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Space missions require increasingly more efficient trajectories to provide payload transport and mission goals by 

means of lowest fuel consumption, a strategic mission design key-point. Recent works demonstrated that the 

combined (or hybrid) use of chemical and electrical propulsion can give important advantages in terms of fuel 

consumption, without losing the ability to reach other mission objectives: as an example the Hohmann Spiral 

Transfer, applied in the case of a transfer to GEO orbit, demonstrated a fuel mass saving between 5-10% of the 

spacecraft wet mass, whilst satisfying a pre-set boundary constraint for the time of flight. Nevertheless, methods 

specifically developed for optimizing space trajectories considering the use of hybrid high-low thrust propulsion 

systems have not been extensively developed, basically because of the intrinsic complexity in the solution of optimal 

problem equations with existent numerical methods. The study undertaken and presented in this paper develops a 

numerical strategy for the optimization of hybrid high-low thrust space trajectories. An indirect optimization method 

has been developed, which makes use of a homotopic approach for numerical convergence improvement. The 

adoption of a homotopic approach provides a relaxation to the optimal problem, transforming it into a simplest 

problem to solve in which the optimal problem presents smoother equations and the shooting function acquires an 

increased convergence radius: the original optimal problem is then reached through a homotopy parameter 

continuation. Moreover, the use of homotopy can make possible to include a high thrust impulse (treated as velocity 

discontinuity) to the low thrust optimal control obtained from the indirect method. The  impulse magnitude, location 

and direction are obtained following from a numerical continuation in order to minimize the problem cost function. 

The initial study carried out in this paper is finally correlated with particular test cases, in order to validate the work 

developed and to start investigating in which cases the effectiveness of hybrid-thrust propulsion subsists. 

 

 

I. INTRODUCTION 

 

Since the beginning of space exploration one of the 

most important mission requirements has consisted in 

designing the spacecraft so that it could be as light as 

possible. The reasons for this are found in the necessity 

to make the mission physically possible as well as to 

reduce the costs related in launching and propelling a 

spacecraft in space. 

Specific studies have been carried out during the last 

decades with the intent to improve methods for 

designing space trajectories minimizing the fuel 

consumption. These studies have exploited in particular 

astrodynamics and space propulsion. Astrodynamics 

research has made possible, in fact, to study how to 

optimally propel a spacecraft through impulsive 

manoeuvres provided by a chemical thruster, how to 

make advantage of gravity assists for interplanetary 

missions and how to propel a spacecraft by means of 

optimal controlled continuous thrust. The research 

carried out in the astrodynamics field has also driven the 

developments related to the technological side of space 

propulsion. Novel and more efficient propulsion 

systems have been studied and developed like, for 

example, the class of electrical thrusters that, thanks to 

their higher specific impulse, are generally more 

efficient than chemical thrusters. Anyway, specific 

optimization studies must always be conducted in order 

to obtain optimal-fuel transfers trajectories that can 

benefit of the novel propulsion systems developed, or 

efficiently use the traditional propulsion systems (e.g. 

chemical thrusters). 

Since the beginning of space exploration, the earliest 

trajectory optimization studies were related to the 

design of optimal space trajectories with impulsive 

high-thrust manoeuvres that are provided by the 

conventional chemical thrusters, the first class of 

thrusters to be introduced in space propulsion. 

Subsequently electrical thrusters, which provide a low 

but continuous thrust, were developed and studies to 

find solutions for fuel-optimal low-thrust trajectories 

began to be carried out. 
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Currently a new frontier in space exploration 

consists in the use of variable specific impulse electric 

thruster (VASIMR) that are able to bring increased 

advantages especially in terms of fuel mass 

consumption if compared to other electric thrusters
1-3

.   

Hybrid high-low thrust propulsion pushes to the 

limit the concept of variable specific impulse thrusters. 

