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We confirm recently proposed theorems for the structure of next-to-soft corrections in gauge and gravity 
theories using diagrammatic techniques, first developed for use in QCD phenomenology. Our aim is to 
provide a useful alternative insight into the next-to-soft theorems, including tools that may be useful 
for further study. We also shed light on a recently observed double copy relation between next-to-soft 
corrections in the gauge and gravity cases.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

It is well-known that scattering amplitudes in gauge and gravity 
theories contain infrared divergences. These arise from the emis-
sion of soft gluons or gravitons, whose 4-momentum tends to zero. 
The remaining hard particles in the amplitude are then said to 
obey the eikonal approximation, and it can be shown that ampli-
tudes factorise in this limit. At tree level, for example, the ampli-
tude for the emission of n hard gluons (momenta {pi}) and one 
soft gluon (momentum k) can be written as

An+1
({pi},k

) = S(0)
n An

({pi}
); S(0)

n =
n∑

i=1

εμ(k)pμ
i

pi · k
, (1)

where we neglect the coupling constant and colour factors of the 
soft emission for brevity. Here An is the amplitude for the n hard 
particles with no additional emission, and εμ(k) is the polarisation 
vector of the soft gluon. The gravity equivalent of this is known as 
Weinberg’s soft theorem [1], and takes the form

Mn+1
({pi},k

) = S(0)
n,grav.Mn

({pi}
);

S(0)
n,grav. =

n∑
i=1

εμν(k)pμ
i pν

i

pi · k
. (2)

Until recently, much less has been known about the corrections 
to Eqs. (1), (2), upon performing a systematic expansion in the mo-
mentum of the soft gauge boson. Such corrections are known as 
next-to-soft, and the hard emitting particles then obey the next-
to-eikonal approximation. The phenomenological impact of such 
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corrections has been studied in QCD [2–6], and a systematic at-
tempt to classify them has been made in [7–9]. The gravitational 
consequences of next-to-soft radiation have been explored in [10].

An orthogonal recent body of work has explored such contribu-
tions from a more formal point of view. Based on the observation 
that Weinberg’s soft theorem can be interpreted as a Ward iden-
tity associated with BMS transformations at past and future null 
infinity [11,12], Ref. [13] conjectured a tree-level next-to-soft gen-
eralisation of Eq. (2), where the subleading soft factor is given by

S(1)
n,grav. =

n∑
i=1

εμν(k)pμ
i kρ J (i)ρν

pi · k
. (3)

Here Jρν is the total angular momentum associated with the hard 
external leg i, and Ref. [14] gave an analogous result for gauge 
theory:

S(1)
n =

n∑
i=1

εμ(k)kρ J (i)μρ

pi · k
. (4)

These results were subsequently understood from the point of 
view of the scattering equations of [15,16] in Ref. [17], using fur-
ther symmetry arguments in [18,19], and string theoretic ideas in 
Refs. [20–22]. Higher dimensions were considered in Ref. [23], and 
a holographic description of the 4-dimensional gravitational theory 
pursued in [24]. Possible loop-level corrections to Eqs. (3), (4) have 
been examined in Refs. [25–27].

The aim of this paper is to explore the above results us-
ing Feynman diagrammatic methods previously developed in 
Refs. [7–9] (which are themselves related to the earlier results of 
Refs. [28,29]). Our main motivation is to clarify how those results 
are consistent with the recently proposed theorems. We stress 
that this analysis is new: whilst Refs. [7–9] and the much earlier 
work of Refs. [28,29] derive partial results regarding next-to-soft 
 BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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Fig. 1. (a) A hard interaction which produces n particles; (b) Emission of an eikonal gluon from an external leg.
corrections, they do not fully reproduce the results of Eqs. (3), 
(4). Secondly, it is nearly always useful to have multiple, equiv-
alent ways of thinking about a given piece of physics, and we 
believe that our point of view may be useful in further studies of 
the next-to-soft theorems. Finally, connecting the recent results of 
Refs. [11–14,17–27] with Refs. [7–9] may aid the ongoing effort 
to use next-to-eikonal effects to increase the accuracy of collider 
predictions.

The structure of the paper is as follows. In Section 2 we briefly 
review the content of Refs. [7–9], addressing next-to-eikonal ef-
fects using effective Feynman rules. In Section 3, we show how 
these results reproduce the soft theorem of Eq. (4) for the case of 
scalar and fermionic emitting particles. The above references did 
not consider external gluons, and we perform this analysis in Sec-
tion 4. We will confirm the tree-level results of Eq. (4) for external 
scalars, fermions and gluons. Finally, in Section 5 we discuss our 
results and conclude. Some technical details are presented in Ap-
pendix A.

