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Immunological memory is one of the defining features of the adaptive immune system. As 
key orchestrators and mediators of immunity, CD4 T cells are central to the vast majority 
of adaptive immune responses. Generated following an immune response, memory CD4 
T cells retain pertinent information about their activation environment enabling them to 
make rapid effector responses upon reactivation. These responses can either benefit the 
host by hastening the control of pathogens or cause damaging immunopathology. Here, 
we will discuss the diversity of the memory CD4 T cell pool, the signals that influence the 
transition of activated T cells into that pool, and highlight how activation requirements 
differ between naïve and memory CD4 T cells. A greater understanding of these factors 
has the potential to aid the design of more effective vaccines and to improve regulation 
of pathologic CD4 T cells, such as in the context of autoimmunity and allergy.
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introduction

The ability to remember the past and act on that memory presents a major evolutionary advantage. 
Learning how best to respond to a situation can save time, resources and, certainly in terms of immu-
nological memory, lives. This is perhaps best illustrated by the dramatic reduction in child mortality, 
following the development of vaccines for diseases, such as diphtheria, measles, and polio (1).

Immunological memory is generated following an immunization or infection that activates the 
adaptive immune system. Following infection, T and B cells specific for the pathogen are stimulated, 
proliferate, and generate an effector response that leads to the control and/or clearance of the infec-
tion. The vast majority of these pathogen-specific cells undergo apoptosis, returning the immune 
system to homeostasis (2). The few thousand cells that survive are memory T and B cells that 
respond rapidly and effectively to re-infection. Key to immune protection by memory cells is that 
they remember the differentiation instructions they received during the initial immune response. 
Effective vaccines must mimic these instructions, triggering the right differentiation environment to 
ensure the generation of effective memory cells.

Most current successful vaccines provide protection by generating high affinity class switched 
antibodies that can neutralize or otherwise clear infections (3). However, there are many diseases, 
including HIV, malaria, and tuberculosis (TB), to which we have no effective vaccines. In these 
cases antibody is, at best, partially protective. Rather, a diverse memory immune response involving 
T and B cells that attack the pathogen on multiple levels is likely to be most effective. A better 
understanding of T cell memory will be key to achieving this. Much of the work on T cell memory 
focus on CD8 T cells – cells with clear mechanisms for eliminating intracellular pathogens (4, 5). 
Here, we will concentrate on CD4 memory T cells which, as helper cells that direct and assist many 
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other cell types, have the potential to act like a catalyst, hastening 
immune protection via multiple different pathways. The superior 
responses of memory over naive CD4 T cells can present problems 
when these cells are directed against self or innocuous antigens. 
A better understanding of how memory CD4 T cells differ from 
their naïve counterparts will also inform on how best to control 
pathogenic CD4 T cells delivering new therapeutic approaches 
for antigen-specific tolerance in autoimmunity and allergy.

Memory CD4 T Cells are Heterogeneous in 
Terms of Function and Location

CD4 T cells are first primed in secondary lymphoid organs by 
dendritic cells (DCs) that process and present antigen on major 
histocompatibility complex (MHC) class II molecules. These 
peptide-MHC (pMHC) II complexes impart specificity on the 
ensuing immune response as they bind to T cell receptors (TCRs) 
on the surface of CD4 T cells. TCRs, in concert with associated 
CD3 molecules, transmit activation signals via an array of cyto-
plasmic proteins to alert transcription factors to initiate gene 
transcription, thereby shaping the ensuing response. TCR signals 
alone are not sufficient to prime naïve T cells. Activating DCs 
must also provide additional, or costimulatory, signals. These 
signals act in co-operation with inflammatory signals to instruct 
the T cell on the appropriate type of differentiation pathway to 
control the invading pathogen. TCR activation in the absence of 
costimulatory signals leads to T cell tolerance or the induction of 
regulatory rather than memory CD4 T cells (6–8).

There are a myriad of signals that direct and influence CD4 T 
cell activation and, in turn, memory cell generation. Traditionally, 
these signals, and the distinct CD4 T cell differentiation pathways 
they induce, are divided into discrete subsets, most notably T helper 
(Th)1, Th2, and Th17 (9). More recent data indicate that T cells 
retain a significant degree of plasticity (10). Both models require 
that T cells integrate information from the activation environment 
and use this information to make decisions about proliferation, 
differentiation and, critically for memory cells, survival.

