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The distribution of collagen fibres plays a significant role in the mechanical behaviour of

artery walls. Experimental data show that in most artery wall layers there are two (or

more) in-plane symmetrically disposed families of fibres. However, a recent investigation

revealed that some artery wall layers have only one preferred fibre direction, notably in the

medial layer of human common iliac arteries. This paper aims to provide a possible

explanation for this intriguing phenomenon. An invariant-based constitutive model is

utilized to characterize the mechanical behaviour of tissues. We then use three different

hypotheses to determine the ‘optimal fibre angle’ in an iliac artery model. All three

hypotheses lead to the same result that the optimal fibre angle in the medial layer of the

iliac artery is close to the circumferential direction. The axial pre-stretch, in particular, is

found to play an essential role in determining the optimal fibre angle.

& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The collagen fibres within artery walls play a central role in
the macroscopic mechanical behaviour of walls (Holzapfel
et al., 2000; Gasser et al., 2006). Human common iliac arteries
are of particular clinical interest as atherosclerosis-prone
vessels, since they frequently undergo endovascular treat-
ment. Iliac arteries are relatively easy to access for vascular
diagnostic procedures (Schulze-Bauer et al., 2003).

Artery walls are usually composed of three distinct layers, the

intima, the media and the adventitia, and it is widely accepted

that variations exist in both the structural composition and the
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material properties of artery walls in different regions of the

arterial tree, even from the same individual (Mangell et al., 1996;

Holzapfel et al., 2000, 2004). Collagen fibres are key ingredients in

the structure of artery walls. In most of the regions, load bearing

layers such as the media and the adventitia are shown to have

two (or more) in-plane symmetrically disposed families of fibres.
Continuum constitutive models of arterial layers integrate

information about the tissue morphology and therefore allow

investigation of the interrelation between structure and

function in response to mechanical loading. Carefully con-

structed constitutive laws based on experiments are of

critical importance for analysing the physiological and
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pathological load-carrying mechanisms in soft tissues
(Gasser et al., 2006).

A number of experimental studies, based on polarised
light microscopy of stained arterial tissue, have shed light
into the detailed structural organisation of the complex
three-dimensional elastin, collagen and smooth muscle
arrangement within the artery wall (Canham et al., 1989;
Finlay et al., 1995, 1998; Schriefl et al., 2012). These studies
show not only that artery tissues are highly anisotropic, but
also provide an explanation for the exponential behaviour of
the tissues. The gradual recruitment of the collagen fibres,
which are considered as crimped in the natural configuration,
is responsible for the exponentially increased stiffness of the
tissue when stretched (Roach and Burton, 1957; Lanir, 1983).

With this understanding, more advanced constitutive laws
have been developed to make use of the microscopic informa-
tion of artery wall structures (Holzapfel et al., 2000, 2015; Gasser
et al., 2006). The anisotropic elastic energy functions proposed
by Holzapfel et al. (2000) and Holzapfel and Gasser (2001)
represent one category of such structure-based approaches.
For example, the constitutive model of Holzapfel et al. (2000) is
used to represent the ground matrix and the distinct fibre
families in the artery wall. The model assumes that the fibres
are symmetrically disposed relative to the axial direction and
have no component in the radial direction. However, this
constitutive model does not include the fibre dispersion
observed in experiments, and to take account of fibre disper-
sions, two extendedmodels have been developed subsequently.
One of these is the ρ model (Holzapfel et al., 2005a,b) in which a
constant scalar ρ is introduced to account for the fibre disper-
sion. The other is the κ model which is derived from a general-
ised structure tensor (Gasser et al., 2006). Both the ρ and the κ

models are invariant based and include the effect of fibre
dispersion, but unlike ρ, κ can be directly estimated from the
measured fibre density distributions using, for example,
polarised light microscopy (Canham et al., 1989; Finlay et al.,
1995, 1998; Schriefl et al., 2012).

Most of the aforementioned studies focussed on the
mechanical properties of coronary arteries (Holzapfel et al.,
2005a). In this study we concentrate on the human iliac
artery. This is because an exception to the fibre structure
has been found in the medial layer of human common iliac
arteries in the recent work by Schriefl et al. (2012). Using
polarised light microscopy on stained arterial tissues, these
researchers measured the layer-specific collagen fibre density
distribution in human thoracic and abdominal aortas, and in
common iliac arteries. They found that unlike in most of the
investigated arterial layers, where there are two or more
distinct families of the collagen fibres, fibres are found to be
mostly parallel to the circumferential direction in the media
of the human common iliac arteries. Various fibre dispersions
in different layers of arteries were also reported.

The work of Schriefl et al. (2012) raises interesting ques-
tions. In particular, what determines the optimal fibre orien-
tation? Can we explain the fibre distribution in the media of
the common iliac artery from a mechanics standpoint? In
this paper, we attempt to answer these questions using a
combined analytical and computational approach.