2. Review of necessary concepts

In this section, we review the results of Refs. [7–9] and related 
papers, whose aim is to systematically classify next-to-eikonal con-
tributions to scattering amplitudes in gauge and gravity theories. 
The starting point is to factorise the amplitude into a hard func-
tion, which is infrared finite, and a soft function, which collects 
all soft singularities.1 Such a factorisation is well-known (see e.g. 
Ref. [30] for a review in QCD, and Refs. [31,32] for gravity). How-
ever, Refs. [7,9] generalised the soft function to include next-to-
soft radiative corrections. The method proceeded by writing the 
propagators for the external particles in a background soft gauge 
field as first-quantised path integrals [33,34], which can be eval-
uated perturbatively. The leading term in this expansion is the 
eikonal approximation, in which external particles do not recoil, 
and change only by a (Wilson-line) phase [35]. The first subleading 
term describes the emission of next-to-soft gauge bosons, which 
are completely external to the hard interaction. Ref. [8] rederived 
the same results via a systematic expansion of Feynman diagrams 
to all orders in perturbation theory, and also checked the result-
ing formalism by reproducing known next-to-eikonal logarithms 
in Drell–Yan production. These are not the only sources of next-
to-soft correction. As Refs. [7–9] explain in detail, one must also 
worry about soft gluon emissions which originate from inside the 
hard interaction.

1 One must also include jet functions to keep track of collinear singularities. For 
the purposes of the present paper, however, we may implicitly absorb the jets into 
the hard function, as in Refs. [7–9].
Let us illustrate how the results apply to the present context, 
namely that of dressing an amplitude for the emission of n hard 
particles by an additional (next-to-)soft emission. One starts with 
a hard interaction such as that shown in Fig. 1(a). The leading soft 
singularities come from dressing all external legs (momenta {pi}) 
with a soft gauge boson (momentum k), whose emission is de-
scribed by an eikonal Feynman rule. This is shown in Fig. 1(b), and 
the kinematic parts of the eikonal Feynman rules for Yang–Mills 
theory and gravity are

pμ
i

pi · k
and

pμ
i pν

i

p · k
(5)

respectively. This clearly leads to the soft factors of Eqs. (3), (4), 
and at leading soft level one need only worry about the external 
emission of soft gluons. In Feynman diagram language, this can be 
understood by the fact that a soft gluon landing inside the hard 
interaction squares an offshell propagator, which dampens the in-
frared singular behaviour. In more physical terms, a soft gluon has 
an infinite Compton wavelength, and thus cannot resolve the sub-
structure of the hard interaction. For the same reason, the above 
eikonal Feynman rules are independent of the spin of the hard 
emitting particles.

At next-to-soft level, there are two types of contribution. Firstly, 
there are next-to-soft gluon emissions external to the hard interac-
tion, as shown in Fig. 2(a). These emissions are described by next-
to-eikonal (NE) Feynman rules which, unlike the purely soft limit, 
depend on the spin of the emitting particles. External fermions and 
scalars were considered in Yang–Mills theory in Refs. [7,8]; scalars 
only were considered in the gravity study of Ref. [9]. In Yang–Mills 
theory, the NE Feynman rules for emission of a (potentially off-
shell) gluon from a scalar and fermion are

V μ
scal. =

kμ

2pi · k
− k2 pμ

2(pi · k)2
; V μ

ferm.
= V μ

scal. −
ikνΣμν

pi · k
, (6)

where

Σμν = i

4

[
γ μ,γ ν

]
(7)

is the generator of Lorentz transformations. There are also NE 
Feynman rules describing the correlated emission of a pair of soft 
gluons. The result for emission from an external scalar, for exam-
ple, is

Rμν = p · k1kμ
2 pν + p · k2kν

1 pμ − pμpνk1 · k2 − ημν p · k1 p · k2

p · k1 p · k2 p · (k1 + k2)
,

(8)

where kν
1 and kμ

2 are the soft gluon 4-momenta. An additional con-
tribution arises for external fermions, again involving the generator 
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Fig. 2. (a) External emission of a next-to-soft gluon; (b) Internal emission of a soft gluon.
of Lorentz transformations [7,8]. Similar Feynman rules have been 
obtained for scalar external legs emitting next-to-soft gravitons in 
Ref. [9], where again there are one and two-graviton vertices.

