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Dedifferentiation of chondrocytes during in vitro expansion remains an unsolved challenge for repairing
serious articular cartilage defects. In this study, a novel culture system was developed to modulate single
cell geometry in 3D and investigate its effects on the chondrocyte phenotype. The approach uses 2D
micropatterns followed by in situ hydrogel formation to constrain single cell shape and spreading. This
enables independent control of cell geometry and extracellular matrix. Using collagen I matrix, we
demonstrated the formation of a biomimetic collagenous “basket” enveloping individual chondrocytes
cells. By quantitatively monitoring the production by single cells of chondrogenic matrix (e.g. collagen
Il and aggrecan) during 21-day cultures, we found that if the cell’s volume decreases, then so does its cell
resistance to dedifferentiation (even if the cells remain spherical). Conversely, if the volume of spherical
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Tissue engineering cells remains constant (after an initial decrease), then not only do the cells retain their differentiated sta-
Biomaterials tus, but previously de-differentiated redifferentiate and regain a chondrocyte phenotype. The approach

described here can be readily applied to pluripotent cells, offering a versatile platform in the search

for niches toward either self-renewal or targeted differentiation.

© 2015 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

1. Introduction

Cartilage injury remains a major challenge in orthopedic treat-
ments due to a very limited self-repairing potential of articular car-
tilage [1]. Recently, autologous chondrocyte implantation (ACI) has
emerged as a promising clinical procedure for repairing large or
seriously damaged articular cartilage [2-4]. Although a number
of satisfactory clinical cases have been demonstrated using ACI
treatment [4,5], a number of unsolved challenges remain [6]. The
success of ACI depends on the availability of a sufficient number
of chondrocytes. Conventionally, this is done through in vitro cell
expansion in monolayer culture. However, chondrocyte dedifferen-
tiation (i.e. loss of their differentiated chondrocyte phenotype)
often occurs, resulting in the formation of inferior cell types and
consequently treatment failure [7-10].

To address this challenge, various strategies have been devel-
oped to prevent chondrocyte dedifferentiation or to regenerate
the chondrogenic phenotype. These can be broadly classified as fol-
lows: (1) employing scaffolds for 3D culture, such as collagen scaf-
folds [11-14] and biodegradable polylactide polymers [15,16]; (2)
Using stimulating factors in culture medium, such as cytoskeletal
inhibitors [17], growth factors [18], and other stimuli [19]; and
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(3) employing suspension [20], aggregated [21] or pelleted cultures
[22]. A common theme in these approaches is to maintain or
restore spherical cell shape, which is believed to promote the
adoptation of a chondrocytic phenotype.

However, conventional cell handling methods have limited con-
trol over factors such as microenvironment, culture conditions and
cell-cell distance. As a consequence, many findings are open to
debate [7,22-24]. For example, chondrocytes embedded in a 3D
alginate gel have a spherical shape, but can either maintain a chon-
drocytic phenotype or undergo dedifferentiation [7,23]. Variations
of cell seeding density and pellet sizes in pellet cultures have all
been shown to lead to significantly different outcomes on chondro-
cyte phenotypes [14,25,26]. Methods that can precisely control the
microenvironments of chondrocytes are needed for in-depth
understanding of the effects of cell geometry on the chondrocyte
phenotype.

In the last decade, micropatterning has become a versatile tool
for the study of geometrical influences on cell function at the single
cell level in 2D culture [27-32]. Using single cell patterning, various
studies show that cell shape and area both control cell growth,
death [28,31,33], and regulation of stem cell differentiation
[27,29]. Surprisingly, studies concerning single chondrocytes are
limited [30]. However, how cell geometry in 3D affects cell function
remains illusive. One major reason for this lack of understanding is
rooted in the difficulties of controlling cell morphology in a
complex 3D setting and for long periods of culture [34].
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In this study, we have developed a novel approach to investi-
gate the effects of cell shape and cell spreading on chondrocyte
dedifferentiation and re-differentiation at the single cell level.
We developed a 3D single cell culture system that exploits single
cell patterning with in situ matrix gelation, to create well-defined
microenvironments around individual cells. Synthesis of
cartilage-specific matrix, i.e., collagen type II (Col II) and
chondroitin-sulfate containing proteoglycan (CSPG) by individual
chondrocytes was quantitatively evaluated. During periods of
21 days in culture, the influence of cell shape and spreading on
both retaining and regaining the chondrocyte phenotype in 3D cul-
tures was revealed.