We model the iliac artery using a two-layer thick-walled
model, including only the media and adventitia. We use the κ
model in which the effect of the fibre dispersion is taken into
account. Both the axial pre-stretch and circumferential resi-
dual stress are considered. To separate the effects of the
circumferential residual stress and axial pre-stress from the
geometric influences, we also investigate a straight tube
model with the corresponding material properties as well as
the residual stress in the circumferential direction. Inflation
and extension experiments are simulated numerically with a
mean pressure loading at 100 mmHg, since it is the mean
blood pressure that is primarily regulated physiologically
(Burchell, 1968; Yu et al., 1992). For simplicity, we confine
our study to static loading only. Finally, three different
hypotheses are used to determine the ‘optimal fibre angle'
in the iliac artery model. Results from all three hypotheses
support the experimental observation that there is probably a
single fibre family in the media of human iliac arteries.
2. Methodology

This section consists of three parts: the geometric construc-
tion of the aorto-iliac bifurcation, the determination of the
material parameters in the strain–energy function, and the
finite element analysis of the iliac artery model.

2.1. Geometry of a 3D aorto-iliac bifurcation

Based on human data documented in the literature (Stergiopulos
et al., 1992; Olufsen, 1998; Schulze-Bauer et al., 2003; Kahraman
et al., 2006), a simplified bifurcation geometry of an iliac artery is
built, as shown in Fig. 1. The bifurcation is modelled so that the
cross section at the end of the aorta is gradually changed from a
circle to an ellipse. This is smoothly connected to the two iliac
arteries via cubic spline positional polylines using Matlab (The
MathWorks Inc., Natick, USA). Wemodel the iliac bifurcation as a
two-layer thick-walled structure, and the thickness ratio
between the medial and adventitial layers is taken to be 4:3
(Schriefl et al., 2012). A total of seven hexahedron elements
through the wall thickness is constructed, with four in the media
(shown in red in Fig. 1) and three in the adventitia. Although the
geometry is symmetric and the modelling could be achieved by
considering a quarter of the whole section, we choose to use the
whole geometry so that the modelling can be easily extended to
include the fluid–structure interaction in future studies, for
which the flow field can be asymmetric. We also note that the
3D simulation of the whole section is fast (within minutes on a
Dell workstation with 6 CPU cores, 2.9 GHz and 32 G memory).

2.2. Constitutive model

The model of Holzapfel et al. (2000) assumes that the strain–
energy function Ψ is the sum of an isotropic potential Ψ iso

associated with the ground matrix and an anisotropic potential
Ψaniso associated with the embedded families of perfectly aligned
collagen fibres (Holzapfel and Weizsäcker, 1998). Assuming that
the artery material is incompressible, we have the local volume
ratio J¼ det F¼ 1, where F is the deformation gradient relative to
the unloaded configuration. We also assume that the two fibre
families are aligned in the directions of the unit vectors a01 and
a02 in the unloaded configuration. These are symmetric and lie



Fig. 1 – 3D geometry of the aorto-iliac bifurcation model. The
geometric information is taken from the literature. The inner
and outer diameters are chosen to be 14.2mm and 15.6mm,
respectively, for the abdominal aorta, and 9.3mm and
10.7mm, respectively, for the common iliac arteries, following
Schulze-Bauer et al. (2003) and Kahraman et al. (2006). The
length of the aorta and each iliac artery is taken to be 57mm
(Stergiopulos et al., 1992; Olufsen, 1998). The two iliac
branches are assumed to deviate from the centreline of the
aorta symmetrically at 301 (Shah et al., 1976; Long et al., 2000).
The axial lengths of the elliptical transition region approaching
from the aorta and the iliac branches are 9mm and 15mm,
respectively. (For interpretation of the references to colour in
this figure caption, the reader is referred to the web version of
this paper.)
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in the tangent plane (no radial component). Let λr, λθ and λz be
the principal stretches in the cylindrical system. Then, the
strain–energy function1 associated with the right Cauchy–Green
tensor C¼ FTF is

Ψ ¼ Ψ iso Cð Þ þ Ψaniso C;a01;a02ð Þ

¼ c
2

I1�3ð Þ þ k1
2k2

X
i ¼ 4;6

exp k2ðIi�1Þ2� ��1
� �

; ð1Þ

with the I4 term only included if I441 and the I6 term only
included if I641. The constants c40; k140 are stress-like
1Note, this strain–energy function is designed as an incom-
pressible formulation. A modified version of Eq. (1) with an
isochoric/volumetric split is used in the finite element
implementation.
material parameters and k240 is a dimensionless material
parameter. The invariants are I1 ¼ tr C, I4 ¼ a01 � ðCa01Þ, and
I6 ¼ a02 � ðCa02Þ, where I4 and I6 represent the squared stretches
in the fibre directions a01 and a02 respectively. For the walls of
most large arteries, these two fibre families are located symme-
trically about the axial direction, so that, for the deformation
considered here, I4 ¼ I6 ¼ λ2θ cos 2 βþ λ2z sin 2 β, where β denotes
the angle between a01 (or a02) and the circumferential direction
of the artery.