There has been much debate about whether memory T cells 
develop from undifferentiated or differentiated activated T cells 
(11–13). Using elegant fate reporter mice in which the Th1 effec-
tor cytokine, interferon (IFN)γ, drives permanent expression of a 
fluorescent molecule, Weaver and colleagues demonstrated that 
both these populations of CD4 T cells can become memory cells 
(14). This dual pathway to memory converges with the descrip-
tion of T central memory cells (Tcm) and T effector memory 
cells (Tem). Originally described in human peripheral blood by 
Sallusto and colleagues (15), these populations can be distin-
guished based on cell surface expression of homing and selectin 
molecules, effector cytokine production and, more easily assessed 
in mouse models, location.

T central memory cells express the secondary lymphoid hom-
ing molecules, CD62L and CCR7, involved in migration to and 
within lymph nodes. These cells require further differentiation 
signals to make effector cytokines but proliferate substantially 
upon reactivation. In contrast, Tem cells make rapid effector 
responses, proliferate less and are mainly found in the spleen, 
blood and peripheral organs [reviewed in Ref. (16, 17)].

More recently, additional memory cell subgroups have been 
described (Figure  1), suggesting further heterogeneity in the 
steps between activated and memory T cell. While all memory 
cells are by definition long lived, memory stem T cells (Tscm) 
perhaps represent the most stable subset (18–21). The majority 
of studies on Tscm have been carried out on human peripheral 
blood cells, where Tscm express makers of naïve (CD45RA+) 
and memory (CXCR3 and CD95+) cells. Analysis of antigen-
specific CD8 Tscm demonstrates that these cells have previously 
responded to antigen, can self-renew, and rapidly differentiate 
into cytokine producing effector cells upon reactivation (18–22). 
Transcriptional analysis of human CD4 T cell populations identi-
fied using CD45RO, CCR7, and CD95, has positioned Tscm as 
a distinct population with a profile somewhat in-between naïve 
and Tcm cells (23).

Memory stem T cells have also been described in non-human 
primates, where Tscm are found in peripheral blood, secondary 
lymphoid organs, and the bone marrow (26). Tscm cells in mice 
have proven harder to track down although cells with a similar 
profile to human Tscm can be generated in vitro or in vivo in a 
model of graft versus host disease (28–30). This small subset has, 
therefore, proven difficult to analyze. While human CD8 Tscm 
can control tumor growth more effectively than other memory 
cell subsets in a humanized mouse model (18), demonstrating 
a physiologically protective role for these cells will be more 
challenging. This is especially the case as most investigators use 
 challenge infection mouse models that favor rapid effector func-
tions over long-term memory cell stability.

There is much more evidence concerning the protective ability 
of T cells that reside at infection sites (8, 31, 32). Like Tem, T 
resident memory (Trm) cells are found in peripheral organs but, 
as their name implies, they are non-migratory (31). Many of the 
studies on Trm cells have focused on CD8 T cells; for example, 
transcriptional evidence that Trm cells are distinct from Tem 
cells has been performed on CD8, but not CD4 T cells (33). 
Moreover, as current methods to dissociate memory T cells in 
peripheral organs underestimate the numbers of Trm cells, our 
current knowledge on the presence and activities of these cells is 
still limited (34).

It is clear that the retention of CD8 Trm cells is, at least in some 
organs, dependent on expression of CD69 and/or the integrin 
CD103 (31). CD69 acts to maintain Trm cells at tissue sites by 
antagonizing the SIPR1 receptor, which promotes the exit of T 
cells from tissue sites (33, 35, 36). CD103, which is induced by 
TGFβ, promotes interactions between Trm cells and local epithe-
lial cells, thereby supporting tissue retention (36–38).