The second type of contribution at next-to-eikonal level arises 
from the internal emission of a soft boson from inside the hard 
interaction. Such contributions violate the factorisation of an am-
plitude into hard and soft parts; physically, this corresponds to 
the emitted soft boson being able to resolve the finite size of the 
hard interaction. However, gauge invariance fixes these contribu-
tions in terms of derivatives with respect to the external momenta, 
acting on the hard interaction with no additional emission. This 
result was first derived by Low [28] for scalar particles, and gen-
eralised to fermions by Burnett and Kroll [29]. A further important 
generalisation, to massless external particles, was carried out by 
Del Duca [36]. The internal emission contributions decompose into 
a part which is independent of the spin of the external legs, and 
an additional spin-dependent piece. The latter is associated only 
with the hard collinear region, and need not concern us here. The 
former can be written, in the present notation, as

Aint.
n+1 =

∑
i

(
piμ

pi · k
kν

∂

∂ pν
i

− ∂

∂ pμ
i

)
An

({pi}
)
. (9)

In the path integral approach of Ref. [7], the first term arises from 
the non-zero initial position of each hard external line, thus mak-
ing clear that this contribution arises due to the non-trivial spatial 
extent of the hard interaction. The analogous result for gravity 
reads [9]

Mint.
n+1 =

∑
j

(
p jμp jν

p j · k
kσ ∂

∂ pσ
j

− p jμ
∂

∂ pν
j

)
Mn

({pn}
)
. (10)

To summarise, next-to-soft contributions at a given order can be 
calculated by combining external and internal emission contribu-
tions. The former are described using effective NE Feynman rules, 
whereas the latter obey the iterative formulae of Eqs. (9), (10).

3. The next-to-soft theorem for scalars and fermions

In this section, we demonstrate how the tree-level soft theo-
rems of Eqs. (3), (4) are reproduced by the results of Refs. [7–9], 
beginning with scalar emitting particles in Yang–Mills theory. As 
described above, one must combine external and internal emission 
contributions. The former can be obtained from the NE Feynman 
rules of Eqs. (6), (8). The two-gluon vertex does not contribute, 
owing to the fact that we are taking only one gluon soft, and re-
main at tree level. Furthermore, both terms in the 1-gluon vertex 
of Eq. (6) vanish: the first due to contraction with a physical po-
larisation tensor obeying kμεμ(k) = 0, and the second due to the 
onshellness of the emitted gluon (k2 = 0). Thus, only the internal 
emission contributions are necessary, which may be rewritten as

Aint.
n+1 = kν

pi · k

(
piμ

∂

∂ pν
i

− piν
∂

∂ pμ
i

)
An

= − ikν L(i)
μν

p j · k
An, (11)

where we have introduced the orbital angular momentum tensor 
for the ith particle:

L(i)
μν = xiμpiν − xiν piμ = i

(
piμ

∂

∂ pν
i

− piν
∂

∂ pμ
i

)
. (12)

For a scalar particle, the orbital angular momentum is equal to 
the total angular momentum, L(i)

μν = J (i)
μν , and thus we have indeed 

reproduced the next-to-soft theorem of Eq. (4).
Considering now fermionic emitting particles, the internal 

emission contribution will be the same as for the scalar case. How-
ever, there is now a non-zero external emission contribution, due 
to the magnetic moment term in Eq. (6). The total next-to-soft 
contribution is then

An+1 = kν

pi · k

(
piμ

∂

∂ pν
i

− piν
∂

∂ pμ
i

− iΣμν

)
An

= − ikν(L(i)
μν + Σμν)

p j · k
An, (13)

One may recognise the bracketed factor in the numerator as the 
sum of the orbital and spin angular momentum of the ith particle, 
and thus one finds

An+1 = − ikν J (i)
μν

p j · k
An (14)

as before.
We may also examine the case of gravity, and the effective 

Feynman rules for scalar emitting particles were first derived in 
Ref. [9]. However, that paper defined the graviton in terms of the 
metric gμν and its determinant g via

√−g gμν = ημν + κhμν (15)

rather than the more conventional (in high energy physics) choice

gμν = ημν + κhμν. (16)

Next-to-eikonal Feynman rules for the definition of Eq. (16) are 
derived here in Appendix A, where we also derive the rules for 
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graviton emission from fermions. The resulting one-graviton ver-
tices for the emission of a graviton of momentum k from a hard 
line of momentum p are

V μν
scal. = − pμpνk2

2(p · k)2
+ k(ν pμ)

2p · k
− ημν

2
;

V μν
ferm.