The κ model extends the model of Holzapfel et al. (2000) by
changing the anisotropic part to (Gasser et al.,2006)

Ψaniso ¼
k1
2k2

X
i ¼ 4;6

expðk2Ê
2
i Þ�1

h i
; ð2Þ

where

Êi ¼ κI1 þ ð1�3κÞIi�1; i¼ 4; 6;

and κA ½0;1=3� is a dispersion parameter (the same for each
fibre family). Notice that when κ¼ 0, the κ model is the same
as the one published in Holzapfel et al. (2000), and when
κ¼ 1=3 we recover an isotropic potential similar to that used
in Demiray (1972).

The Cauchy stress tensor is given by

σ ¼ �pIþ 2F
∂Ψ
∂C

FT; ð3Þ

where p is a Lagrange multiplier, and I is the identity tensor,
and for the considered model this is given by

σ ¼ �pIþ cbþ 2k1
X
i ¼ 4;6

Êi exp
�
k2Ê

2
i

�
κbþ ð1�3κÞðai � aiÞ½ �; ð4Þ

in which b¼ FFT is the left Cauchy–Green tensor and ai ¼ Fa0i,
i¼ 1;2.

The fitting procedure is the standard Levenberg–Mar-
quardt algorithm (Moré, 1978) and it is realized using the
Matlab function lsqnonlin. The parameters obtained are found
to be unique when we select suitable upper and lower bands
for the searching ranges in the algorithm (e.g.,
c0; k1; k2A ½0; 10 000�, κA ½0; 1=3�). The fitted material and struc-
tural parameters of a representative human iliac artery
referring to the medial and adventitial layers are given in
Table 1, with the azimuthal angles βj; j¼M;A determined
from biaxial experiments (Schriefl et al., 2012). We assume
that the material properties of the abdominal aorta are the
same as for the descending common iliac arteries. Fig. 2
shows a comparison between the experimental data and the
fitted results obtained from the κ model in Eq. (2) for both the
circumferential and axial directions of the medial and adven-
titial layers in the iliac artery. The ‘goodness of fit’, as defined
in Schulze-Bauer et al. (2003) and Schriefl et al. (2012), is 0.09
and 0.16, respectively. Note that the axial stress–strain curve
in the medial layer is not significantly exponential (it appears
to be almost linear). This is presumably because the fibres are
more aligned towards the circumferential direction, hence do
not contribute much to the exponential term in the axial
direction, particularly when the stretch is smaller than 1.25.

2.3. Finite element simulation

The finite element simulations are performed using the
commercially available finite element package (ABAQUS,
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Fig. 2 – The circumferential and axial stress–stretch responses of the medial (left) and the adventitial (right) layers of a human
iliac artery fitted to experimental data. The experimental data shown in symbols (circumferential: circle; axial: square) are
from sample no. IV in Holzapfel et al. (2004). The parameters used are listed in Table 1.

Table 1 – Layer-specific material and structural parameters for a human common iliac artery based on the κ model.

Parameters c (kPa) k1 (kPa) k2 κ βj, j¼M;A (deg)

Media 20.99 29.34 19.33 0.20 0
Adventitia 8.74 55.09 328.27 0.26 53.8

Fig. 3 – Transmural stress distribution σθ at different medial
fibre angle alignments. The x-axis shows the sampling point
n from the inner to the outer radius. The curves of the
circumferential stress σθ are interpolated from the centre
points of the finite elements. The thick solid curve at βM¼201
is shown to be more uniform than all other angles since its
UF value is the smallest, as shown in the table.

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 5 2 ( 2 0 1 5 ) 1 0 8 – 1 1 9 111
2013). For a typical simulation we use a total of 54 096
hexahedron elements (C3D8H: linear elements using a hybrid
formulation) for a bifurcation model, with 19 152 elements for
the aorta, and 17 472 for each branch of the common iliac
artery. The grid size is chosen following a grid independence
test (simulations were run for increasingly refined grids until
the results converged). Each branch of the bifurcation is
subjected to an in vivo axial pre-stretch of λz ¼ 1:07
(Schulze-Bauer et al., 2003), defined as the ratio of in situ
length to ex situ length (Schulze-Bauer et al., 2003; Holzapfel
et al., 2007), and a transmural physiological mean pressure of
100 mmHg (Holzapfel et al., 2000; Schulze-Bauer et al., 2003;
Ohayon et al., 2005). The circumferential displacements of the
inlet and outlets are fixed by setting these to zero in the
locally cylindrical coordinate systems.

The simulation was run with different alignments of the
fibres in the media of the descending iliac artery between
βM ¼ 01 and 501. The upper limit of 501 is used as it is widely
accepted that the medial layer tends to support more cir-
cumferential than axial stresses, because the fibre orientation
is closer to the circumferential direction than the axial
direction (Schriefl et al., 2012). When βM ¼ 01, the two families
of fibres merge to a single family aligned in the circumfer-
ential direction. Except in the energy optimisation method
discussed below, in all other simulations the fibre angle βA of
the adventitia is fixed at 53.81, following measurements
documented in Schriefl et al. (2012).
3. Criteria to determine the optimal angle

In order to determine the optimal fibre angle, we consider
three different hypotheses that may explain the optimal fibre
orientation in iliac arteries. These are based on the
uniformity factor of the transmural stress distribution,
stress-driven remodelling, and energy arguments.

