
,,nn 

 
 
 
 

Campanario, F., Englert, C., and Spannowsky, M. (2011) Precise 
predictions for (nonstandard) W³ +•jet production. Physical Review D, 
83(7), 074009. 

 

Copyright © 2011 American Physical Society 

 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

 
Content must not be changed in any way or reproduced in any format 
or medium without the formal permission of the copyright holder(s) 

 

 
 
 
http://eprints.gla.ac.uk/106777/ 

 
 
 
  Deposited on:  28 May 2015 

 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



ar
X

iv
:1

01
0.

12
91

v2
  [

he
p-

ph
] 

 4
 A

pr
 2

01
1

FTUV–10–1004
KA-TP–30–2010
SFB/CPP–10–88

Precise predictions for (non-standard)

Wγ+jet production

F. Campanarioa,∗, C. Englerta,b,†, and M. Spannowskyc,‡

a Institute for Theoretical Physics, Karlsruhe Institute of Technology,
76128 Karlsruhe, Germany

b Institute for Theoretical Physics, Heidelberg University,
69120 Heidelberg, Germany

c Institute of Theoretical Science, University of Oregon,
Eugene, OR 97403-5203, USA

Abstract

We report on a detailed investigation of the next-to-leading order (NLO) QCD
corrections to Wγ+jet production at the Tevatron and the LHC using a fully-flexible
parton-level Monte Carlo program. We include the full leptonic decay of the W , tak-
ing into account all off-shell and finite width effects, as well as non-standard WWγ
couplings. We find particularly sizable corrections for the currently allowed parameter
range of anomalous couplings imposed by LEP data. In total the NLO differential
distributions reveal a substantial phase space dependence of the corrections, leaving
considerable sensitivity to anomalous couplings beyond scale uncertainty at large mo-
mentum transfers in the anomalous vertex.
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1 Introduction

Electroweak diboson production in association with a hard jet is an important class of
processes at hadron colliders such as the Large Hadron Collider (LHC) or the Tevatron.
Electroweak boson phenomenology generically provides a window to the electroweak sym-
metry breaking sector, and diboson signatures with or without jets are therefore potentially
sensitive to new interactions beyond the Standard Model (BSM). Equally important, SM-
diboson+jet production contributes to the irreducible background of new physics searches
in these channels. Hence, precise cross section predictions are mandatory to obtain a correct
interpretation of possible excesses, which might be observed in the near future. The total
cross sections for the diboson+jet production processes are fairly large compared to the pure
diboson production channels if extra jet emission at large available center-of-mass energy is
kinematically unsuppressed. The large one jet-inclusive cross section is mainly due to ac-
cessing the (anti)proton’s gluon parton distribution function at small momentum fractions
already at leading order (LO). At the same time, the gluon-induced partonic subprocesses
opening up at O(αs) give rise to exceptionally large next-to-leading order (NLO) QCD cor-
rections to inclusive diboson production, see Ref. [1]. Qualitatively similar observations have
also been made for the NLO QCD corrections to various diboson+jet production processes
in a series of recent publications [2–9].

In the present paper we extend our NLO calculation of pp, pp → W±γ + jet +X [5] to
anomalous WWγ couplings∗. We review the SM W±γ + jet phenomenology in detail and
discuss its modifications due to anomalous couplings at NLO QCD precision. This allows
us to discriminate between the effects of new physics in terms of effective interactions from
the impact of higher order corrections. Anomalous couplings searches represent benchmark
tests for non-SM interactions at the LHC at small integrated luminosity L <

∼ 30 fb−1 (see,
e.g., Ref. [10]). Measurement and discovery strategies have received lots of attention, both
from the theoretical (e.g. Refs. [11–14]) and the experimental side (e.g. Refs. [10, 15–18]).
In this context, diboson production processes are important channels at the LHC because
they exhibit large total rates, and, in case of W±γ production, because they are sensitive to
deviations of the underlying electroweak model from the SM via so-called radiation zeros.
These classical zeros of the amplitude in the qQ̄ → W±γ channels at the photon center-of-
mass scattering angles cos θγ = ∓1/3 are special to the completely destructive interference of
gauge boson-radiation in an unbroken renormalizable field theory, Ref. [19]. Any deviation
from QED by additional non-SM operators ultimately destroys this characteristic radiation
pattern. At the LHC, the antiquark direction is, in principle, indistinguishable from the
quark direction because of the proton-proton initial state, and the radiation zero gets con-
siderably washed out. ”Signing” the quark direction according to the event’s overall boost,
which has been considered in the context of dilepton asymmetries and electroweak mixing
angle measurements [20], has been shown to efficiently lift the initial state’s degeneracy in
Ref. [10]. Furthermore, the radiation zero remains present only if additional electromagnet-
ically neutral (e.g. gluonic) radiation is collinear to the photon. Hence, additional QCD