2. Experimental section
2.1. Fabrication of micropatterned glass substrates

Micropatterned glass surfaces with two different chemistries
were fabricated as previously reported [35]. Briefly, a thoroughly
cleaned glass substrate was first functionalized with 5% of
(3-aminopropenyl)trimethoxyl silane (97%, Sigma-Aldrich Co) in
ethanol to generate an amino-terminated surface. Thereafter it
was spin coated with S1805™ G2 photoresist (Rohm and Hass
Co.) followed by a standard photolithographic procedure to form
a photoresist pattern on the substrate. Oxygen plasma etching
was then employed to remove amino-groups on the exposed sur-
face. A second surface modification of the exposed area was con-
ducted in 1% 2-(methoxy(polyethyleneoxy)propyl)trichlorosilane
(PEG-silane, 90%, Gelest Inc., Morrisville, PA) in dry toluene under
vacuum. Finally the photoresist layer was removed using sonica-
tion in DMSO.

2.2. Contact angle

To monitor each step of surface modification on a substrate,
contact angles of the substrate were measured using a contact
angle goniometer (Easy Drop, Kruss GmbH) and DMS software
(based on the Young-Laplace equation). At least three randomly
selected positions on each sample were measured using a 1 pl drop
of distilled water. Contact angle value is given as mean # standard
deviation from triplicate samples.

2.3. Cell culture

Bovine chondrocytes were isolated from the proximal side of
the metacarpal phalangeal and monolayer cultured in
Dulbecco’s Modified Engle Medium (1x DMEM, containing 4.5 g/l
p-glucose, Gibco-Invitrogen, Life Technologies Ltd., UK) with 10%
heat-inactivated fetal bovine serum (FBS, Gibco-Invitrogen), 2%
antibiotic/antimicrotic (Gibco-Invitrogen), and 55 mg/l ascorbic
acid. When the cell layer became confluent in 3 days, it was
trypsinized using 0.05% trypsin/1.0 mM EDTA (Sigma), frozen as
aliquots and stored at —80 °C as stock (i.e. passage 2). The cells
were thawed and monolayer cultured likewise (passage 3), or
repeatedly re-plated in a T75 flask with 1 x 106 cells to get a
confluence of 2 x 106 cells (i.e. one population doubling) for each
passage from 3 to 7 (denoted as P3 or P7).

2.4. Formation of single cell patterns of chondrocytes

Micropatterned substrates were sterilized by immersion in
ethanol for 30 s followed by washing with Dulbecco’s phosphate
buffered saline (PBS) solution in a biological safety laminar hood.
A confluent layer of chondrocytes either at P3 or P7 were trypsi-
nized and suspended in culture medium. The cell suspension was

then adjusted to desirable seeding densities for different sized pat-
terns, namely 2 x 10°, 0.5 x 10° and 0.2 x 10° cells/ml for 20, 40,
and 80 pm micropatterns respectively. A patterned substrate was
then immersed in a cell suspension of appropriate density for
1-2 h, followed by removal of cell suspension and a gentle rinse
with fresh medium to remove loosely attached cells. The substrate
with attached cells was then cultured at 37 °C in a humidified
atmosphere with 5% CO, and with medium changed every 2 days.
The unpatterned substrates were used as a control.

2.5. Formation of single cell 3D culture system

In situ gelation of collagen I solution was employed to form a 3D
matrix around individual cells on patterns. Single-cell patterns
were first cultured for 5 h prior to the gel formation. This was to
allow cells to attach firmly to the surface and adapt their shape
to the underlying patterns. To prepare collagen I solution for gela-
tion, 80 pl of acidic collagen I solution (3 mg/ml, Sigma-Aldrich
Co.) was neutralized to pH 7-8 with 20 pl of a mixture of PBS
(10x) and 0.1 N NaOH aqueous solution at 1:1 ratio. The neutral-
ized collagen I solution was pipetted onto the substrate (about
10 ul per cm?) and allowed to spread evenly over single cell pat-
terns. The gelation occurred at 37 °C and was allowed to proceed
for 2-3 h. The whole system was then immersed in fresh medium
for a specific period of culture at 37 °C in a humidified atmosphere
with 5% CO, with medium changed every 2 days. Seeded chondro-
cytes on unpatterned aminosilane substrates were used as a
control.

2.6. Immunofluorescence staining

Single cell patterns of chondrocytes were rinsed with PBS, fixed
with 4% formaldehyde (containing 0.06 M sucrose) for 15 min at
37 °C and quenched in 0.05 M NH4CI for 15 min. For the single cell
3D culture systems, collagen I gel was mechanically removed
before fixation since the presence of collagen I contributes to back-
ground fluorescence signals. Permeabilization of cells was per-
formed in a permeabilizing buffer (containing 0.5% Triton X-100,
0.3 M sucrose, 0.05M NaCl, 6.3 mM MgCl,.6H,0, and 0.02 M
Hepes, pH7.2) for 5 min at 4 °C. The fixed cells were stained with
Alex Fluor 488 Phalloidin (Life Technologies Ltd.) in 1% bovine
serum albumin in PBS buffer (BSA solution) for 30 min at 37 °C, fol-
lowed by blocking treatment with 1% BSA solution for 1 h at room
temperature.