Both mouse and human lung CD4 Trm cells express CD69 
and those found in human epidermis express TGFβ-driven 
CD103 (39–41). CD4 T cells in human skin dermis, however, are 
less likely to express CD103, perhaps reflecting differences in the 
local levels of TGFβ. Like mouse Trm cells, both populations of 
human skin Trm cells display rapid effector cytokine production 
when compared with circulating memory CD4 T cells. There are 
differences between human and mouse skin Trm cells, however. 
Both populations of human skin Trm are resident, as confirmed 
by their survival following treatment of T cell lymphoma 
patients with the leukocyte depleting monoclonal antibody 
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alemtuzumab (CD154) (41, 42). In contrast, mouse CD4 T 
cells raised against herpes simplex virus (HSV) are primarily 
found in the dermis and are more likely to display a migratory 
phenotype (43).

These differences between human and mouse skin CD4 Trm 
cells may be species specific or due to differences in the antigens 
that triggered the T cell responses. It is vital that we have a bet-
ter understanding of human memory T cell subsets if we are to 
exploit findings from animal models to improve human vaccine 
design. An extensive study by Farber and colleagues examined 
both CD4 and CD8 memory T cells in various internal organs 
from human donors (40). One of the major findings from this 
study is that the TCRs from memory CD4 T cells are more likely 
to contain sequences unique to individual organs than those from 
CD8 memory T cells. This finding suggests that CD4 T cells are 
either more compartmentalized than CD8 memory T cells or that 
they are less cross-reactive. Interestingly, mouse CD8 T cells are 
more promiscuous in the expression of tissue homing molecules 
than CD4 T cells with the latter homing specifically to the original 
site of infection, while CD8 T cells have a more wide spread tissue 
distribution (34, 43).

Neither local tissue inflammation nor antigen may be 
required for the recruitment of CD4 T cells and their subsequent 

FiGURe 1 | Heterogeneity in memory CD4 T cells. Memory CD4 T cells can be found in lymphoid organs, blood, and at tissue sites. Stem cell memory T cells 
(Tscm) and central memory T (Tcm) cells are found in lymphoid organs and in the blood. Both populations are relatively undifferentiated compared to other memory 
CD4 T cell subsets, and are long lived. Follicular helper memory T (Tfh) cells can also be found in the blood and lymphoid organs. They express the B cell follicle 
homing receptor, CXCR5, which can position them near B cell follicles to provide rapid B cell help upon reactivation. Effector memory (Tem) and tissue resident 
memory T (Trm) cells can both be found in peripheral tissues and are more differentiated than Tcm and Tscm. Tem are migratory, passing through tissues and the 
blood, while Trm are restricted to tissues. Both populations can respond rapidly to tissue invading pathogens (15, 17, 23–27).

differentiation into Trm cells. A recent study from von Andrian 
and colleagues examined the development of uterine CD4 Trm 
cells, following immunization by subcutaneous, intranasal, or 
intrauterine routes (8). Immunization by either mucosal route, 
but not via the skin, led to the development of Trm cells in the 
uterus. The recruitment of effector T cells did require alpha 4 
integrin expression by the T cells, likely driven by activation in 
a mucosal environment (8, 44). This comprehensive study high-
lighted that CD4 Trm cells provide significantly more protection 
than circulating memory CD4 T cells to a challenge infection 
with Chlamydia trachomatis.

This heterogeneity in memory cell populations raises two key 
questions, the answers to which will provide critical knowledge 
for improved vaccine design. First, which cells provide the most 
effective protection to pathogen challenge and, second, what 
activation environments drive their development?

How do Memory CD4 T Cells Provide 
immune Protection?

The requirement for rapid pathogen control at the site of infection 
suggests that Tem or Trm cells should, in theory, offer the most 
effective form of immune protection. Many mouse infection 
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models backup this supposition. For example, lung CD4 Trm 
cells offer superior protection to influenza virus infection than 
those from lymphoid organs (39). They achieve this via IFNγ 
dependent and independent mechanisms that induce a rapid 
innate cytokine and chemokine response which accelerates the 
clearance of influenza virus (45). Similarly, IFNγ production by 
HSV2 specific memory CD4 T cells in the vaginal cavity leads to 
a local chemokine response that attracts viral specific CD8 T cells 
that subsequently control a challenge infection (46).