This type of propulsion is realized by supplying the 

spacecraft with a dual propulsion system consisting in a 

chemical (high thrust) and an electrical (low thrust) 

thruster. The aim of hybrid thrust propulsion is to obtain 

as final goal a benefit in terms of the overall spacecraft 

mass reduction respect to use only an electric engine, 

even if a dual propulsion system must be mounted 

aboard the spacecraft. 

Optimization studies must be carried out in order to 

make an efficient use of the propulsion systems 

provided. 

In particular, in regard to the optimization of low-

thrust trajectories, mainly three different classes of 

optimization methods are used in literature
4-7

: the class 

of direct methods
4
, the indirect methods

5
 and global 

optimization techniques
7
. Direct methods attempt to 

find an optimal solution by iteratively minimizing the 

problem cost function until a minimum is found. 

Indirect methods, instead, seek for an optimal solution 

by solving the optimality conditions analytically derived 

for the specific problem studied. Direct and indirect 

methods generally seeks for optimal local solutions 

(local minima); global methods, unlike the previous two 

methods, are so called because they attempt to find a 

global optimal solution; moreover they can manage 

more complex and/or not regular objective functions 

and constraints, that can be numerically difficult or not 

possible to solve with direct or indirect methods. 

Noteworthy aspects in space trajectory optimization 

and typical of indirect methods consist in the fact that 

the latter:  

(a) are more precise and generally faster in finding a 

solution than other optimization techniques;  

(b) do not require any first assumptions regarding 

the structure of the control.  

However their main drawback
8-10

 is that the 

convergence radius for the solution of the fuel-optimal 

problem with current numerical solvers is typically 

narrow, and this implies that a good initial guess is 

needed in order to solve the problem satisfying the 

optimality conditions. 

For this reason, relaxation techniques have been 

studied in order to reduce the problem stiffness and 

increase the convergence radius. One of the most used 

in literature, especially in Earth and interplanetary low-

thrust transfers, is the relaxation technique based on the 

combined use of homotopy and numerical continuation
8-

10
. Using this technique and by means of homotopy it 

has been possible to link the fuel-optimal problem 

solution to the energy-optimal problem solution that it is 

easier to obtain, basically because of an increased 

convergence radius of the solution search space. Next, 

the relaxed optimal problem (the energy-optimal 

problem) is brought back to the original optimization 

problem by means of numerical continuation technique 

that, starting from the energy-optimal problem solution 

and by means of an iterative process, finds the solution 

to optimal control problems progressively closer to the 

fuel-optimal problem until the solution for this problem 

is finally achieved. 

Although low-thrust transfers provide important 

advantages regarding fuel mass saving, recent 

investigations
11-14

 have already proven that the use of 

hybrid high-low thrust propulsion systems for space 

transfers can provide a further gain in terms of fuel mass 

expended. 

A noteworthy study to be mentioned applies hybrid-

thrust propulsion to an Earth to Moon transfer in which 

the complex n-body dynamics due to the Sun-Earth-

Moon system is also considered and exploited
11-13

. The 

hybrid-thrust trajectory basically consists of a first 

ballistic portion in which the spacecraft is injected into 

an Earth escape trajectory by means of an impulsive 

manoeuvre performed by a chemical thruster; 

subsequently the spacecraft is captured on the moon 

target orbit by means of its low-thrust propulsion 

system. Following from an optimization of the hybrid-

thrust transfer trajectory, it has been possible to 

outperform the fuel mass consumption from a single-

propulsion solution, thus demonstrating the 

effectiveness of hybrid-thrust propulsion.  

Further studies have been conducted in the 

Hohmann Spiral Transfer
14

, a particular type of transfer 

composed by a Hohmann impulsive manoeuvre from 

the departing orbit followed by a spiral (low thrust) 

trajectory arriving to the final target orbit. The study 

showed an application to a transfer from a Low Earth 

Orbit (LEO) to a Geostationary Earth Orbit (GEO) and, 

following an optimization of the hybrid-thrust trajectory 

it demonstrated a fuel mass saving between 5-10% of 

the spacecraft wet mass, whilst satisfying a pre-set 

boundary constraint for the time of flight. 