Primary antibody (1:200 dilution in 1% BSA solution) and fluo-
rescence labeled secondary antibody (1:400 dilution in 1% BSA
solution) staining was carried out at room temperature for 1 h suc-
cessively. Each step was washed three times with 0.1% triton x-100
in PBS for 5 min to eliminate non-specific adsorption. Finally, a
cover slip was mounted onto the stained samples using a
Vectashield mounting medium with DAPI (Vector Laboratories
Inc.). All samples were stored in darkness at 4 °C. Anti-collagen II
polyclonal antibody from rabbit (ab300, Abcam, UK) and Alex
Fluor 546 goat anti-rabbit IgG (H + L) (Life Technologies Ltd.) were
used as primary and secondary antibodies respectively for collagen
Il staining. Anti-chondroitin sulfate monoclonal antibody from
mouse (ab11570, Abcam) and Alex Fluor 647 donkey anti-mouse
lgG (H+L) (Life Technologies Ltd.) were used for chondroitin-
sulfate containing proteoglycan staining.

2.7. Qualitative and quantitative imaging

Phase contrast and fluorescence images were obtained using an
inverted fluorescence microscope (Observer Z1, Zeiss), equipped
with an ORCA-ER camera (HAMAMATSU ORCA-ER (C4742-80,
Hamamatsu photonics K. K.). A long working distance objective,
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LD plan-Neofluar 20x/0.4, was used to image live cells in 3D cul-
ture. To obtain high-resolution fluorescence images of the
immunostained cells, EC Plan-Neofluar 20x/0.5 and 40x/0.75
objectives were used. Optical filter sets of 475AF40, 525AF45,
630AF50 and 365WB50 (Omega) were employed for detection of
Alex Fluor 488 Phalloidin, Alex Fluor 546, Alex Fluor 647, and
DAPI respectively.

For quantification of the amount of collagen II and CSPG pro-
duced by individual cells, fluorescence images of different samples
were obtained with a low NA objective (EC Plan-Neofluar 10x/0.3)
in order to capture signals from the whole cell and its periphery.
The same acquisition settings were applied to all of the experi-
ments. Prior to each experiment, the microscope and light source
(e.g. incident light intensity) was adjusted so that a standard
10 uM fluorescein solution gave a predefined fluorescence inten-
sity, thus enabling relative quantification of fluorescence intensi-
ties of samples between different experiments.

2.8. Data analysis

The total amount of collagen II and CSPG matrix produced by
individual chondrocytes (denoted as Fcspg and Feoy; respectively)
was evaluated based on their immunofluorescence intensity in
the pattern where cells were confined. The total value of fluores-
cence intensity per defined area (i.e. the area of a single circle in
each of the three micropatterns) was calculated from immunoflu-
orescence (using EC Plan-Neofluar 10x/0.3 objective) using Image
J software and with background subtraction. This is to take into
account both intracellular synthesis and the deposition of extracel-
lular matrix by cells. For cells on the unpatterned substrates, a cir-
cular area of 80 pm was used as the defined area during image
analysis. To take into account the difference in 2D and 3D cultures,
the quantitative comparison is either among cells on different pat-
terns without collagen I coating (i.e. 2D system) or among cells on
different patterns with collagen I coating (i.e. 3D system). For each
condition, independent experiments (n = 3) were conducted, and
50-80 randomly chosen cells were measured from each experi-
ment. Unless noted, average values and standard deviation from
triplicate are given. All statistic analysis was performed using
Prism software. A difference was regarded as significant when
p<0.05 (*), p<0.01 (*), p<0.001 (***) and p<0.0001 (****)
following a two-way ANOVA with post hoc testing unless
otherwise denoted.

3. Results
3.1. Fabrication and characterization of chemical micropatterns

Fig. 1 illustrates the micropatterned glass substrates with two
chemistries on the surface, namely amino- and Polyethyleneglycol
(PEG)-groups respectively. Three circular patterns with diameters
0f 20, 40, and 80 pum were prepared. The distance between two adja-
cent circles was either 80 or 100 pm. Fabrication of the patterned
substrates was carried out as previously reported [35], and
monitored at each step. After the first step of amino-silanisation
of a whole glass substrate, contact angle of the substrate increased
from <5° to 39.9°+0.8, indicating successful generation of an
amino-terminated surface. The second step involved photopattern-
ing of a photoresist layer to protect the amino-terminated surface
underneath. This was followed by oxygen plasma etching to remove
amino-groups on the exposed area and a second silanisation with
PEG-silane. As shown in Fig. 1 (top), the photoresist patterns
remained unaffected after these processes. This allowed transfer-
ring of pre-designed dimensions precisely to the protected
amino-terminated surface underneath. After the removal of the

photoresist layer, a 2D micropatterned surface was generated that
comprised precisely defined amino-terminated circles surrounded
by a non-adhesive PEG-terminated space.