∗For convenience we refer to the computed processes as W±γ + jet production even though we include
all finite width and off-shell effects of the massive W .
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emission, as part of the NLO contribution to Wγ production, is dangerous to observing the
radiation zero. At the same time, the radiation zero becomes nearly impossible to measure
in Wγ+jet production [13].

Crucial to significance-improving strategies [11] is therefore an additionally-imposed jet
veto†. Jet vetoing, however, is a delicate strategy in fixed-order perturbation theory from a
theoretical point of view. The observed reduction of scale dependence for the exclusive Wγ
production at the LHC (see Ref. [1]) is predominantly due to excluding a region of phase
space from the total inclusive cross section, which is well-accessible at the large available
center-of-mass energy. This is also reflected in additional jet radiation becoming highly
probable as part of the real emission contribution to the NLO diboson cross section, σ(Wγ+
jet)/σ(Wγ) ∼ 3. Hence, the dominant perturbative uncertainties result from the Wγ + jet
contribution, which is a leading order αs contribution to NLOWγ production. Consequently,
current Monte Carlo-driven strategies that involve jet vetos to measure anomalous couplings
from fits to high transverse momentum distributions (via e.g. neuronal net algorithms trained
to the NLO Wγ distributions) inherit significant uncertainties, considerably larger than
those given by scale variations of the exclusive NLO cross sections. By computing Wγ + jet
production at NLO accuracy, we are able to realistically estimate the anomalous parameters’
impact on the vetoed cross section and contribute a crucial part towards modelling inclusive
Wγ production at a higher perturbative precision.

We organize this paper as follows: Section 2 gives details on our Monte Carlo implemen-
tation and introduces the notion of anomalous WWγ couplings to the reader. In Sec. 3, we
discuss the numerical results; we give total cross sections and differential distributions, both
for SM and anomalous production. We also comment on the sensitivity to anomalous cou-
plings in NLO QCD Wγ + jet production at the LHC and we quote Wγ + jet cross sections
for selection cuts adapted to anomalous couplings’ searches. The phenomenological impact
of anomalous couplings on Wγ+jet production at the Tevatron is too small for parameter
choices that are compatible with the bounds imposed by LEP data, Ref. [17]. Hence, we only
quote Tevatron results for SM-like production in Sec. 3.3. Section 4 closes with a summary
and gives an outlook to future work. Our Monte Carlo code will become publicly available
with an upcoming update of Vbfnlo [21].

2 Details of the calculation

There are three contributing partonic subprocesses at O(α3αs) for pp, pp → e−ν̄eγj +X ,

qQ̄ −→ ℓ−ν̄ℓγg , (1a)

Q̄g −→ ℓ−ν̄ℓγq̄ , (1b)

qg −→ ℓ−ν̄ℓγQ , (1c)

†The jet veto also removes kinematical configurations which are less sensitive to anomalous couplings
due to small momentum transfers in the WWγ vertex from the total cross section, see below.
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Figure 1: Representative Feynman graph
contributing to the virtual corrections to
the partonic subprocess ūd → e−ν̄eγg at
O(α3α2

s). The crosses mark points where
the photon can be attached to the quarks
or the W for the fixed gluon-W order along
the quark line.

not counting the subprocesses, which follow from interchanging the beam directions. We use
the shorthand notation q = (d, s) and Q = (u, c) and assume a diagonal CKM matrix. At
the LHC, a non-diagonal CKM matrix decreases our leading order results only at the per
mil-level. Unitarity of the (non-diagonal) CKM matrix guarantees that all CKM-dependence
drops out for flavor-blind observables computed from the dominant gluon-induced subpro-
cesses. At the Tevatron, we find our cross sections decreased by about 3%. Both modifica-
tions are smaller than the residual scale dependence at NLO, so that a diagonal CKM matrix
is an adequate approximation for our purposes. Bottom quark contributions are absent at
LO for the above approximations and can be further suppressed experimentally by b vetoing,
and we therefore neglect bottom contributions throughout the computation.