However, methods developed so far to design and 

optimize hybrid thrust transfer trajectories are based on 

patching together a low-thrust trajectory stretch with 

one obtained from an impulsive high-thrust manoeuvre. 

Subsequently an optimization is carried out in order to 

outperform the high or low thrust solutions. 

Furthermore these studies have proven the effectiveness 

of hybrid-thrust propulsion in specific application cases 

only. 

The purpose of this work is to set up a framework 

for a general optimization of hybrid thrust trajectories: 

in the current paper a preliminary work is presented and 

results discussed.  
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The paper is organized in three main sections: 

section II in which the fuel-optimal low-thrust problem 

is stated, the homotopic transformations are introduced 

and finally the impulsive manoeuvre inclusion is 

explained; section III in which the numerical techniques 

and algorithms to solve the hybrid-thrust optimal 

problem are described; finally in section IV the 

numerical test case is presented and in section V the 

preliminary results are analysed and discussed. 

 

II. ANALYTICAL MODEL 

 

II.I Fuel-optimal low-thrust problem statement 

 

The dynamical model used is based on the two-body 

problem with a perturbing acceleration
15,16

: 

 

 ̈     
 

                [1] 

 

with   the spacecraft position vector,   the Earth’s 

gravitational parameter and    the perturbing 

acceleration due to low-thrust. 

The dynamics equation above is formulated making 

use of Cartesian coordinates. However Cartesian 

coordinates cannot be convenient in terms of numerical 

stability for computer simulations, this for possible 

strong oscillations in the variables of the dynamics 

equations
8,9

. 

A different set of coordinates to express the 

dynamics equations consists in the Modified Equinoctial 

Elements (MEE)
17,18

. The MEE completely define the 

position of an object on an orbit in the phase space 

(position and velocity) and, moreover, present non-

singular equations of motion. They are defined as 

follows: 
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where   is the semi-major axis,   the eccentricity,   the 

inclination,   the right longitude of ascending node,   

the argument of perigee and   the true anomaly. 

In this work the coordinates set given by MEE are used 

and, therefore, the dynamics equation [1] is derived in 

the MEE set: in order to proceed to this derivation it is 

first necessary to introduce the orbital reference frame 

in which the components of the perturbing acceleration 

due to the thrust are expressed. This reference frame is 

represented in  Fig. 1 and its components are centred in 

the spacecraft and are defined as (        ), where    

is the radial unit vector zenith pointing,    is the 

transverse unit vector in the orbit plane pointing towards 

the orbit’s rotation direction and    the normal unit 

vector pointing in the same direction and versus of the 

orbit’s angular momentum.  

 

 

Fig. 1: Inertial reference system and orbital reference 

frame. 

 

By considering the additional equation describing 

the spacecraft mass variation due to fuel consumption, 

the dynamics equations are thus expressed as follows
8,9

: 
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In the above relationships   is the spacecraft mass,   

the normalized control vector expressed in (        ), 

     the maximum low thrust magnitude,    
(  )

 the low 

thrust specific impulse,    the standard gravitational 

acceleration. 

The low thrust optimal fuel mass consumption 

problem can be therefore stated as follows
8-10

: 
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According to the Pontryagin Minimum Principle, the 

solution of the optimal control problem above shown is 

obtained by minimizing the augmented cost function   : 
 

       (    (  ))   ∫  
  
  

       [4] 

 

where   represents the Lagrange multiplier for the 

punctual cost function,   the boundary conditions at the 

final time and     ‖ ‖ the Lagrangian. 