3.1. Hypothesis I: uniformity factor

This approach assumes that the fibres are aligned so that,
under the mean pressure and an axial pre-stretch, the
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transmural gradient of the maximum principal Cauchy stress σθ
is minimised. This is a hypothesis initially proposed by Fung
(1983) based on experimental observations of arteries. The
advantage of a uniform stress in physiological terms is that
cells within tissues are in a homeostatic state of stress,
maintained by the biological remodelling process (Artmann
and Chien, 2008). To start with, we assume that the unloaded
configuration is stress-free (but this assumption is discarded in
Section 3.1.2). In accordance with Holzapfel and Gasser (2007),
the distributions of these stresses are considered across the
deformed wall thickness (including the medial and the adven-
titial layers). To quantify the uniformity of the circumferential
stress throughout the artery wall, we adopt the definition of the
standard deviation as the uniformity factor (UF) (Delfino et al.,
1997), i.e.

UF¼ 1
N�1

XN
n ¼ 1

ðσθn�σθÞ2
 !1=2

; ð5Þ

where σθn is the maximum circumferential Cauchy stress of the
nth sampling point through the iliac artery wall (the daughter
branches) and σθ is the mean value of σθn across the wall. The
number of sampling points N herein is chosen to be 7.
Table 2 – Best fibre angles with different pre-stretches for the

λz 1.05 1.07 1.08

Bifurcation structure 301 201 101
Tube structure 301 201 101

Fig. 4 – Cylindrical artery wall in the stress-free configuration Ωr,
Ωt, replotted following Waffenschmidt and Menzel (2014).
The transmural stress distributions at the pre-stretch of 1.07
are plotted in Fig. 3, indicating a distinct jump between the
medial and adventitial layers. This agrees with published works
(Gao et al., 2006; Holzapfel and Gasser, 2007), and is caused by the
fact that different material parameters are used for the medial
and adventitial layers. The overall transmural stress distribution
across the two layers is the most uniform for βM ¼ 201, though
the difference is small compared with that for βM ¼ 01.

3.1.1. Comparison between the bifurcation and the tube
structure
To distinguish the effect of the pre-stretch from the bifurca-
tion geometry, the simulations were run for several axial pre-
stretches in addition to the physiological value of λz ¼ 1:07, for
both the bifurcation and the straight tube structure. All other
parameters and loading conditions are kept the same as for
the tube model. The best (meaning the stress is most uniform
at that angle for the number of angles studied) fibre angles
from the UF criterion are listed in Table 2.

Interestingly, Table 2 shows that the best fibre angles of
the bifurcation and the tube structure are very similar. In
other words, the effect of the pre-stretch seems to be much
more important than the geometrical effects since, for a given
bifurcation and the tube structure.

1.09 1.10 1.12 1.20

01 01 01 01
01 01 01 01–101

the unloaded configuration Ω0, and the current configuration
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pre-stretch, the best fibre angle is basically the same in either
the bifurcation or the tube model under this hypothesis. This
important observation suggests that we may now focus on
the effects of the pre-stretch using the tube model for which
the analytical solutions can be easily derived.

3.1.2. Effect of the circumferential residual stress
Since Table 2 shows that the optimal fibre angle is 201, and
not 01, it suggests that our UF model has not captured all the
important factors. One possibility is due to the fact that the
unloaded configuration is not stress free as we have assumed
in our previous calculation. Several studies have shown that
the circumferential residual stress can change the stress
distribution through the thickness (Chuong et al., 1986;
Takamizawa and Hayashi, 1987; Delfino et al., 1997;
Greenwald et al., 1997; Auricchio et al., 2014).

To address this issue we introduce a circumferential
residual stress based on the opening angle method (Chuong
and Fung, 1986). Let α denote the opening angle in the
reference configuration, as depicted in Fig. 4. Then, in terms
of cylindrical polar coordinates ðR;Θ;ZÞ, the geometry of the
tube is defined by

RM
i rRrRA

o ; 0rΘr2π�α; 0rZrL; ð6Þ

where RM
i and RA

o denote the inner radius of the medial layer
and the outer radius of the adventitial layer, respectively,
while L is the length of the undeformed sector. For continuity,
we also have RM

o ¼ RA
i . Note that the opening angle identified

in Fig. 4 differs from the definition used in Fung and Liu (1989)
and Zulliger et al. (2004).

In terms of coordinates ðr; θ; zÞ, the geometry of the current
configuration is given by

rMi rrrrAo ; 0rθr2π; 0rzr l; ð7Þ

where rMi , r
A
o and l denote the inner and the outer radius and

the length of the deformed tube, respectively, with rMo ¼ rAi .
The deformation gradient F is then the composition of the

deformation gradient F0 relative to the unloaded configura-
tion, and Fr relative to the stress-free configuration, as
Table 3 – Geometrical parameters used for the iliac artery, chos
and Schriefl et al. (2012). As no measured opening angle is av
angle of rat is used (Fung, 1991; Holzapfel et al., 2000) for both

Parameter Description

H (mm) Wall thickness
Ri (mm) Inner referential radius
Ro (mm) Outer referential radius
ri (mm) Inner current radius
ro (mm) Outer current radius
α (deg) Opening angle

Table 4 – Minimum value of UF and corresponding βM obtaine
opening angle (α¼1601).

