2. GSDT is truthful if all applicants have quota equal to one.

There are priority orderings for which an applicant may benefit from misre-
porting her preferences, even if preferences are strict. This phenomenon has also
been observed in a slightly different context [7]. Let us also provide an example.
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a1 : c1 � c2

a2 : c1 � c2

I1 with µ1

a1 : c1 � c2

a2 : c1

I2 with µ2

a1 : c2 � c1

a2 : c1

I3 with µ2

a1 : c2 � c1

a2 : c1 � c2

I4

Fig. 2. Four instances of CA used in the proof of Theorem 5. In all four instances
b(a1) = 2, b(a2) = 1, q(c1) = q(c2) = 1. For each of instances I1 to I3, a matching is
indicated using circles in applicants’ preference lists.

Example 1. Consider a setting with applicants a1 and a2 and courses c1 and c2,
for which b(a1) = 2, b(a2) = 1, q(c1) = 1, and q(c2) = 1. Let I be an instance in
which c2�a1c1 and a2 finds only c1 acceptable. This setting admits two POMs,
namely µ1 = {(a1, c2), (a2, c1)} and µ2 = {(a1, c1), (a1, c2)}. GSDT returns µ1

for Σ = (a1, a2, a1). If a1 misreports by stating that she prefers c1 to c2, GSDT
returns µ2 instead of µ1. Since µ2�a1µ1, GSDT is not truthful given Σ.

The above observation seems to be a deficiency of GSDT. We conclude by
showing that no mechanism capable of producing all POMs is immune to this
shortcoming.

Theorem 5. There is no universally truthful randomized mechanism that pro-
duces all POMs in CA, even if applicants’ preferences are strict and all courses
have quota equal to one.

Proof. The instance I1 in Figure 2 admits three POMs, namely µ1 = {(a1, c1),
(a2, c2)}, µ2 = {(a1, c1), (a1, c2)} and µ3 = {(a1, c2), (a2, c1)}. Assume a ran-
domized mechanism φ that produces all these matchings. Therefore, there must
be a deterministic realization of it, denoted as φD, that returns µ1 given I1. Let
us examine the outcome of φD under the slightly different applicants’ preferences
shown in Figure 2, bearing in mind that φD is truthful.

– Under I2, φD must return µ2. The only other POM under I2 is µ3, but if
φD returns µ3 then a2 under I1 has an incentive to lie and declare only c1
acceptable (as in I2).

– Under I3, φD must return µ2. The only other POM under I3 is µ3, but if
φD returns µ3 then a1 under I3 has an incentive to lie and declare that she
prefers c1 to c2 (as in I2).

I4 admits two POMs, namely µ2 and µ3. If φD returns µ2, then a1 under I1
has an incentive to lie and declare that she prefers c2 to c1 (as in I4). If φD

returns µ3, then a2 under I3 has an incentive to lie and declare c2 acceptable—
in addition to c1—and less preferred than c1 (as in I4). Thus overall φD cannot
return a POM under I4 while maintaining truthfulness. ut

6 Future work

A particularly important problem is to investigate the expected size of the match-
ing produced by the randomized version of GSDT. It is also interesting to char-
acterize priority orderings that induce truthful-telling in GSDT. Should this be
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possible, it would be interesting to compute the expected size of the matching
produced by a randomized GSDT in which the randomization is taken over the
priority orderings that give rise to truthfulness.
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