3.2. Controlling cell shape and spreading of chondrocytes on 2D
micropatterns

Within about two hours of culture, chondrocytes adhered
exclusively onto the pattern areas, due to the adhesiveness of the
amino-terminated surface [36] and the ‘non-stick’ nature of the
surrounding inert PEG layer. Since the pattern areas spanned from
314 pm? (i.e. 20 um patterns), to 1256 um? (i.e. 40 pm patterns),
and to 5024 pm? (i.e. 80 um patterns), cell-seeding density was
optimized for different dimensions to achieve one cell per pattern.
As shown in Fig. 2(A), patterns with no more than one cell per ele-
ment have been obtained for each pattern size. After 5 h in culture,
100% of cells on the 20 pm patterns adopted a “3D” like spherical
shape without spreading. >81% of cells on 40 um patterns spread
over the underlying patterns and took on a round shape. >70% cells
on 80 um patterns were elongated, although most of these had a
crescent-like body that followed the circumference of the underly-
ing circular patterns. In contrast, >88% cells on the unpatterned
aminosilane surface (used as a control) were fully extended with
random polygonal shapes.

However, after one day in 2D culture, cells started to migrate
outside the patterns. Taking an example of cells on the 20 pm pat-
terns (Fig. 2(B)), by day 2 in 2D culture, neighboring cells started to
form a bridge between adjacent pattern elements. The migrating
cells were fully extended, taking on fibroblastic morphologies.
This limitation of 2D patterns in confining the cells probably
resulted from the loss of non- adhesiveness from the surrounding
PEG region due to the extracellular matrix deposited by cells [35]
or the adsorbed serum proteins from culture medium, covering
the PEG motifs.

3.3. Developing a biomimetic single cell culture system in 3D

In vivo, chondrocytes are surrounded by their own matrix, they
do not form cell-to-cell contacts, and individuals have a collage-
nous “basket” enveloping their pericellular matrix [37]. To mimic
this microenvironment, in situ formation of collagen I matrix was
employed to form a collagenous “basket” around individual cells.
This was done by simply pouring a collagen I matrix solution over
cell patterns formed after 5 h in 2D culture (Fig. 3(A)). Importantly,
it was found that the matrix gel remained attached during the
extended periods of culture (up to 21 days) despite regular med-
ium exchange, indicating reasonable affinity between the collagen
I matrix and the amino-terminated surface. This novel 3D culture
system provided a well-defined enclosure to modulate cell shape
as well as preserve secreted matrix.

Fig. 3(B) shows cell morphologies within the confined 3D
microenvironments during the course of a 21 day culture. All the
cells remained on patterns for the whole period of the experi-
ments. An obvious reduction in cell dimension was observed for
all the cells (Table 1). At day 2, cells on 40 um patterns showed
the largest percentage reduction, ~40% of their initial size at 5 h
in culture. Interestingly, following this initial reduction no further
size changes were observed during the 21 day culture. In contrast,
a continual reduction was observed for cells on the other patterned
substrates (Table 1). For example, at day 21, the dimension of cells
on 20 um and 80 pum patterns had reduced to 67% and 68% of their
size at 2 days, but during the same period, the size of cells on the
40 um patterns only changed by 2%. All cells were viable at day
21 and proliferated upon removal of the collagen I matrix (data
not shown).
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Fig. 1. (Top) Phase images of different photoresist patterns on glass surface. Inserts show enlarged fluorescent images. Scale bars are 100 um. (Bottom) Chemical structure of

the amino-terminated surface.

3.4. Effects of cell shape and spreading on retaining chondrocyte
phenotype

3.4.1. Short-term effects in 2D cultures

To investigate this effect, passage 3 chondrocytes were used as
they have a certain degree of differentiated phenotype [7,10]. The
immunofluorescence images of chondrocytes on 2D patterned sub-
strates at 5 h in culture are shown in Fig. 4 and bright field images
in Fig. S1 (Supporting Information). Cells on 20 pm and 40 pm pat-
terns revealed a ring-like F-actin network concentrated at the cell
periphery, whereas elongated stress fibers were shown on some
cells on 80 um patterns and the majority of cells on the unpat-
terned surface.

CSPG is one of the major components of aggrecan in articular
cartilage [37,38]. Production of extracellular CSPG is one of the fea-
tures of chondrocytes. As shown in Fig. 4(A), punctate patterns of
CSPG were observed for all cells. Co-localization of F-actin and
the CSPG pattern revealed the deposition of CSPG in the extracellu-
lar space for cells on 40 pm, 80 um patterns and the unpatterned
surface. Although the presence of CSPG at the periphery of cells
on 20 pm patterns was not obvious, it was found on the cell mem-
brane via z-scan imaging (Fig. S2, Supporting Information).