λz 1.00 1.05 1.07 1.10

βM 01 01 01 01

UFmin 12.84 38.00 48.48 59.75
indicated in Fig. 4. Thus,

F¼ F0Fr: ð8Þ
Using the cylindrical coordinates we have x¼ rer þ zez, where
ðer;eθ ;ezÞ are the unit basis vectors in the current configura-
tion. For our problem

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ðRM

i Þ2
kλz

þ ðrMi Þ2
s

; θ¼ kΘ; z¼ λzZ; ð9Þ

where λz is the (constant) axial pre-stretch, and k¼ 2π=ð2π�αÞ.
By incompressibility, λrλθλz ¼ 1. Hence, we have

λr Rð Þ ¼ R
rkλz

; λθ Rð Þ ¼ ðλrλzÞ�1 ¼ rk
R
: ð10Þ

The deformation gradient is then

F¼ λrer � ER þ λθeθ � EΘ þ λzez � EZ; ð11Þ
with λm;m¼ r; θ; z being the principal stretches in the radial,
circumferential and axial directions, respectively, and
Em;m¼ R;Θ;Z, are the unit basis vectors in the reference
configuration. In the absence of body forces and by assuming
no external pressure, the internal pressure P is

P¼
Z rAo

rM
i

σθ�σrð Þdr
r
; ð12Þ

where σθ and σr are the principal Cauchy stresses in the
circumferential and the radial directions, respectively.

We need to make one assumption on the kinematics in
order to make progress. To be specific, we assume that the
wall thickness does not change between the initial and the
stress-free configuration, following the studies of Delfino
et al. (1997) and Holzapfel et al. (2000), and by making use
of the incompressibility condition, we obtain

kðR2
o�R2

i Þ ¼ r2o�r2i ; ð13Þ

where Ro ¼ Ri þH and ro ¼ ri þ H, and H is the wall thickness.
This allows us to solve Eq. (12) numerically using a Gaussian
integration scheme (Holzapfel et al., 2000). The geometrical
parameters used in the simulations are summarised in
Table 3.
en from Schulze-Bauer et al. (2003), Kahraman et al. (2006)
ailable for human iliac arteries, the corresponding opening
the medial and the adventitial layers.

Value

Media Adventitia

0.8 0.6
8.9 9.7
9.7 10.3
4.7 5.5
5.5 6.1
160 160

d for different values of pre-stretch λz, when including the

1.14 1.15 1.17 1.20

01 301 411 571

69.95 71.80 72.98 73.13



Fig. 5 – Inverse procedure for determining the fibre orientation
using the stress-driven criterion. This process converges to the
solution for any values of b0M between 0o and 50o.

Medial radial coordinate r [mm]

βM
 [d

eg
]

4.8 5 5.2 5.4

0

10

20

30
λz=1.05
λz=1.07
λz=1.10
λz=1.12

Fig. 6 – Dependence of the remodelled fibre orientation
(characterized by βM) on the medial radial coordinate r as a
function of the axial pre-stretch given as 1.05 (dashed), 1.07
(solid), 1.10 (dash-dotted) and 1.12 (dotted). Residual strains
are included (α¼ 160deg).

2The term ‘quasi-static’ means that we perform a static
analysis because the loading variation with respect to time is
considered to be slow.
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Table 4 illustrates that the minimum value of UF is reached
when the optimal fibre angle is around 01 at the pre-stretch 1.07
after including the circumferential stress. This now agrees with
the experiments. It also shows the minimum value of UF at
different values of λz, which indicates a strong dependence of
optimal βM on λz. It seems that the medial fibres tend to be
aligned in the circumferential direction when the pre-stretch is
below 1.14. However, βM increases sharply ð4301Þ for λz41:15
and the transmural stress distribution becomes more uneven.
This is probably the reason why in human samples the
corresponding angular derivation of the mean fibre angle in
the media of iliac artery is close to 01 (Schriefl et al., 2012).

3.2. Hypothesis II: stress-driven remodelling

This hypothesis assumes that the fibres adapt during the
remodelling process so that the artery layers have optimal
load-bearing capability. Here we adopt a simple stress-driven
remodelling model proposed by Hariton et al. (2007), which
assumes that the two families of collagen fibres are aligned
between the principal stretch directions as dictated by the ratio
of the magnitudes of the two largest principal stresses σθ and σz
(Driessen et al., 2004; Hariton et al., 2007). In the present study,
only the collagen fibre orientation in the medial layer is
adjusted due to the remodelling process. Since remodelling
requires the solution of an inverse problem, an iterative finite
element based procedure is developed, as shown in Fig. 5.