High effector cytokine production is not necessarily a mark of 
a protective memory T cell. In mice infected with Mycobacterium 
tuberculosis, two populations of antigen-specific cells can be 
found in the lung. These populations can be differentiated on 
the basis of expression of the cell surface inhibitory molecules, 
KLRG1 and PD1. KLRG1hiPD1− cells are mainly located in the 
vasculature and produce high levels of IFNγ. KLRGloPD1+, on 
the other hand, make lower levels of IFNγ and are situated in 
the lung parenchyma (47, 48). In adoptive transfer studies, the 
high cytokine producing KLRG1hiPD1− cells survive poorly 
upon transfer and provide only limited protection to challenge 
infection. In contrast, the KLRG1loPD1+ cells respond well in 
the adoptive host and reduce bacteria burden to over a log less 
compared to controls (48). Similarly, while effector cytokine 
producing Tem cells confer protection to Leishmania major, these 
cells fail to survive in the absence of antigen, suggesting these 
are effector rather than genuine memory cells (49). In contrast 
to these locally protective CD4 T cells, Tcm and Tem cells from 
the spleen and mesenteric lymph nodes of drug-cured Trichuris 
muris-infected mice can transfer equivalent immune protection 
to naïve recipients (50). Both populations contain cells that have 
the potential to make interleukin (IL)-4 as indicated by the expres-
sion of an mRNA reporter for this type 2 cytokine which is key for 
the expulsion of the intestinal parasite (51). Whether gut Trm or 
Tem cells can transfer similar or even enhanced protection in the 
T. muris model is a key question, which has not yet been tested.

These studies demonstrate that both Th1 and Th2 effector 
cells transition into the memory pool. Whether IL-17 effector 
CD4 T cells have this ability is a point of contention and likely 
complicated by the relative ease with which these cells switch to 
IFNγ production. This makes these cells difficult to track over 
time without elegant fate mapping transgenic animals (52–55). 
The high expression of CD27 by Th17 cells has been linked to 
their limited survival, but this is not a universal finding; Muranski 
et al. found that in vitro activated Th17 cells survived long-term 
in vivo regardless of their expression of CD27 (30, 56).

There is similar discord about the persistence of T follicular 
helper (Tfh) cells as a distinct memory cell population. During 
immune responses, Tfh cells migrate to B cell follicles, where 
they provide help for the germinal center reaction (57). A Tfh 
cell phenotype can be maintained over time by persistent antigen 
(24), but whether such cells are genuine memory cells is question-
able. We have found that, even in the absence of antigen, some 
memory CD4 T cells are located at the B/T cell border (25). These 
cells express high levels of the B cell follicle homing chemokine 
receptor, CXCR5, and provide accelerated help for B cell class 
switched antibody responses even when present at naïve precur-
sor frequencies. These data suggest that B cells could directly 

reactivate memory CD4 T cells. Alternatively, using ex vivo 
imaging, Suan et al. have recently shown that macrophages can 
reactivate memory CD4 T cells located in the subcapsular region 
of the lymph node (27). These reactivated memory T cells rapidly 
migrate to B cell follicles to generate secondary germinal centers.

CXCR5+ cells with Tfh cell characteristics can also be found in 
the blood of both humans and mice (58). Upon reactivation, these 
cells rapidly differentiate into Tfh cells and promote antibody 
production by B cells. There are few direct demonstrations of 
Tfh-mediated protective immunity. However, mouse influenza-
specific CD4 T cells either primed in vitro or in vivo by vacci-
nation can reduce viral titers at least in part by assisting in the 
production of anti-viral antibody following intranasal challenge 
(59, 60).

Taken together these studies indicate that all the memory CD4 
T cell subsets defined to date are capable of protective responses. 
The type and location of the memory CD4 T cells that vaccines 
should aim to generate are, therefore, likely to be dependent on 
the location and type of challenge. In support of this, while the 
recently modified Vaccinia virus Ankara TB vaccine, MVA85A, 
increased TB specific Th1 cells in the blood, it failed to provide 
any additional protection beyond standard BCG vaccination (61, 
62). Generating lung Trm cells may be key, therefore, to protective 
immunity against TB. Such cells may, however, have a reduced life 
span compared to Tcm. Certainly in mouse models of influenza 
virus infection, the cross viral protective response attributed to 
lung CD4 and CD8 T cells wanes within months (63). Effective 
T cell vaccines may have to steer a difficult course between local 
cytokine producing T cells with a limited life span and potentially 
longer lived Tscm and Tcm cells.

what Factors Regulate Memory Cell 
Generation?