The LO matrix elements of Eq. (1) are calculated using Helas routines [22] generated
with MadGraph [23]. Although we refer to the processes as W±γ+jet production for
convenience, we include all off-shell and finite width effects of the W ’s decay to leptons, as
well as the photon’s coupling to the charged final state lepton and calculate the full QCD
corrections to the processes pp, pp → ℓ−ν̄ℓγj + X and pp, pp → ℓ+νℓγj + X at O(α3α2

s).
Representative virtual Feynman graph topologies are sketched in Fig. 1. We perform the
numerical phase space integration with a modified version of Vegas [24], which is part
of the Vbfnlo package. We divided up the integration and explicitly sum over different
channels that are optimized for the two and three-body decay of the (off-shell) W boson,
pp, pp → Wγj → ℓνγj and pp, pp → Wj → ℓνγj, respectively. For additional details on
the phase space integration’s validation against MadEvent [23] and Sherpa [25], we refer
the reader to our previous publication [5]. The numerical implementation includes the finite
width of the W by using the fixed width scheme‡ of Ref. [26]: The weak mixing angle is
taken to be real and we use Breit-Wigner propagators for the massive W throughout.

The counter term-renormalized virtual amplitude for, e.g., ūd → ℓ−ν̄eγg (Fig. 1) in

‡This is also the width scheme used by MadGraph.
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conventional dimensional regularization d = 4− 2ε can be cast into the form,

M1−Loop

Virt+CT =
αs(µ

2
R)

4π

MLO

Γ(1− ε)

[
1

2

{(
4πµ2

R

−u

)ε

+

(
4πµ2

R

−t

)ε}(
−
CA

ε2
−

γg
ε

)

+
CA

2CF

{(
4πµ2

R

−u

)ε

+

(
4πµ2

R

−t

)ε

− 2

(
4πµ2

R

−s

)ε}(
−
CF

ε2
−

γq
ε

)

+ 2

(
4πµ2

R

−s

)ε(
−
CF

ε2
−

γq
ε

)]
+ M̃Virt(−s,−t,−u) ,

(2)

with CF = 4/3 and CA = 3 denoting the casimirs of the fundamental and adjoint represen-
tations, respectively. The virtual amplitude exhibits an identical structure in color space as
the Born matrix element and we implicitly assume the su(3) generator in the fundamental

representation to be part of the definitions of MLO and M̃Virt. The constants γi are fixed
by the SU(3) representations of the NF = 5 active quark flavors and the gluons,

γq = γq̄ =
3

2
CF , γg =

11

6
CA −

2

3
TrNF , (3)

where Tr = 1/2 is the Dynkin index of the fundamental representation. s, t, u denote the
familiar Mandelstam variables of a 2 → 2 process, taken to be space-like. Depending on the
subprocess, the analytical continuation to physical kinematics is performed automatically
within our numerical code by effectively restoring the propagators’ ε description. To arrive
at the correct logarithms when evaluating Eq. (2) for physical s, t, u, we have to write, e.g.,

log (−s) = log(|s|)− iπΘ(−s) (4)

for the qQ̄ induced subprocesses for which s is a time-like quantity. Similar formulae have to
be taken into account for the analytical continuation of the dilogarithms and can be inferred
from the literature, e.g. from Ref. [27], appendix C. M̃Virt in Eq. (2) represents finite con-
tributions that embrace tensor coefficients and fermion chains after algebraic manipulations.
We also implicitly include the so-called rational terms to our definition of M̃Virt. These
finite contributions arise from the interplay of d-dimensional numerator and denominator
algebra in the limit ε → 0 (see, e.g., [28]). To compute the tensor coefficients, we apply the
Passarino-Veltman recursion up to box topologies [29] and the Denner-Dittmaier reduction
for pentagon graphs [30].