The Cauchy stress is given by

σ ¼ σθeθ � eθ þ σzez � ez þ σrer � er;

where σm ðm¼ r; θ; zÞ are the principal Cauchy stresses and em

ðm¼ r; θ; zÞ are the principal directions. Following Driessen
et al. (2004) and Hariton et al. (2007), we assume that the
angle βM of alignment between the fibre direction obeys

tan βM ¼ σz
σθ

; ð14Þ

whereby the fibres are assumed to be in the plane spanned by
the vectors aligned with the two largest principal stresses,
and the collagen fibres are symmetrically aligned relative to
eθ, the direction of the maximal principal stress. The unit
vectors along the two families of collagen fibres are, in the
current configuration,

ai ¼ cos βMeθ7 sin βMez;

and in the reference configuration,

a0i ¼
F�1ai

jF�1aij
; i¼ 1;2:
The updated fibre alignment in the reference configuration
is then calculated from

cos ð2βM0 Þ ¼ a01 � a02:

The remodelling procedure terminates when the maximal
absolute variance of the mean fibre orientation between the
current and last steps converges to a set tolerance, i.e.
smaller than 0.011. For each iteration, we assume the artery
is in a quasi-static condition.2

Fig. 6 provides the results of the remodelling process with
the circumferential residual stress. The mean fibre orienta-
tion across the artery wall of the medial layer is 6.31 at a pre-
stretch of λz ¼ 1:07. The result is reasonably close to zero
degrees and suggests that the fibres are mostly circumferen-
tially oriented. The influence of the axial pre-stretch is also
shown in Fig. 6. On the whole, the values of the fibre angle
increase with λz, while the range of βM becomes wider when λz
becomes larger. Note that if λz is assigned an even larger
number (for example, λz ¼ 1:13), the iterative system becomes
unstable, and it is difficult to find converged solutions. This is
because the fibre angle update is determined by the ratio
between the maximal and the second principal stresses.
When the pre-stretch is greater than 1.13, the maximal
principal stress changes from the circumferential stress to
axial stress. At the transition phase, the iteration is oscillat-
ing between those two stresses. It would appear that for
λz41:13, there should be a change in the remodelling criter-
ion. However, since the physiological value of λz is less than
1.13, we do not pursue this further. The negative fibre angles
proximal to the inner radius are due to the flip-over of the
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two fibre directions. Though uniformly stretched, the inner
wall in the axial direction is under compression, in other
words, the medial principal stresses σzo0, and consequently,
the βM given by Eq. (14) changes its sign. The marginal
differences in the optimal angles compared with the UF
criterion may be due to the oversimplified criterion of the
remodelling model used.
Fig. 7 – Values of Πmin plotted against βA and βM. The red dot
indicates the maximum value of Πmin. (For interpretation of
the references to colour in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 8 – Relation between the axial stretch λz, internal
pressure P, and optimal medial fibre angle βMopt, as indicated
by the colour bar. The black solid line highlights the
variation of βMopt with P at λz ¼ 1:07; for a wide range of
pressure (βMopt ¼ 0o). (For interpretation of the references to
colour in this figure caption, the reader is referred to the web
version of this paper.)
3.3. Hypothesis III: energy minimisation

We now determine the optimal fibre orientation based on the
energy argument recently proposed by Waffenschmidt and
Menzel (2014), which assumes that the fibres are aligned so
that the minimum of total potential energy Π is maximised
with respect to βM and βA. For a hyperelastic material, Π is the
sum of the elastic strain energy Πint stored in the deformed
body and the potential energy Πext of the applied forces,
expressed as Π ¼Πint þ Πext þ const. The main objective is to
access information on preferred material, structural and
loading parameters that are associated with the extremal
states of the total energy, and to use these to identify the
favourable configurations for the design and adaptation of
artery walls. Specifically, the total energy for a tube model
can then be expressed as

Π ¼ 2πl
Z rAo

r ¼ rM
i

Ψ ðλr; λθ ; λzÞrdr�PπðrMi Þ2lþ const: ð15Þ

Note that λz is prescribed, and with the incompressibility
condition λrλθλz ¼ 1 the strain energy Ψ is a function of βM, βA,
λθi and α, where λθi is the inner circumferential stretch.

Since the equilibrium of the system also requires the
minimisation of the total strain energy in terms of displace-
ments, the optimisation of the total energy is the result of
maximising all the permissible minimised total energies. The
solution of the underlying boundary-value problem is
obtained by the optimisation of Π. The deformation variables
ðλθi; αÞ firstly minimise the total energy, which results in the
triple ðλmin

θi ; αmin;ΠminÞ. Subsequently, a set of values of Πmin

corresponding to the states of equilibrium for which Πmin is
maximised to render the optimal material parameters
ðβMopt; βAoptÞ, i.e.
fβMopt; βAoptg ¼ arg max

βM ;βA
fmin
λθi ;α

Πðλθi; α; βM; βAÞg: ð16Þ

The reader is referred to Waffenschmidt and Menzel (2014)
for the detailed algorithm that determines the functional Π in
Eq. (15). The physical interpretation of Eq. (16) suggests that
in an arterial tissue the fibres adapt to be aligned so that the
tissue's loading capacity is maximised. Thus, the internal
energy is maximised among the minimised values of Π, in the
case of Dirichlet boundary conditions.