A more detailed understanding of the signals that drive the dif-
ferentiation of memory cell subsets will aid in navigating this 
course between effector cell differentiation and life span. The 
type and amount of antigen, inflammatory cytokines, and dif-
ferent antigen presenting cell (APC) populations all influence T 
cell activation and subsequent memory T cell generation. Small 
doses of antigen, or presentation for a limited period of time, 
may be sufficient for initial T cell activation but fail to generate 
memory cells (64). Too much activation can be detrimental: 
more differentiated CD4 T cells are less likely to transition into 
the memory pool than those displaying a less differentiated 
phenotype; and chronic antigen can lead to exhausted memory 
T cells that respond poorly upon reactivation (65–67). The type 
of antigen can also affect memory cell generation with an epitope 
delivered in the context of a protein, rather than a single peptide, 
encouraging a broader T cell repertoire to transition into the 
memory pool (68). Memory cell development is, therefore, not a 
default outcome of specific T cell:DC interactions, but requires 
appropriate levels of TCR activation delivered by inflammation-
matured APCs.

The strength and timing of the interactions between pMHC II 
complexes and TCRs clearly influence memory cell differentiation. 
Strong TCR signals induce greater Tem cell differentiation, while 
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low affinity signals are insufficient for memory cell development 
(69–71). One prediction of this model is that different TCR clones 
should be present in distinct memory populations. In support of 
this, the overall binding strength of the TCR–pMHC II interac-
tions influences the differentiation of Th1 versus Tfh cells (72). 
In contrast, Sallusto and colleagues recently found the same TCR 
clones in Th1, Th2, and Th17 differentiated human T cells (73). 
Similarly, in subcutaneously immunized mice, the same TCRβ 
clones were found in equivalent abundance in lymph nodes (both 
draining and distant) and the skin injection site several weeks 
after immunization (74). Elegant studies tracking individual CD8 
T cell clones in vivo have, moreover, clearly demonstrated that the 
same T cell can differentiate down different memory cell routes 
(75, 76).

These data suggest that it is not the individual TCR–pMHC 
II interaction that directs memory cell differentiation. Following 
the initial priming event, individual daughter cells will experi-
ence distinct environments and interact with different APCs that 
display various levels of pMHC II complexes and other activating 
and inhibiting cell surface and soluble signals. It is this variety 
of subsequent activation environments that is likely to lead to a 
diverse memory cell population. Such signals influence initial T 
cell expansion and effector cell differentiation, which obviously 
have a knock on effect on the development of memory T cells 
(16, 17). Here, we will focus on the molecules and cells that are 
thought to influence the transition of activated cells into the 
memory pool.

Common-γ chain cytokines have long been thought to encour-
age activated T cells to become memory cells (77). IL-7, a key 
survival factor for all T cells, signals through the common-γ chain 
and a specific IL-7 receptor, CD127. Typically, activation leads to 
downregulation of CD127. In CD8 T cells, recently activated T 
cells that express high levels of CD127 are more prone to develop 
into memory cells (78). The same is not true, however, for CD4 T 
cells (65). Although exogenous IL-7 can increase the survival of 
effector CD4 T cells, limiting endogenous IL-7 does not reduce 
memory cell generation and supplying IL-7 signals to activated 
CD4 and CD8 T cells does not increase the total memory T cell 
pool (79–81). IL-2 may also support memory cell development 
with CD4 T cells that receive late IL-2 signals more likely to 
survive into memory (82). Similarly, CD4 T cells that are acti-
vated for the first time toward the end of the immune response, 
as inflammatory signals wane, are more likely to transition into 
Tcm cells (83).