Synthesis and extracellular deposition of collagen II is a key
phenotypic marker of differentiated chondrocytes [39,40]. At 5 h,
collagen I was observed in all cells (Fig. 4(A)) but with different
distribution patterns. For cells on patterns, collagen Il immunoflu-
orescence was concentrated in cytoplasm around the nucleus of
the cell. In contrast, cells on unpatterned surfaces have scattered

patches within and around the cell body. No obvious extracellular
deposition of collagen Il was shown at the cell periphery, suggest-
ing that the synthesis of collagen Il was mainly intracellular at this
time point.

For quantitative comparison of the matrix production by indi-
vidual cells, the total immunofluorescence intensity of CSPG or col-
lagen II staining per cell (Fcspg and Feq ;1) was measured. Fespg of
cells on patterns are either comparable to (20 pm and 80 pm pat-
terns) or higher than (40 pm patterns) that on unpatterned surface
(Fig. 4(B)). In the case of F.y, no significant difference was
observed between cells on 40 um, 80 um and unpatterned sur-
faces, although the values were lower for cells on 20 pm patterns
(1.5-fold, p < 0.0001). However, considering Fco.;; and Fcspg of cells
on the 20 pum and 40 pm patterns were obtained from substan-
tially smaller areas (i.e. 314 pm? and 1256 um? respectively) com-
pared to that for cells on unpatterned surfaces (i.e. 5024 um? of a
circular area of 80 um), it is clear that the spherical shape is bene-
ficial for the production of CSPG and collagen II.

After 2 days in 2D culture, most cells had migrated outside the
pattern and adopted polygonal shapes, similar to that of those on
unpatterned substrate. A strong fibrous F-actin structure was pre-
sent on the majority of cells, which was accompanied by disap-
pearance of both CSPG and collagen II (Fig. S3, Supplementary
Information), indicating the loss of differentiated phenotype.

3.4.2. Long-term effects in 3D culture
The biomimetic 3D culture system confined cells on patterns for
weeks thereby enabling the investigation of the long-term effects

10.1016/j.actbio.2015.06.008
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Fig. 2. (A) Bright field images of single chondrocytes on various patterns and unpatterned surface after 5 h in 2D culture. Scale bars are 50 pm. (B) Bright field images of

chondrocytes on 20 um patterns at different times in 2D culture. Scale bars are 20 um.

of cell geometries on chondrocyte dedifferentiation. At day 2, all
cells showed CSPG immunofluorescence within their main body
(Fig. 5(A) and Fig. S4, Supporting Information). There was no signif-
icant difference in Fcspg between them (Fig. 5(B)). At day 10, sub-
stantial extracellular deposition of CSPG was only observed for
cells on 40 pum patterns (Fig. 5(A)). In addition, Fcspg of cells on
20 um and 40 pm patterns increased by 3.3 and 4.3-fold respec-
tively compared to that at day 2 (Fig. 5(B), p < 0.0001). No signifi-
cant difference was found for cells on 80 um patterns and
unpatterned substrates (Fig. 5B). In addition, Fcspe of cells on
40 pm patterns was significantly higher than the others
(p <0.0001). Unfortunately, at day 21, cells on all the substrates
showed substantially reduced CSPG. However, this is probably
due to the loss of CSPG upon mechanical removal of the collagen
I coating. As illustrated previously [39], CSPG reaches farther out
into the extracellular space than does type II collagen. At day 21,
collagen I gel appeared to be more strongly adhered to the sub-
strate. It is likely that a portion of the outmost CSPG attached to
the gel and was removed with the collagen I gel.

Similarly, at day 2, all cells showed strong collagen II
immunofluorescence (Fig. 6(A)), indicating the existence of a cer-
tain degree of differentiated phenotype. Filament-like collagen II

was shown in cells on patterns and was mainly restricted to within
the cell body (Fig. 6(A), right column). In contrast, punctate colla-
gen II was scattered within the cell body and nearby surface for
cells on unpatterned substrates. At day 10, a thick ring-like colla-
gen Il layer had developed at the periphery of cells on 40 pm pat-
terns, and was accompanied by a slight increase in Fe, .y (Fig. 6(B),
p<0.01) - an indication of regeneration of chondrogenic pheno-
type. In contrast, collagen II was mainly located within the cell
body for cells on the other substrates, which showed significant
decrease in F.op (p < 0.0001).

At day 21, Feoppy of cells on 20 pum patterns was further reduced
(Fig. 6(B), p < 0.001). For cells on 40 pm patterns, extracellular col-
lagen II deposition was still shown at the cell periphery. Although
their F.o; values were slightly reduced, they were still comparable
to those seen on day 2 (p>0.05). No significant changes were
shown for cells on 80 um patterns and unpatterned substrates
(p>0.05). It should be noted, F., of cells on 40 pm patterns
was higher than on other patterns during the whole period of
culture.