Following from the theory and the related literature
8-10

, 

the conditions derived as a solution for the optimal 

problem stated are expressed as integral and punctual 

conditions. The integral conditions are the state and 

costates equation and the optimal control, the last 

derived by minimizing the Hamiltonian 
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  and    are 

respectively the costates relative to the MEE and the 

spacecraft mass. The optimal control    is therefore 

given by the well-known bang-bang law given by: 
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with the scalar   [   ], and the switching function   

defined as 
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The costates equations, instead, are given by the 

following relationship: 

 

 ̇       
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The punctual conditions for optimality correspond to the 

transversality conditions defined as follows: 
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The solution of optimal control problems is 

commonly obtained through multiple shooting or single 

shooting methods
4
. The single shooting method, 

adopted here
8-10

, transforms the optimization problem 

into the direct solution of a system of nonlinear 

equations  ( )   , that for the current problem is: 
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with        the unknowns vector and        the 

so-called shooting function, i.e. a vector consisting of 

the left hand side of the system of   nonlinear 

equations. In the optimal control problem analysed here, 

the   unknowns are represented by the initial values of 

the costates; the   nonlinear equations are represented 

by the final state defects equations  (  )       and 

the transversality conditions above mentioned. The final 

state defects equations make possible to satisfy the 

dynamics equations, integrated using the optimal 

control    previously shown and with the prescribed 

final state conditions; the transversality conditions are, 

again, the optimal punctual conditions derived by the 

Pontryagin Minimum Principle. So the fuel-optimal 

low-thrust problem is completely defined and ready to 

be numerically solved. 

 

 

II.II Homotopy-based relaxation method 

 

The shooting function solution for the optimal 

problem   is particularly tricky to obtain, because of 
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the numerical problems due to nonsmoothness and 

discontinuities in the differential equations defining the 

optimal problem. For this reason, current numerical 

solvers typically present a narrow convergence radius 

for the shooting function, so that a numerical solution is 

really hard or even impossible to obtain. 

To overcome this problem, a homotopy-based 

relaxation method is resumed from literature
8-10

 and 

here used. 

Considering two continuous functions   and   

defined respectively on the spaces   and  ,  an 

homotopy is defined
19

 as a continuous function            

     [   ]     and such that               

 (   )   ( ) and  (   )   ( ). 

In the fuel-optimal problem the (convex) homotopy 

transformation criterion is adopted in order to transform 

the Lagrangian of   as follows: 
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When      then      , when instead      then 

      ‖ ‖   that is the Lagrangian for the energy-

optimal problem. 

Following from [11], the shooting function of   is 

transformed in the homotopy 
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that links the original fuel-optimal control problem into 

a “relaxed” problem easier to solve, i.e. the energy-

optimal control problem. In particular, the relaxed 

problem presents smooth equations and a smooth 

optimal control; moreover the solution search space is 

increased.  

The energy optimal problem is firstly solved by 

finding a solution to  (   )    and subsequently this 

solution is brought back to the fuel-optimal problem 

solution  (   )    by means of numerical 

continuation, as done in Ref.8-10. 

Numerical continuation
20

 is a technique used to 

solve parameterized systems of nonlinear equations  

 (   )    where commonly   [   ]. The numerical 

continuation algorithm accepts as input an initial 

solution to the parameterized system, generally in the 

form [    ]  and gives as output a set of solutions 

[    ]
  with   [   ] constituting the so called “zero 

path” that links [    ]  with [    ]  . 

Therefore it is possible to firstly solve  (   )    and 

thus obtain the energy-optimal problem solution 

[    ] ; subsequently this latter solution is given as 

input to the continuation algorithm that provides as final 

output [    ] , i.e. the solution to the fuel-optimal 

control problem. 

The new relaxed problem to solve via numerical 

continuation can now be stated as follows: 
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Here the optimal control    assumes the following 

smooth form: 
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Despite the homotopy based relaxation method 

above mentioned, the solution to the energy optimal 

problem can still be hard to obtain if the low thrust 

maximum acceleration is below a certain value
8,9

. 