= V μν
scal. −

ikρΣρ(μpν)

2p · k
. (17)

As in the Yang–Mills case, all scalar-like external emission contri-
butions vanish. This is due to onshellness of the emitted graviton, 
and contraction with a physical, traceless polarisation tensor for 
the graviton:

εμν(k)kμ = εμν(k)kν = εμν(k)ημν = 0. (18)

For the scalar case, then, the only next-to-soft contributions arise 
from internal emissions, which are given by [9]2

Mint.
n+1 =

∑
j

(
p jμp jν

p j · k
kρ ∂

∂ pρ
j

− p jμ
∂

∂ pν
j

)
Mn

({pi}
)

=
∑

j

p jμkρ

p j · k

(
p jν

∂

∂ pρ
j

− p jρ
∂

∂ pν
j

)
Mn

({pi}
)

=
∑

j

−ip jμkρ L( j)
ρν

p j · k
Mn

({pn}
)
. (19)

Given that the orbital angular momentum is the total angular mo-
mentum in this case, this is the next-to-soft theorem of Eq. (3). For 
fermionic emitting particles, one must add the additional external 
emission contribution from Eq. (17), which gives a total next-to-
soft amplitude

Mn+1 =
∑

j

−ip jμkρ(L( j)
ρν + Σρν)

p j · k
Mn

({pn}
)

=
∑

j

−ip jμkρ J ( j)
ρν

p j · k
Mn

({pn}
)
, (20)

where we have again recognised the total angular momentum as 
the sum of the orbital and spin contributions. This is indeed the 
theorem of Eq. (3).

Before moving on, it is interesting to note that if one neglects 
the term in ημν in Eq. (17) (which in any case gives zero when 
contracted with a physical polarisation tensor), each term in the 
NE one-graviton vertex has the form of a gauge-theory eikonal 
Feynman rule multiplying a gauge-theory NE rule. This is strongly 
reminiscent of the double copy between gravity and gauge theory 
of Refs. [37,38], and indeed it has already been noted in Ref. [26]
(see after Eq. (2.15) of that paper) that the next-to-soft theorems in 
gauge theory and gravity theories appear to be related by the dou-
ble copy. The similarity between the NE Feynman rules observed 
here is itself a generalisation of the fact that the eikonal Feynman 
rules in gauge and gravity theories are related by the double copy. 
This was explored in detail in Ref. [39], where it was shown that 
matching up the infrared singularities of Yang–Mills theory and 
gravity provides all-order evidence for the double copy conjecture.

2 Note that Ref. [9] contains a number of typos, which have been fixed in Eq. (19).
Fig. 3. Emission of a single gluon from the jth external leg of the hard ampli-
tude An .

4. The next-to-soft theorem for gluons

In the previous section, we saw how to derive the next-to-soft 
theorems for external scalars and fermions from a Feynman dia-
grammatic treatment. In this section, we consider the Yang–Mills 
result for the case of external gluons. These were not considered in 
Refs. [7,8], and so we must derive the relevant NE Feynman rules. 
Our derivation will be analogous to that carried out in Appendix A, 
although we will consider the sum of internal and emission con-
tributions at the outset.

Let us start with the n-point hard amplitude of Fig. 1(a), and 
consider all places in which one may add an additional gluon. As 
described already above, we may emit this either from an external 
line, or from inside the hard interaction. Using the usual Feynman 
rules of QCD, one then finds that the (n + 1) amplitude is given by

An+1
({pi},k

)
=

(
Aμ,int.

n+1 −
n∑

j=1

T jAα
n (p j + k)

× [ηαβ(−k − 2p j)
μ + ηαμ(2k + p j)

β + ηβμ(p j − k)α]εβ(p)

(p j + k)2

)

× εμ(k). (21)

Here the first term collects the internal emission contributions, and 
T j is a colour generator associated with an external emission on 
line j, which we keep track of for reasons that will become clear. 
We have also used the notation Aα

n (p j +k) to denote the n-particle 
amplitude, but where the hard momentum p j has been replaced 
by p j + k, and where α is the Lorentz index of the jth external 
gluon line. The emission from this line is then as shown in Fig. 3. 
One may expand Eq. (21) up to first subleading order in the mo-
mentum k, and simplify the result using the transverse nature of 
the polarisation vector

εβ(p j)pβ

j = 0 (22)

as well as the Ward identity

Aα
n (p j)p jα = 0. (23)