Taken together, all these observations clearly indicate that cells
on 40 pm patterns have the strongest resistance to dedifferentia-
tion, as discussed further below.
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Fig. 3. (A) Schematic drawing of the formation of single cell culture in 3D. (B) Bright field images of single chondrocytes on various patterned and unpatterned surface in 3D
culture for a period of 21 days. Scale bars are 50 pm. It should be noted, the blurred background in the images is mainly from the collagen gel matrix.

Table 1
Variation of cell area on different patterns during the period of culture.”

Pattern 5hin 2D Day2in3D Day10in3D Day 21 in 3D
diameter (um)  (um?) (um?) (um?) (um?)

20 377 £90 320+80 208 £57 21634

40 835+296  335+101 363 +151 341+ 106

80 1294+ 630 991 +460 952 +399 677 £ 347
Unpatterned 1591+803 972+714 964 + 429 987 + 404

“ Cell areas were determined from phase images using Image ] software.

3.5. Effects of cell shape and spreading on regeneration of
differentiated phenotype

The apparent benefit with regard to maintaining a differenti-
ated phenotype, of controlling cell shape and restricting spreading
in long-term culture raises a question; whether such confinement
can also promote the regaining of a chondrocytic phenotype after

cells have become dedifferentiated? To examine this potential,
we used monolayer expanded passage 7 (P7) chondrocytes which
are commonly considered as “irreversibly” dedifferentiated [12].

P7 chondrocytes were cultured on the 2D patterned substrates
in the same condition as P3 cells. To maintain the majority of cells
in a spherical form, only 20 pm and 40 pm patterns were used.
After 5 h in culture, P7 chondrocytes developed similar geometries
to the P3 chondrocytes on patterned and unpatterned substrates
shown in Fig. 2(A). However, a much lower level of collagen II
and CSPG immunofluorescence was observed for all P7 cells in
comparison to P3 cells (Fig. S5, Supporting Information), indicating
they were dedifferentiated.

After formation of the confined 3D culture system and following
2 days in culture, CSPG were present in all cells (Fig. 7(A)). At day
10, Fcspg of cells on 20 pm and 40 pm patterns increased (Fig. 7(B),
p<0.05 and p <0.0001 respectively). However, no significant dif-
ference was observed for cells on unpatterned substrates.
Similarly, at day 2, clear collagen II fluorescence was shown in cells



http://dx.doi.org/10.1016/j.actbio.2015.06.008
http://dx.doi.org/10.1016/j.actbio.2015.06.008

X. Yuan et al./Acta Biomaterialia xxx (2015) xXX-Xxx 7

(A) F-actin CSPG Merge

20 um

40 um

80 um

Unpatterned

- .-. !

B) &
-~ 4
3
s
0- _ .
& < & &
QN QX QX <&
N Ng ® &
QO

Col IT

Merge

©) s
6 ] T T
3
E 4 n Jed ded
3
(18
2 o
0 = T T
& & &
% R R S
N Ne ® ,sg&‘
S

Fig. 4. (A) Immunofluorescence images of P3 chondrocytes on various substrates at 5 h in culture. Pseudo-colors are used to show different stains, namely blue - nuclei, green
- F-actin, pink - CSPG and red - collagen II. Scale bars are 20 pm. The absence of the primary antibodies was used as a control. The observed negligible fluorescence signal
indicates that non-specific adsorption of the secondary fluorescence-labeled antibodies is low. The absence of the primary anti-CSPG antibodies in each case was used as a

control. Representative images of cells on the 40 pm patterns are shown here. (B) Mean fluorescence intensity per cell of CSPG (Fcspg) and

(C) of collagen II (Feoryi) by

individual chondrocytes on different substrates after 5 h in culture. Data were analyzed using a one-way ANOVA with Turkey’s test. Standalone asterisks denote that the

condition is compared to all the others in the figure.

on both 20 pm and 40 pm patterns in comparison to weak signals
in cells on unpatterned substrates (Fig. 8(A)). At day 10, Fco;y of
cells on 20 um and 40 pm patterns increased (Fig. 8(B), p < 0.05
and p <0.0001 respectively) whereas cells on unpatterned sub-
strates showed no significant difference. However, only the cells
on 40 um patterns deposited substantial extracellular collagen II
which surrounded the cell periphery as a thick ring. Furthermore,
the Feop of cells on 40 pum patterns was significantly higher than
the others (p<0.005). These results suggest that initially
dedifferentiated P7 chondrocytes on 40 pm patterns regained their
chondrocytic phenotype by day 10 in this confined 3D culture
environment.

4. Discussion

By using micropatterned substrates to control the adhesion of
single cells, many studies have shown that cell shape and area play
important roles on cell fate (e.g. differentiation, apoptosis and
growth) [28,31,41]. Despite the abundance of information from
2D culture, understanding the role of patterning in 3D is limited.
The novel culture system used in the present work is capable of
independent control of individual cell geometries and extracellular
matrix. For the first time, dedifferentiation and redifferentiation of
chondrocyte phenotypes were investigated here in biomimetic 3D
microenvironments at the single cell level.