These data suggest that it will be critical to consider the effect 
vaccines have not just in the first few days after delivery but over 
the 2–3  weeks of the primary immune response. Potentially, 
vaccines that induce antigen depots or a second antigen shot 
delivered close to the initial immunization may promote memory 
cell generation.

In particular, targeting antigen to B cells may be key not just to 
establish a good antibody response but also to generate optimal 
CD4 T cell activation and subsequent memory T cell genera-
tion. In many, but not all cases, CD4 T cell primary responses 
are diminished in the absence of B cells; the memory cell pool 
is more consistently reduced (84–88). Presentation of antigen by 
B cells plays a significant role in this effect as demonstrated by a 

reduction in CD4 memory T cells in chimeric animals in which 
B cells do not express MHC II (89, 90). A role for B cells in the 
transition into, or survival of, memory CD4 T cells has also been 
demonstrated with B cells required to maintain a stable memory 
T cell pool, a process that may be independent of soluble antibody 
(85, 87).

This role for B cells in CD4 memory T cell generation has 
prompted the hypothesis that Tfh cells may contain a subset of 
memory precursor cells (88–92). While initial Tfh cell differentia-
tion is triggered by antigen-specific interactions between CD4 T 
cells and DCs, B cells are required to sustain Tfh cell differen-
tiation (57, 88, 93, 94, ). Memory CD4 T cells derived from Tfh 
phenotype cells have a propensity to re-express markers of Tfh 
cells, following reactivation (88, 92). Therefore, vaccines that can 
effectively target antigen to B cells could bias the generation of 
memory cells that are better equipped to provide B cell help upon 
reactivation.

In contrast, promoting Trm generation is likely to require 
immunization at the appropriate tissue site, triggering local 
inflammation that delivers signals to draining lymph nodes and 
encourages local recruitment of activated CD4 T cells. It may not 
be necessary to vaccinate at the potential infection site but stimu-
late an environment at a distant site that drives the maturation of 
DCs that instruct appropriate homing molecule expression on 
the activated T cells (17, 95, 8). Intranasal immunization can, for 
example, lead to the formation of memory CD4 T cells in the 
uterus, albeit at slightly lower numbers than a local immuniza-
tion (8). These signals are likely to be needed during initial T 
cell activation. The active vitamin D3 metabolite 1,25(OH)2D3 and 
prostaglandin E2 drive expression of the skin-homing chemokine 
receptor, CCR8, only following initial T cell activation and alpha4 
integrin expressing CD4 T cells migrate to mucosal sites within 
the first 4 days of the response (8, 96).

Both the initial and sustained T cell activation environ-
ment, therefore, play vital roles in influencing commitment to 
memory and the type(s) of memory cells that are generated. Our 
knowledge on which of these signals are necessary and sufficient 
for memory cell commitment is, however, still limited. Clues 
to the identification of these signals may be found in a better 
understanding of how memory T cells differ from their naïve 
counterparts, providing an enhanced clarity on how memory T 
cells can provide superior protection and what cells vaccines must 
aim to generate.

what Makes Memory CD4 T Cells 
Different?

A major tenet of vaccination is that memory T cells are better 
equipped to control and clear a pathogen compared to their naïve 
counterparts. “Better” encompasses a range of functions includ-
ing speed, sensitivity, and the type of response the memory cell 
can deliver (Figure 2).

While there is a general acceptance that memory T cells respond 
more quickly to antigen exposure than naive T cells, the data do 
not necessarily support this conclusion. It is clear, as described 
above, that both memory CD4 and CD8 T cells make effector 
cytokine and CTL responses more rapidly than naïve T cells.  
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However, whether memory T cells start to proliferate more 
quickly than naïve T cells is more contentious. Veiga-Fernandes 
et al. (CD8 T cells) and Rogers et al. (CD4 T cells) found that 
memory cells proliferated more quickly than naïve T cells in vitro, 
others, however, have demonstrated similar entry into cell cycle 
(102–105).

It is likely that the perception that memory CD4 T cells respond 
faster is based on their ability to perform a function in vivo more 
rapidly, e.g., viral clearance or induction of a delayed-type hyper-
sensitivity response. These accelerated responses are likely to be 
based on a number of differences between naïve and memory 
T cells, including increased precursor frequency, location, and 
rapid effector functions, rather than increased speed of antigen 
recognition and cell proliferation.