The result is

An+1
({pi},k

)
=

{
Aμ,int.

n+1 +
n∑

j=1

T j

[[
ηαβ

( pμ
j

p j · k

+ kμ

2p j · k

)
+ kαημβ

2p j · k
− kβηαμ

p j · k

]
Anα(p j)

+
( pμ

j

p j · k
ηαβkσ − ημβ pα

j kσ

2p j · k

)
∂Anα(p j)

∂ pσ
j

]}
. (24)

One may simplify this result still further by noting that Eq. (23)
implies
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∂

∂ pσ

[
pαAnα(p)

] = 0 ⇒ pα ∂Anα(p)

∂ pσ
= −δα

σAnα(p). (25)

One then finds

An+1
({pi},k

)
=

{
Aμ,int.

n+1 +
n∑

j=1

T j

[
ηαβ

( pμ
j

p j · k
+ kμ

2p j · k

)
Anα(p j)

+ ηαβ
pμ

j kσ

p j · k

∂Anα(p j)

∂ pσ
j

−Anα
kσ

p j · k

(
ησβηαμ − ησαηβμ

)]
εβ(p j)

}
εμ(k). (26)

Let us now interpret this result. Firstly, the first and third terms in 
the square bracket can be written in the form∑
j=1

TiAnα

[
V μ

vec.
]
αβ

εβ(p), (27)

where the effective Feynman rule for the external emission of a 
gluon up to next-to-soft order is

V μ
vec. =

pμ
j

p j · k
+ kμ

2p j · k
− i

kσ Mσμ

p j · k
, (28)

and we have recognised the generator of the Lorentz group which 
acts on vector fields

Mμν
αβ = i

[
δ
μ
α δν

β − δν
αδ

μ
β

]
. (29)

The first term in Eq. (28) is the eikonal Feynman rule for the emis-
sion of a gluon from an external line; the remaining terms produce 
the next-to-soft external emission contributions. As in the fermion 
case, there is a spin-independent contribution, and a part involving 
the spin angular momentum of each external gluon.

The remaining term in the square bracket in Eq. (26) can be 
related to the internal emission contribution. One may see this by 
writing

An+1
({pi},k

) = Aμ
n+1εμ(k) (30)

on the left-hand side, and applying the Ward identity

kμAμ
n+1 = 0 (31)

which according to the right-hand side of Eq. (26) implies

kμAμ,int.
n+1 +

n∑
j=1

T j

[
Anα(p j) + kμ

∂Anα(p j)

∂ pμ
j

]
εα(p j) = 0. (32)

The first term in the square brackets cancels by colour conserva-
tion

n∑
j=1

T j = 0, (33)

and one thus obtains

Aμ,int.
n+1 = −

n∑
i=1

T j
∂Anα

∂ pμ
j

εα(p j). (34)

This is in fact a rederivation of part of the internal emission contri-
bution that we have already quoted for the scalar case in Eq. (11), 
and is similar to the original analysis by Low [28]. The result is in-
complete for massless external particles, however, as explained in 
detail by Del Duca in Ref. [36]. Here, the loophole in the above 
derivation is that we have not carefully separated out collinear 
singularities, implicitly absorbing jet functions into the hard func-
tion.3 A more careful analysis leads to the full result of Eq. (11), 
which is independent of the spin of the emitting particles (addi-
tional spin-dependent contributions are associated with the hard 
collinear region, and thus absent in the soft expansion [36]).

One now obtains the sum of all next-to-soft contributions at 
tree-level by combining the external and internal emission contri-
butions, as for the scalar and fermion cases. The only surviving NE 
contribution from Eq. (28) is the spin-dependent piece, and one 
finds4

An+1 = − ikν(L(i)
μν + Mμν)

p j · k
An

= − ikν J (i)
μν

p j · k
An, (35)

thus reproducing the next-to-soft theorem of Eq. (4).
In this section, we have seen how similar methods to those 

used in Refs. [7,8] can be used to derive the next-to-soft theo-
rem of Eq. (4) at tree-level. A similar analysis could be carried out 
for gravity. This would be much more cumbersome, however, due 
to the lengthy form of the expression for the three-graviton vertex 
when written in a helicity-independent form.