Please cite this article in press as: X. Yuan et al., A novel culture system for modulating single cell geometry in 3D, Acta Biomater. (2015), http://dx.doi.org/
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Fig. 5. (A) Representative immunofluorescence images of CSPG staining of single chondrocytes (P3) in 3D culture. Pseudo-colors represent different staining: blue — nuclei,
green - F-actin, and pink - CSPG. Scale bars are 20 pm. White arrows indicate the deposited CSPG. (B) Fcspg of P3 chondrocytes on different substrates during the course of

culture.

4.1. Dedifferentiation depends on the interplay of cell geometries and
cell-matrix interactions in 3D

To overcome chondrocyte dedifferentiation during in vitro
expansion, substantial efforts focused on maintaining a spherical
cell shape. Despite various positive effects being illustrated, con-
tradictory findings from similar conditions have also been reported
[7,18,23,25,26,42,43]. These raise some very basic questions, for
instance, whether the spherical shape is the dominant factor in
preventing dedifferentiation, and how “spherical” a cell should
be? How does cell geometry evolve in a long-term culture where

cells are under constant regulation of a range of cues (e.g.
cell-to-matrix interactions and physical stress)?

Through using a single cell approach, we aimed to address these
questions by progressively moving from a simple 2D environment
to a more complex 3D setting. As illustrated, the use of 2D adhesive
micropatterns was effective in controlling both cell shape and
spreading over a short period of time. Different percentages of
spherical cells (Table S1, Supporting Information) can be easily
tuned with geometric constrains. Immunofluorescence staining
has been well-established for high-sensitive and specific analysis
of chondrogenic CSPG and collagen Il matrix [39,44]. In combination

10.1016/j.actbio.2015.06.008
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Fig. 6. (A) Representative immunofluorescence images of collagen II staining of single chondrocytes (P3) in 3D culture. Pseudo-colors represent different staining: blue —
nuclei, green - F-actin, and red - Collagen II. Scale bars are 20 um. (B) (Fo.i) of P3 chondrocytes on different substrates during the course of culture.

with quantitative imaging, this allowed relative quantitation of flu-
orescence intensity per pattern and thereby objective comparison of
the total production of chondrogentic matrix by individual cells.
This approach revealed that a spherical cell shape is beneficial for
the production of CSPG and collagen II, and importantly, this influ-
ence could occur on a 2D substrate, at the very early stages of
culture.

However, in 2D, maintaining the spherical cell shape alone was
not efficient with respect to inhibiting dedifferentiation in
long-term culture, as reported by recent work where single chon-
drocytes were cultured on round RGD patterns (from 10 pum to
30 um diameter) for up to 10 days [30]. Dedifferentiation occurred
for cells on all patterns, and the probability of dedifferentiation
increased for larger patterns (e.g. ~65% on 30 um dots) [30].
The present work, as discussed below, illustrates that this trend
is different in 3D settings.

In conventional 3D culture, variations of material composite
and culture conditions often lead to drastically different microen-
vironments around individual cells. In contrast, this single cell 3D
approach offers identical extracellular microenvironments to cells.
Cell shape was precisely controlled on a 2D pattern, and was
tracked before and after the formation of the extracellular matrix.

As a result, the initial physical stress of the matrix on the reduction
of cell dimension were revealed and quantified (Table 1). The
round but more spread cells on 40 pm patterns seem to have the
least resistance to the physical stress in comparison to
well-elongated cells and tightly round cells on 20 um patterns,
indicating their relatively flexible cytoskeleton. This flexible
cytoskeleton appears to be critical in maintaining constant cell vol-
ume during the 21 day culture, and encouraged redifferentiation.
This phenomenon highlights the critical influences on cell fate
due to the variations in seeding density and cell-matrix holding
time [13,45], since they all affect initial cell morphology in a
matrix.

Compared to the majority of 3D culture systems, the current
single cell 3D culture eliminates cell-to-cell contacts and is thus
similar to the environment of mature chondrocytes in cartilage
[37]. Over a short period of time, we have found that this restric-
tion enhances cell resistance to dedifferentiation. All cells at day
2 in 3D culture, either spherical or elongated, clearly produced
CSPG and collagen II in comparable amounts (Figs. 5 and 6), while
their counterparts in 2D culture showed little or no production
(Fig. S2, Supporting Information). This finding agrees well with ear-
lier studies where elimination of cell-cell interaction (e.g. via

10.1016/j.actbio.2015.06.008
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Fig. 7. Redifferentiation of P7 chondrocytes on different substrates. (A) Representative immunofluorescence images of CSPG staining of single chondrocytes at day 2 and day
10 in 3D culture. Pseudo-colors represent different staining: blue - nuclei, green - F-actin, and pink - CSPG. Scale bars are 20 um. (B) Fcspg of P7 chondrocytes during the

course of culture.

silencing Ob-cadherin expression) in cultured chondrocytes can
reduce dedifferentiation [14,46].