For this reason it can be necessary to introduce a 

second relaxation to the energy-optimal problem that 

makes it possible to find an easier solution. This 

additional relaxation is introduced making use of a 

second homotopy transformation based on the following 

fact
8,9

:  if the departing and arriving orbits coincide and 

the final longitude is free, then the optimal control is 

identically equal to zero. The trivial and unique solution 

to the energy-optimal problem consists of a vector of 

zeros as the initial value for the costates: 

 

   [       ]  
 

The new optimal problem to solve via numerical 

continuation, necessary to find the energy-optimal 

problem solution and thus to initialize the continuation 

relative to    , is defined as follows: 
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where    [   ]. When      the departing orbit is 

collapsed to the arrival orbit; when instead      the 

departing orbit assumes its pre-set shape. 

Therefore, solving     for      means to solve the 

energy-optimal problem along the arrival orbit, that 

admits the trivial solution previously stated. 

As result of the two numerical continuations (the 

first relative to    , the other relative to    ), the 

solution for the fuel-optimal problem is finally 

achieved. 

A remark that is worth to underline consists in a 

second important advantage made possible by 

introducing the homotopy transformation in    . In 

fact, by using this “initialization” homotopy, the initial 

solution vector for the shooting function is already 

known a priori, in the hypothesis that the final longitude 

is always left free, as stated in    . If instead the final 

longitude is kept fixed, the shooting function admits a 

non-trivial solution that is, however, not too far from the 

zeros solution vector
8,9

. 

Since the analysis initially undertaken in the current 

work addresses a simple orbit rendezvous, which 

implies that the final longitude is left free, it is not 

necessary to explore the numerical values of this initial 

solution vector through alternative ways, for example 

via a heuristic search. This implies a not negligible 

advantage in terms of computational effort needed for 

the numerical simulations. 

 

II.III From low to hybrid thrust: inclusion of impulsive 

manoeuvre 

 

This step is accomplished by means of a homotopy 

transformation and numerical continuation related 

approach that performs the inclusion of a state (velocity 

and mass) discontinuity in a point along the low-thrust 

fuel-optimal trajectory previously obtained. The 

discontinuity is included by means of the following 

transformations at the instant of the impulsive 

manoeuvre: 
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obtained from the well-known Tsiolkovsky formula and 

relative to the spacecraft mass.  

In the above relationships    denotes the time instant 

when the impulsive manoeuvre is performed,          

represents the maximum allowable variation in velocity 

due to the impulsive manoeuvre,   ̂ is the unit vector of 

high thrust impulse,      is fuel mass burned during 

impulsive manoeuvre and    
(  )

 is the high thrust 

specific impulse. 

  Initially when      the jump in the spacecraft’s 

velocity and mass is null and the transfer trajectory 

coincides with the only low-thrust solution. Next, the 

magnitude of the velocity change is progressively 

increased by means of an iteratively approach where at 

each step    is slightly increased and an optimal 

problem, regarding the maximization of the spacecraft 

final mass, is solved. The starting solution for each 

optimization step is the one obtained from the previous 

step. The above described iterative process terminates 

when the final spacecraft mass  (  ) is maximized: this 

means that a subsequent optimization step does not 

involve an improvement in terms of a further 

maximization of  (  ).  

The third and last optimal problem to solve at each 

continuation step is now given by: 
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The optimization variables for the problem     are:    

(a) the costates  (  ) evaluated at the beginning of the 

transfer trajectory (b) the costates  (  
 ) evaluated at the 

instant    and relative to the low-thrust trajectory stretch 

after the impulsive manoeuvre, (c) the unit vector of 

high thrust impulse   ̂ and the time    at which the 

impulsive manoeuvre takes place. 

It is necessary to underline that the optimization 

problem given by     involves a re-optimization of the 

two low-thrust trajectory arcs, one before and the other 

after the impulsive manoeuvre: in fact the solution to 

      [     
 ] as well as the solution to       

[  
    ] must be re-calculated in order to take into 

account the impulsive manoeuvre and maximize the 

final spacecraft mass. This is accomplished by 

considering  (  ) and  (  
 ) as optimization variables 

for the problem    . 



65th International Astronautical Congress, Toronto, Canada.  