Fig. 7 shows the variation of the total potential energy Π in
the parameter space of βM and βA. It is evaluated numerically
at the physiological pressure of 13.33 kPa and the axial
stretch of 1.07. In Fig. 7 the maximum value of Πmin is
indicated by a red dot, which occurs at βM ¼ 01. This is
consistent to the results from the previous two hypotheses.
The value of βA is discussed in the next section.

Following Waffenschmidt and Menzel (2014), we also plot
the relation between the axial stretch λz, the internal pressure
P and the optimal medial fibre angle βMopt in Fig. 8, with the
colour bar referring to the optimal value of βMopt. It is clear that
in a wide range of physiological pressure, the optimal
fibre angle is oriented towards the circumferential direction,
i.e. βMopt ¼ 01. However, if λz 41:12, then there is a sudden
change of fibre alignment from the circumferential to the
axial direction, i.e. βMopt ¼ 901, irrespective of the pressure
magnitude.

If we assign βA ¼ 53:81 (Schriefl et al., 2012), then the
results are similar to the previous two hypotheses, as shown
in Fig. 9(a). In particular, we have βMopt ¼ 01, λθi ¼ 1:23, and
α¼ 451.
4. Discussion

The main result of this paper is to show that by using each of
the three different hypotheses there seems to be an optimal
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Table 5 – Optimal medial fibre angle βM and corresponding UFmin at various values of pre-stretches λz for a rabbit carotid
artery.

λz 1.10 1.40 1.45 1.50 1.55 1.60 1.65 1.70

βM 01 01 01 21 131 311 421 501

UFmin 49.79 71.86 75.62 79.29 82.65 83.82 81.52 74.92
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mean fibre angle in the media of the human iliac artery in the
circumferential direction, as observed in recent experiments
of Schriefl et al. (2012). Since we only performed a static
analysis, the agreement with experiments seems to suggest
that the fibre alignments are dominantly influenced by the
static mean physiological loading. In order to accurately
estimate the fibre angle we need to include the residual
stress effect in the UF approach since the arteries do not
recover to the zero-stress configuration when unloaded.

In the first two approaches the fibre orientation of the
adventitia is fixed. However, with the energy optimisation
method, all parameters can be estimated including the open-
ing angle α and the adventitial mean fibre orientation βA. In
all simulations, the importance of the pre-stretch in the
determination of the fibre orientation is found to be para-
mount. This and several other issues are discussed in more
detail below.

4.1. Role of pre-stretch

Our simulations suggest that the iliac artery has only one
family of fibres in the media with preferred circumferential
direction. Hence, it is useful to ask what is so special about
the iliac artery when compared to the aorta where two
families of fibres are always present in each layer? The main
explanation, as suggested by our results, comes from the
significance of the pre-stretch. In particular, the typical pre-
stretch in an iliac artery is around 1.07, yet in most of the
large arteries such as the aorta and the carotid artery the pre-
stretch is normally larger than 1.1 (Han and Fung, 1995;
Holzapfel et al., 2000, 2007; Gasser et al., 2002; Holzapfel and
Gasser, 2007; Cardamone et al., 2009).

Indeed, when we apply the UF criterion to rabbit carotid
arteries using the data from Holzapfel et al. (2000), with the
physiological value of pre-stretch 1.6, we find the optimal
medial fibre angle of 311 (see UFs in Table 5), which is close to
the average experimental results of 291 (Holzapfel et al., 2000).

Incidentally, the optimal fibre angles of the rabbit carotid
artery would also be oriented towards the circumferential
direction if the pre-stretches are below 1.45.

We speculate that the reason for the lower value of the
pre-stretch of the iliac artery is partially due to the branching
structure, though not all bifurcating arteries have sufficiently
low pre-stretch to develop a single fibre family. The spatial
variation of the pre-stretch along the arterial tree must have
been developed optimally through a complex remodelling
process under the overall loading conditions, including the
dynamic pressure, gravity and fluid–structure interactions,
with the interplay of local artery geometries and material
properties. For example, in a human carotid bifurcation, the
pre-stretch of the layer specific parent branch is very similar
to that of the two daughter branches (Sommer et al., 2010). It
will be interesting to see more experimental data which may
establish a clearer relationship between the pre-stretch and
the fibre orientation.

4.2. Opening angle in the human iliac artery

The energy optimisation method suggests that the optimal
opening angle α is around 451 for a human iliac artery, as
shown in Fig. 9(b). This is considerably lower than the
published opening angle of 1601 found in a rat iliac artery
(Fung, 1991; Holzapfel et al., 2000). Since we have no experi-
mental data available to validate this finding, we measured
the opening angle in swine iliac arteries of seven healthy
adult swines, following the procedure described by Han and
Fung (1991) and Han et al. (2006). This measurement con-
firmed that the opening angle in the swine iliac artery is
around 801. As the swine anatomy bears some similarity to
that of the human anatomy, this seems to support our



Table 6 – Optimal medial fibre angle βM at various values of the pre-stretch λz for human iliac arteries when the opening
angle is set to 451.