The increased sensitivity of memory T cells to antigen is also 
an area of debate and has been challenged by a recent study that 
suggests memory CD8 T cells may actually be less sensitive than 
naive T cells (100, 106). In general, memory T cells are thought 
to have an increased sensitivity to antigen compared to primary 
responding cells (107–109). This may be due to alterations in the 
repertoire with higher affinity TCR clones dominating second-
ary responses, although this is not always the case (108). Such 

preferential reactivation of high affinity clones cannot, however, 
account for the increased sensitivity of memory TCR transgenic 
T cells indicating that increases in TCR affinity at the population 
level are not the whole story (108, 110, 111).

The ability of these memory T cells to respond to lower doses 
of antigen could be due to alterations in the levels of TCR and/
or downstream signaling molecules. Kumar et  al. found that 
CD3 molecules were more likely to form distinct clusters on 
the cell surface of memory as compared to naïve T cells allow-
ing more efficient TCR triggering (99). Downstream signaling 
molecules are also altered: the key kinase, Zap70, is elevated 
in memory CD4 T cells, and, while activated memory cells 
have reduced levels of phosphorylated ERK, p38 is more highly 
phosphorylated in memory as compared to activated naïve CD4 
T cells (97, 98).

Rather than changes in TCR signaling, the more rapid effector 
cytokine response that memory CD4 T cells mount is likely due 
to accelerated gene transcription as a consequence of epigenetic 
changes to the memory cell’s genome (101, 112). Such epigenetic 
changes can be passed on to dividing daughter cells providing 
a cellular mechanism for memory in the absence of continued 
polarizing signals. Epigenetic changes that influence gene 
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transcription either affect the methylation status of the DNA, 
with demethylation opening up the chromatin for transcription, 
or altering DNA-associated histone proteins making the DNA 
more or less accessible to transcription factors and chromatin-
modifying enzymes (101, 112).

Given that 95% of gene expression in naïve and memory CD4 
T cells is the same (101), it is perhaps not surprising that in a 
recent large scale DNA methylation analysis of naïve and memory 
human CD4 T cells, only 132 out of 2100 genes analyzed showed 
a distinct methylation status (113). Altered genes include Th cell 
subset signature cytokines. In Th1 cells, the Ifnγ locus is dem-
ethylated, opening up the locus for rapid transcription following 
TCR activation, while the Il4 locus is heavily methylated (114, 
115). Similarly, the Il4 locus is progressively demethylated in Th2 
cells to ensure rapid IL4 production in effector and memory CD4 
T cells (116–118).

Open chromatin is also characterized by hyperacetylation 
of associated histone proteins (101, 112). Human and mouse 
naïve CD4 T cells differentiated under Th1 or Th2 conditions 
in  vitro gain acetylation marks at the Ifnγ and Il4 loci, respec-
tively (119, 120). These changes are sustained in Tem cells but 
Tcm are hypoacetylated at these sites, clearly linking epigenetic 
changes to cytokine responses (120). In the same study, evidence 
for epigenetic flexibility was demonstrated: polarized T cells 
activated under opposing conditions showed evidence of acetyla-
tion at the opposing cytokine loci. Similarly, in a genome-wide 
analysis of methylation changes to histone proteins, Wei et  al. 
found that while in  vitro differentiated Th cell subsets had the 
predicted histone modifications to signature cytokines, the mas-
ter transcription factors associated with these subsets had both 
permissive and repressive histone modifications. This pattern of 
methylation is suggestive of a poised state that could allow for 
flexibility in subsequent effector response (121). Together these 
studies demonstrate that activated and memory CD4 T cells 
have the flexibility to alter their differentiation state to adapt to 
changing environments, allowing for the possibility to retrain or 
reinforce a phenotype as required.