Copyright ©2014 by N. Sullo and M. Ceriotti. Published by the IAF, with permission and released to the IAF to publish in all forms. 
 

IAC-14-C1.8.6                   Page 7 of 11 

Fig. 2 below represents the low-thrust fuel-optimal 

trajectory given by the continuous line and in dashed 

line the optimal hybrid-thrust trajectory obtained as 

final solution of    . 

 

 
Fig.2: Low-thrust fuel-optimal trajectory (continuous 

line) and hybrid-thrust fuel-optimal trajectory 

(dashed line). 

 

III. NUMERICAL SOLUTION 

 

Summarizing the procedure elaborated so far for the 

hybrid-thrust trajectory optimization, it is so possible to 

split the latter in two phases: a first one in which a low-

thrust fuel-optimal trajectory is obtained, a second one 

in which an impulsive manoeuvre is included and 

subsequent optimization steps are performed in order to 

optimize the total fuel mass consumption. 

Specifically, the fuel-optimal low-thrust problem is 

firstly solved via indirect method and by means of two 

homotopic relaxation techniques applied in series: a first 

homotopy transformation turns the optimal-fuel low-

thrust problem into an optimal-energy problem;             

a second homotopy transformation, in turn, leads to 

solve the optimal-energy transfer problem where the 

departing orbit is collapsed onto the arrival orbit and for 

which a (trivial) solution is already known.          

Starting from the latter problem a final solution for the 

optimal-fuel low-thrust case is reached by means of 

numerical continuation. Once a solution to the optimal 

low-thrust case is achieved, an impulsive manoeuvre is 

progressively included by means of a numerical 

continuation related approach performed on a third 

homotopy-based transformation. Each continuation step 

is solved by performing an optimization in which the 

spacecraft final mass is maximized. The optimal hybrid-

thrust problem is solved once the magnitude of the 

impulsive manoeuvre is such to minimize the total fuel 

mass consumption. 

The flow chart in Fig. 3 schematically summarizes 

the hybrid-thrust trajectory optimization framework. 

The sub-sections below explain the fundamental 

aspects of the numerical implementation of the 

optimization method developed for hybrid-thrust 

trajectories.  

 

 
Fig.3: Flow chart for the hybrid-thrust trajectory 

optimization framework. 

 

III.I Problem scaling 

  

In order to have a numerically well-conditioned 

optimal problem and so improve the robustness of the 

code, it is necessary to introduce an appropriate scaling 

of the dimensional variables and the parameters 

involved in the optimization process. 

Three different scaling sets have been developed in 

order to choose the more suited for the optimal transfer 

problem to be analysed. The first set, named LTM, has 

as physical quantities for scaling the length (L) of the 

departing orbit, the period (T) of the same departing 

orbit and spacecraft initial mass (M). 

The second set, named LVM, uses as physical 

quantities for scaling the length (L) of the departing 

orbit, the tangential velocity (V) relative to a circular 

orbit having as radial length the length of the spacecraft 

departing position vector, the spacecraft initial mass 

(M). 

Lastly the third set, named VTM, adopts as physical 

quantities for scaling the tangential velocity (V) relative 

to a circular orbit having as radial length the length of 

the spacecraft departing position vector, the period (T) 
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of the departing orbit and the spacecraft initial mass 

(M). 

The three different sets have been tested in order to 

find the more suitable for the numerical simulations: 

however it has been found that the use of each one is 

almost equivalent to the use of the others. For the 

numerical test case simulated the LVM set has been 

chosen but, for the above mentioned reasons, no 

particular preference has been given in choosing this 

particular scaling set among the others.  

 

III.II Discrete continuations 

 

The numerical continuations relative to the problems 

   ,     and     are implemented in the form of 

discrete continuations. 