λz 1.07 1.10 1.16 1.17 1.18 1.19 1.20

βM 01 01 01 301 421 501 551

UFmin 18.30 34.89 60.41 62.23 62.73 62.81 62.89

Fig. 10 – Transmural stress distribution σθ at different
opening angles. The x-axis shows the radial coordinate
across the medial and adventitial layers. The stress
distribution becomes more uniform when the residual
stress (α 6¼0o) is included.
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modelling prediction of a smaller human opening angle of
451. Using the opening angle 451 in the UF approach, we
obtained a similar medial fibre angle to that of using 1601
(rat), as shown in Table 6. The corresponding stress distribu-
tions with and without the opening angles are shown
in Fig. 10, which demonstrates that, with the residual stress,
the stress distribution is more uniform. This is consistent
with the results of Holzapfel et al. (2000).

Indeed, we have used a number of different opening
angles and found that the results are unchanged once the
opening angle α is larger than 201.

This suggests that although the fibre orientation determined
by the UF method requires the residual stress to be included,
the final result is not sensitive to the changes of the opening
angle as long as the opening angle is larger than a certain value.

Indeed, the zero fibre angle in the medial layer holds true
for a wide range of opening angles, which makes sense since
the in vivo physiological residual stress must fluctuate due to
the complex remodelling processes.

4.3. Adventitia fibre orientation βA

In most of the simulations we have fixed the fibre angle βA in
the adventitial layer. However, with the energy optimisation
hypothesis, the estimated βA is 01, which disagrees with the
experimental measurement of 53.81. In fact, Fig. 7 shows that
the maximum value of Πmin is insensitive to the variation of
βA; the curve of Πmin at βM ¼ 0 is rather flat for the whole
range of βA. This finding is consistent with the results on
carotid arteries (Waffenschmidt and Menzel, 2014), and sug-
gests that the energy optimisation method alone is not
sufficient to determine βA. Besides, the minor influence of
βA on the determination of the optimal fibre orientation in
the medial layer is further confirmed via the sensitivity test
under the other two hypotheses.

At this point, it is worth noting that Spencer et al. (1975)
considered a circular cylindrical tube of incompressible ideal
fibre-reinforced material in which the reinforcement
throughout its thickness is directed along two families of
helices making angles of 7βA. Of particular importance, they
argued that tan βA ¼

ffiffiffi
2

p
, so that βA ¼ 54:71 in order to avoid

the narrow bands of stress concentration near the surfaces at
the inner and outer radii. This value is surprisingly similar to
the adventitial fibre angle measured in experiments
(Holzapfel et al., 2000; Schriefl et al., 2012). However, this
should be viewed with caution since the presence of fibres is
not exactly equivalent to the inextensible case of Spencer
et al. (1975), and hence the agreement on the value of βA

could be a coincidence.
4.4. Limitations

We identified that the κ model is able to capture the
mechanical response of the iliac artery, as, for example,
documented in Holzapfel et al. (2004). The parameters of
the constitutive models, especially the structural parameter κ
as introduced in Gasser et al. (2006), are obtained by means of
the Levenberg–Marquardt algorithm. With the development
of advanced experimental techniques, this particular para-
meter can be directly estimated from the measured fibre
distribution density by, e.g. a π-periodic von Mises distribution
(Gasser et al., 2006). However, such estimates are often
different from the fitted values for the human iliac arteries
(Schriefl et al., 2012). An improved description of the
mechanics of artery walls at the microscopic level which
can incorporate fibre–fibre interactions, fibre recruitment and
viscoelasticity (Stylianopoulos and Barocas, 2007; Maceri
et al., 2010; Weisbecker et al., 2015) will be required in future
in order to make full use of the experimental data.

Other limitations include the fact that we have only per-
formed a static analysis. For the residual stresses, we have used
the same constant parameters for the two layers of the artery
wall. The stress-free configuration changes over time so that the
opening angles for the medial and adventitial layers and an
intact artery ring vary significantly (Fung and Liu, 1989; Holzapfel
et al., 2005a; Sommer and Holzapfel, 2012). Although the present
study reveals the potential link between the fibre orientation and
the pre-stretch, we are yet unable to explain the reason for
requiring different values of the pre-stretch in different sections
of arteries. Therefore, enhanced systematic studies including the
dynamic loading, fluid–structure interaction, and possibly tissue
remodelling at the cellular level as well as measurements of fibre
angles and pre-stretches for other arteries are required.
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5. Conclusion

From a mechanical point of view, we have suggested an
explanation for the rather unusual fibre distribution in the
medial layer of the human common iliac artery. Three
approaches have been used, namely a uniform distribution
of the transmural stress, fibre stress remodelling, and opti-
misation of the total energy. All three approaches suggest
that the optimal fibre angle in the medial layer of human iliac
arteries is zero relative to the circumferential direction, as
documented in Schriefl et al. (2012). In particular, we have
found that the axial pre-stretch is key for explaining the
optimal fibre distribution, and the particularly low value in
the iliac artery is directly associated with the single fibre
family. Moreover, we have shown the necessary involvement
of the residual stress when utilising the UF approach, and
speculate that the opening angle in human iliac artery is
around 451. Finally, it is likely that the optimal fibre angle in
the adventitia is determined by a different optimisation
principle to that of the medial layer such as dynamic loading
and fluid–structure interaction, which is a topic for a
future study.
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