why we Might Need to Restrain or  
Retrain Memory Cells

The ability of memory cells to respond in a flexible manner is 
likely to be key to controlling pathogenic CD4 T cell responses. 
While most memory responses are advantageous to the host, the 
rapid production of high levels of cytokine can be damaging. 
Large numbers of influenza virus-specific TCR transgenic cells 
producing IFNγ can cause lung pathology following intranasal 
infection of mice (122). Similarly, infection of mice that contain 
specific memory CD4 T cells with chronic LCMV leads to rapid 
and extensive weight loss, widespread inflammation and tissue 
destruction (123). This effect could be mitigated if virus-specific 
CD8 T cells or antibody was present, suggesting that uncontrolled 
activation of large numbers of CD4 T cells by continued presenta-
tion of the persistent virus antigen was responsible for the pathol-
ogy. Whether these models are representative of human CD4 
memory T cell-driven pathology, which is unlikely to exist in the 
absence of memory CD8 T or B cells, is unclear. For example, 

while pandemic influenza virus infection in humans can lead 
to excessive inflammation, this is likely driven by dysregulated 
innate responses (124–126). However, it does suggest a cautious 
approach to any peptide vaccines that only stimulate CD4 T 
cells (60).

In humans, autoreactive rather than pathogen-specific CD4 T 
cells cause the most significant damage. It is still unclear whether in 
T cell driven autoimmune diseases, such as multiple sclerosis and 
rheumatoid arthritis, autoreactive T cells are constantly activated 
by self-pMHC II complexes or whether T cell:DC interactions 
are restricted to periods of active disease. Human autoreactive 
CD4 T cells can be tracked using MHC II tetramers containing 
self-peptides. These studies suggest that autoreactive T cells can 
be found in healthy controls and patients, but that T cells from the 
latter have a memory cell phenotype and are more likely to make 
effector cytokines (127–129). While immunosuppressive biolog-
ics have significantly improved treatment for chronic inflamma-
tory autoimmune diseases, approaches that tolerize autoreactive 
CD4 T cells offer an opportunity for a permanent solution. Such 
targeted immunotherapy has delivered some success in allergic 
individuals with tolerogenic exposure to allergen causing the 
deletion of specific CD4 T cells and significantly reducing allergic 
symptoms (130, 131).

While much is known about tolerizing naïve CD4 T cells, 
memory CD4 T cells present more of a challenge (132). 
Classically, tolerance in naïve CD4 T cells involves presentation 
of antigen in the absence of accompanying costimulatory signals 
(133). Strategies that aim to tolerize autoreactive CD4 T cells 
must take into account alterations between naïve and memory 
CD4 T cells. Memory CD4 T cells are less dependent on CD40–
CD40L signals for activation, but do require CD28 signaling to 
respond fully, suggesting that they may be affected by reactivation 
in the absence of costimulation (134, 135). Recent studies from 
ourselves and others suggest that memory CD4 T cells activated 
in vivo with soluble peptide delivered without adjuvant are not 
immediately tolerized. Further activation, even in the presence 
of adjuvant, does lead to cell death (136, 137). These data support 
the hypothesis that memory CD4 T cells are flexible and can 
adapt to new polarizing signals. Such changes are likely to affect 
cells at an epigenetic level. Indeed, activated CD4 T cells that have 
received a tolerization signal have a demethylated PD-1 promoter 
leading to increased PD-1 cell surface expression (138).

Concluding Remarks

Teleologically, it makes sense to have a heterogeneous memory 
cell pool as pathogens are diverse and adept at adaptation to 
protective immunity. By positioning memory cells with immedi-
ate effector functions in pathogen-targeted peripheral tissues 
and highly proliferative “backup” cells in secondary lymphoid 
organs, the memory system, in effect, covers all bases. Vaccines 
that can reproduce such diversity are likely to be the most protec-
tive, but may also have the potential to cause adverse effects. For 
example, local vaccine-induced inflammation may be necessary 
for the development of Trm cells, but may not be acceptable to 
the general public. The opportunity to retrain memory CD4 T 
cells subsequent to their generation opens up additional avenues 
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for manipulation, especially in the setting of autoimmunity 
and allergy. Only by increasing our knowledge of which signals 
influence memory cell generation, the underlying mechanisms 
responsible for their enhanced functions, and the molecular 
regulation of epigenetic flexibility, will such manipulation be 
possible.
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