The numerical discrete continuation
8-10,20

 algorithm 

used in this work consists in finding the zeros of 

 (   )            for     by starting to solve 

 (   ) and then progressively increasing the scalar 

continuation parameter    [   ] and finding, for each 

subsequent  , the zeros of  (   ). The solution for 

 (   ) at the i-th step during discrete continuation is 

obtained using as initial guess (for the numerical solver) 

the solution at the (i-1)-th step. 

An adaptive step size    for the continuation 

parameter has been implemented, in order to decrease 

the step size (using a halved step length) if the 

numerical solver does not find a solution at the i-th step, 

to increase the step size to speed up the continuation 

(using a doubled step length) if the numerical solver 

finds a solution at the i-th step. 

The numerical solver used to solve the system of 

nonlinear equations, given by the shooting function, is 

the MATLAB fsolve.   

 

III.III Impulsive manoeuvre inclusion and optimization 

 

Initial guess  

 

The impulsive manoeuvre needs, to be included, an 

initial guess for the 4 optimization variables given by 

the unit vector of high thrust impulse   ̂ (3 variables) 

and the time instant when the impulsive manoeuvre is 

performed    (1 variable). 

Considering a quite small magnitude of the impulse 

when it is firstly included, any initial guess values 

provided for   ̂ and    must give a hybrid-thrust 

solution really close to the departing low-thrust fuel-

optimal solution. For this reason, user’s choice values 

can be entered in the optimization algorithm as initial 

guess for   ̂ and   . 

Regarding the initial guess for the costates  (  ) and 

 (  
 ), the respective costate values resulting from the 

low-thrust fuel-optimal trajectory are provided as 

starting point for the third continuation.  

Impulsive manoeuvre optimization 

 

Once a first guess is provided, the last continuation 

is performed in order to optimize the hybrid-thrust 

trajectory and finding the final optimal impulsive 

manoeuvre, in terms of    magnitude and thrust 

direction, as well as time instant of the impulse. This 

approach, as already explained in the previous section, 

is accomplished by means of consecutive optimization 

iterations where, at each step, the final spacecraft mass 

is maximized. The optimization iterations are carried 

out through an algorithm based on a direct optimization 

method. 

In this instance the algorithm used is the MATLAB 

fmincon, based on Sequential Quadratic Programming 

(SQP). 

The objective function to be minimized by fmincon 

is simply given by the inverse of the spacecraft final 

mass: this means that the spacecraft final mass has to be 

maximized.  

The nonlinear constraints imposed for fmincon are 

given by: (a) the final state defects equations             

 (  )      , (b) the condition regarding the fact that 

‖  ̂‖   . 

 

IV. NUMERICAL TEST CASE 

 

Software validation test case 

 

In order to validate the optimization framework for 

hybrid-thrust trajectories developed so far, a test case 

have been numerically simulated and preliminary results 

are following shown and discussed. 

The test case regards an interplanetary transfer from 

Earth to Mars orbit. 

The time of flight is                   . The 

set of MEE for the initial and final spacecraft position 

are respectively: 

 

{
 
 

 
 
                 

      
     
     
     
     

 and 

{
  
 

  
 
                

           

           

          

          

        

 

 

The departing and arriving times are kept fixed and 

the true longitude at the arriving time of the transfer 

trajectory is left free.  

The following problem parameters have been 

considered: 
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(  )

          

 
(  )

         

The high-thrust impulse initially included 

corresponds to an impulsive manoeuvre of    
      . 

 

Results analysis 

 

Following, the cases of energy-optimal, fuel-optimal 

and hybrid-thrust are illustrated in the plots for the 

transfer trajectory, optimal control and spacecraft mass. 

The evolution of the trajectory optimization progress is 

thus illustrated through the three homotopy-continuation 

steps. 