Over a long period of culture, variations in cell shape and
spreading in 3D gave distinctively different effects compared to
those observed with 2D culture [30]. The extent of dedifferentia-
tion increased with a decrease in cell volume for cells of perfect
roundness (i.e. cells on 20 um patterns with aspect ratio close to
1). In contrast, the less spherical and more spread cells (i.e. cells
on 40 um patterns) not only showed a higher resistance to dedif-
ferentiation, but also the capability of regenerating the differenti-
ated chondrocyte phenotype (Fig. 7). Concomitant with this is
the presence of an extended peri-cellular F-actin network in cells
on 40 pm patterns but not in cells on 20 pum patterns. Since chon-
drocytes interact with both collagen I and amino-terminated sur-
faces, this difference suggests in the case of cells on 40 um
patterns, both interactions might play equal roles, whereas in the
case of cells on 20 pm patterns, the interaction with the collagen
I matrix might dominate. This shows that in 3D not only cell shape
but also cell-to-matrix interactions play a critical role.

The interplay of cell shape and cell-matrix interaction on cells
can be also derived from cell volume changes during long-term

culture. The constant shrinkage of cells on 20 pm patterns is a clear
indication of the combined influence from both cell-matrix inter-
action and the mechanical contraction of the gel [34,47,48].
Alterations in cell volume were shown to be involved in a series
of cell functions, including metabolic activities and gene expres-
sions [49], and therefore may account for their tendency toward
dedifferentiation. The capability of cells on 40 pm patterns to
maintain a constant cell volume is likely to be due to their flexible
cytoskeleton, which may be able to modulate the matrix tension
toward chondrogensis [50]. Since the deposited collagen Il matrix
was accumulated locally, this created more physiological-like
microenvironments and can further enhance the retaining and
regaining of differentiated phenotype [18].

4.2. The implications of the 3D single cell approach in ACI therapies

Currently, re-differentiation of chondrocyte monolayer
expansion often involves the use of soluble additives, which may
cause potential complications for ACI therapies [6]. The current bio-
mimetic 3D culture system facilitates retaining and regaining differ-
entiated chondrocytes. Its capability of transforming advanced,
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Fig. 8. Redifferentiation of P7 chondrocytes on different substrates. (A) Representative immunofluorescence images of collagen Il staining of single chondrocytes at day 2 and
day 10 in 3D culture. Pseudo-colors represent different staining: blue - nuclei, green - F-actin, and red - collagen II. Scale bars are 20 pm. (B) Fcoj.;1 of P7 chondrocytes during

the course of culture.

dedifferentiated P7 chondrocytes into differentiated cells without
any soluble additives illustrates a new avenue for
re-differentiation of expanded chondrocytes. In addition, individual
cells were under almost identical microenvironments, thereby
reducing re-differentiation variations due to environmental factors.

Currently, the use of 3D matrix (e.g. matrix-assisted chondro-
cytes implantation) has emerged as promising approaches for
regenerating large cartilage defects [6]. With the 3D single cell
approach presented here, a multitude of interconnected parame-
ters influencing redifferentiation can be investigated in parallel
and in well-controlled conditions. For example, in future studies,
different 3D matrix materials and mixtures of materials could be
readily employed in place of collagen in the present system, and
thus factors, such as physical and chemical composition of matrix
as well as a wide range of environmental influences (e.g. pH, O,
level), can be rapidly screened in a highly comparable way. As a
result, rapid identification of optimal microenvironments that

can be reproduced in matrix-assisted chondrocyte implantation
is possible. In the context of generating chondrocytes via mes-
enchymal stem cell chondrogenesis, the approach described here
offers a versatile platform in the search for niches that offer tar-
geted differentiation [51-53].

5. Conclusions

We have developed a novel, single cell culture system allowing
independent control of cell geometry and extracellular matrix.
Using this approach, we have shown chondrocyte dedifferentiation
is modulated by the interplay of 3D cell geometries and multiple
factors of the matrix. It was found that a balanced between cell
spreading area and spherical shape effectively retains and regains
a differentiated phenotype. In contrast, a decreasing cell volume
in 3D can advance differentiation even though the cells remain
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spherical. These results highlight the importance of controlling and
understanding the variations in 3D culture conditions.

Acknowledgments

The authors would like to thank the Leverhulme Trust for the
funding support. We also thank partial support from EPSRC (EP/
HO04986X/1 and EP/J009121/1). We gratefully acknowledge the
technical team of the James Watt Nanofabrication Centre (JWNC)
at University of Glasgow for the support in fabricating the devices.

Appendix A. Figures with essential color discrimination
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