5. Conclusion

There has recently been a flurry of attention [11–14,17–27]
focusing on the behaviour of scattering amplitudes in the next-
to-soft approximation, in which a single external particle is taken 
to have a small, but non-zero, momentum. The structure of such 
contributions is formally interesting in its own right, but also has 
distinct practical applications in improving collider physics predic-
tions [2–6]. In this paper, we have examined the recently conjec-
tured next-to-soft theorems of Eqs. (3), (4) using diagrammatic 
methods developed in Refs. [7–9]. There are a number of moti-
vations for this. Firstly, our approach provides a useful alterna-
tive view on how the next-to-soft theorems arise, especially given 
that it is manifestly independent of the helicities of the emitting 
particles, and also the space-time dimension. It is interesting, for 
example, to see how the orbital and spin angular momentum con-
tributions combine to create the coupling to the total angular mo-
mentum of each external leg. We also saw that the NE Feynman 
rules for gravity and gauge theory have a (partial) double-copy 
structure, which almost certainly underlies the observation made 
in Ref. [26] that the next-to-soft factors in Eqs. (3), (4) have this 
property (analogous to the strictly eikonal analysis of Ref. [39]).

We hope that our study clarifies the relationship between the 
recent studies on next-to-soft theorems, and previous work in the 
literature. Moreover, we believe that the diagrammatic techniques 
discussed herein may prove very useful in further examination of 
e.g. loop corrections. In particular, at loop level one has to worry 
about the two-gluon (or graviton) vertex (Eq. (8) and its generali-
sations), such that one gluon is real and the other virtual [40]. Our 
techniques may also prove useful for investigating the phenomeno-
logical consequences of next-to-soft behaviour. Work in this regard 
is ongoing.

3 It is for this reason that the original theorems by Low, Burnett and Kroll [28,29]
do not fully reproduce the next-to-soft theorems of Eqs. (3), (4), as alluded to in 
the introduction.

4 Note that we have now left colour matrices implicit, consistent with the nota-
tion throughout the rest of the paper.
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Fig. 4. Emission of a single graviton from the ith external leg of the hard ampli-
tude Mn .

6. Addendum

In the final stages of this paper, the author became aware of 
the recent Refs. [41,42], which also address how to systematically 
classify next-to-soft corrections.
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Appendix A. NE Feynman rules for graviton emission

In this appendix, we calculate the effective Feyman rules up to 
next-to-eikonal order for the emission of gravitons from external 
scalars or fermions. We begin with the diagram of Fig. 4, which 
shows a single leg of the hard amplitude (momentum pi ) emit-
ting a graviton (momentum k). Examining first the case of a scalar 
emitter, one may combine the scalar propagator and graviton-
scalar vertex (see e.g. [43]) to get

Mn

[
p(μ

i (pi + k)ν) − ημν pi · (pi + k)

(pi + k)2

]
, (36)

where we have used the notation

a(μbν) = aμbν + aνbμ

and neglected a factor of the gravitational coupling κ/2 for brevity. 
Expanding the expression (36) up to first subleading order in the 
emitted graviton momentum gives

Mn

[
pμ

i pν
i

pi · k
− pμ

i pν
i k2

2(pi · k)2
+ k(ν pμ)

2p · k
− ημν

2

]
. (37)

The first term is the eikonal Feynman rule of Eq. (5), and the re-
mainder is then the NE Feynman rule of Eq. (17).

Now consider that the external line in Fig. 4 is a fermion. Again 
neglecting an overall factor of κ/2, combining the propagator and 
vertex gives

Mn
(/pi + /k)

4

[γ (μ(2pi + k)ν) − 2ημνγ α(2pi + k)α]
(pi + k)2

u(pi), (38)

where we have explicitly included the spinor associated with the 
line i. The reason for doing this is that after expanding Eq. (38)
to first subleading order in the soft gluon momentum k, we may 
simplify the result by anticommuting factors of /p and using the 
Dirac equation

/piu(pi) = 0. (39)

The result is
Mn

[
pμ

i pν
i

pi · k
− pμ

i pν
i k2

2(pi · k)2
+ p(μ

i kν)

4pi · k
+ /kγ (μpν)

i

4pi · k
− ημν

2

]
u(pi).

(40)

The first term is the (spin-independent) eikonal Feynman rule of 
Eq. (5). For the remaining terms, we may rewrite the combination

/kγ (μpν)
i

4pi · k
= k(μpν)

i

4pi · k
− ikρΣρ(μpν)

i

8pi · k
, (41)

where we have introduced the spin tensor of Eq. (7). One then 
finds the NE 1-graviton vertex of Eq. (17).

Note that in this appendix we have not contracted the ampli-
tude with the polarization tensor for the external graviton. This 
means that the one-graviton vertices we have obtained are also 
valid for off-shell gravitons.
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