Regarding the transfer trajectory evolution, it has 

been computed as follows: 

 

 

 
Fig.4: Spacecraft transfer trajectory from Earth to 

Mars in the energy-optimal case 

 

 

 
Fig.5: Spacecraft transfer trajectory from Earth to 

Mars in the fuel-optimal case 

 

 
Fig.6: Spacecraft transfer trajectory from Earth to 

Mars in the hybrid high-low thrust case 

 

 

 

 

The optimal control assumes the following 

evolution: 

 

 

 

 

 
Fig.7: Normalized control vs time in the energy-

optimal case 

 

 

 

 

 
Fig.8: Normalized control vs time in the fuel-

optimal case  
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Fig.8: Normalized control vs time in the hybrid 

high-low thrust case 

 

Finally the spacecraft evolution is following 

represented: 

 

 

 
Fig.9: Spacecraft mass vs time in the energy-optimal 

case 

 

 
Fig.10: Spacecraft mass vs time in the fuel-optimal 

case 

 

 
Fig.11: Spacecraft mass vs time in the hybrid high-

low thrust case 

The validation test case has proven that the 

optimization algorithm can easily solve simple 

trajectory optimization problems like the one above 

illustrated. 

However, in the specific test case simulated in order 

to validate the optimization algorithm developed, it has 

not be possible to proof an advantage of hybrid high-

low thrust propulsion in terms fuel mass consumption. 

In fact during the third continuation the final spacecraft 

mass has shown a decreasing trend (meaning a higher 

fuel mass consumption) following the progressive 

increase of the impulsive manoeuvre magnitude. The 

lowest of the increasing values of fuel mass 

consumption has been assumed at the beginning of the 

third continuation when the ratio between the final 

spacecraft mass respectively in the low-thrust and 

hybrid-thrust case has assumed the value                   

  
 (  )

(  )

 (  )
(  )          . 

 

V. CONCLUSIONS 

 

The work carried out and illustrated in the present 

paper has dealt with the development of a framework 

for general optimization of hybrid-thrust trajectories. 

The optimization process makes use of homotopy 

and numerical continuation in order to compute a fuel-

optimal low-thrust trajectory, starting from the solution 

of a trivial or easy to solve optimization problem. Next, 

the hybrid-thrust transfer trajectory is computed by 

including an impulsive manoeuvre to the previously 

obtained fuel-optimal low-thrust trajectory: this is 

accomplished by means of a homotopic transformation 

that links the low-thrust to the hybrid-thrust optimal 

problem. Subsequently an optimization loop (related to 

a numerical continuation) progressively increases the 

impulsive manoeuvre magnitude until the total 

spacecraft mass is maximized, hence the total fuel mass 

required for the transfer is minimized.   

Although the optimization method developed so far 

for hybrid-thrust trajectories is still preliminary, 

numerical test case have been performed in order to 

validate the software and to start investigating how and 

when hybrid-thrust propulsion can produce benefits in 

terms of fuel mass consumption. 

Simulation results have shown that the optimization 

method can easily solve simple trajectory optimization 

problems, like the one illustrated in this paper. However 

the preliminary results obtained for the specific test case 

simulated have not shown an advantage of hybrid high-

low thrust propulsion in terms of fuel mass 

consumption. 

If on one hand the optimization algorithm is still at 

its first development stages and work on its 

improvement is still in progress, on the other hand it is 

necessary to underline that several more study cases 
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need to be simulated and analysed in order to 

thoroughly investigate the effectiveness of hybrid high-

low thrust propulsion. Particularly, it is firstly intended 

to introduce the hybrid-thrust propulsion in the test 

cases in which the use of variable specific impulse 

propulsion (VASIMR) has proven its effectiveness. 

Since the hybrid high-low thrust propulsion is basically 

VASIMR pushed to the limit, it is expected that the use 

of hybrid-thrust propulsion in the same study cases of 

VASIMR can also give an advantage in terms of fuel 

mass consumption. 

Following the current work, the next steps intended 

to be performed regard also an enhancement of the 

generality of the optimization method developed for 

hybrid-thrust trajectories. This enhancement is intended 

to be introduced by considering the dynamics equations 

for the three and subsequently the n-body problem: this 

can make possible to better investigate the use of hybrid 

high-low thrust propulsion in a more realistic scenario. 
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