The full virtual amplitude can be assembled from elementary building blocks, that divide
the one loop graphs into certain groups. This strategy has already been applied to calculate
a series of different processes at NLO QCD precision in Ref. [31], both in the SM and beyond.
Concretely, we sum all self-energy, triangle, box and pentagon corrections to a quark line
with three attached gauge bosons of a given order to yield a single numerical routine. A
similar routine is constructed from a quark line with two attached gauge bosons (see Fig. 1).
These routines are set up with an in-house framework that partly uses FeynArts [32]
and FeynCalc [33]. From these building blocks we construct the full SM loop amplitude
for a given subprocess by trivial permutations of the bosons’ momenta and polarization
vectors, which also encode the two and three-body decay of the massive W depending on
the building block. Replacing the SM polarization vectors by polarization vectors modified by
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Figure 2: Sample Feynman graph con-
tributing to the partonic real emission sub-
process ūd → e−ν̄eγgg at O(α3α2

s). The
gluon can also be attached to the quark and
gluon lines at the positions marked by the
circles. Feynman graph topologies, where
the photon is radiated off at different posi-
tions analogous to Fig. 1, are not shown.

including anomalous WWγ couplings, we straightforwardly generalize our NLO calculation
to anomalous Wγ+jet production. The renormalization in Eq. (2) is performed on-shell for
the wave functions and we use the MS-scheme to renormalize the strong coupling constant.
The virtual corrections to all other subprocesses of Eq. (1) can be recovered from Eq. (2) by
crossing and analytical continuation analogous to Eq. (4).

To speed up the numerical evaluation of the 90 subprocesses of the real emission contri-
bution, we compute the respective matrix elements using optimized code that employs the
spinor helicity formalism of Ref. [34]. The generalization to matrix elements with anomalous
couplings is again performed by modifying the three-body effective W polarization vector to
include the non-SM interactions of Sec. 2.1. The subprocesses for pp, pp → e−ν̄eγjj +X at
O(α3α2

s) can be classified, modulo crossing, flavor summation, and initial state interchange,
into

ūu −→ ℓ−ν̄ℓγd̄u , ūu −→ ℓ−ν̄ℓγs̄c , (5a)

d̄d −→ ℓ−ν̄ℓγūd , d̄d −→ ℓ−ν̄ℓγc̄s , (5b)

ūd −→ ℓ−ν̄ℓγgg . (5c)

Representative Feynman topologies for the last line’s subprocess are indicated in Fig. 2. We
store intermediate numerical results common to all subprocesses and reuse them whenever
possible to speed up the numerical implementation. All matrix elements have been checked
explicitly against code generated with MadGraph as well as against Sherpa for integrated
cross sections (cf. [5]). Applying the dipole subtraction of Catani and Seymour [35], we have
verified our implementation against code generated with theMadDipoles [36] package. Our
code is optimized such that intermediate dipole results are reused in order to avoid redundant
dipole or Born-level matrix element calculations. We also recycle the dipoles’ Born-level
matrix elements into the integration of the finite collinear remainder, which is left after
renormalization of the parton distribution functions [35, 38]. We integrate this contribution
over the real emission phase space applying the phase space mappings of Ref. [39]. The
remaining IR-singularities of the virtual matrix element Eq. (2) cancel analytically against
the one-parton phase space-integrated dipoles, symbolically denoted by 〈I〉 in the language
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of Ref. [35]. For, e.g., the q̄Q-induced channels adding the 〈I〉 operator yields

2Re
(
M1−Loop,qQ̄→g

Virt+CT

[
MqQ̄→g

LO

]∗)
+ 〈I〉 =

αs(µ
2
R)

2π

|Mq̄Q→g
LO |2

Γ(1− ε)

×

[
1

2

{(
4πµ2

R

−t

)ε

+

(
4πµ2

R

−u

)ε}(
Kg + γg −

π2CA

3

)
−

(
Kq + γq −

π2CF

3

)

×

{
CA − 2CF

CF

(
4πµ2

R

s

)ε

−
CA

2CF

(
4πµ2

R

−t

)ε

−
CA

2CF

(
4πµ2

R

−u

)ε} ]

+ 2Re
(
M̃′

Virt

[
MqQ̄→g

LO

]∗)
, (6)

with

Kq = Kq̄ =

(
7

2
−

π2

6

)
CF , Kg =

(
67

18
−

π2

6

)
CA −

10

9
TrNF , (7)

where we have already performed the analytical continuation to time-like s. The primed
M̃′

Virt in Eq. (6) indicates that we deal with a changed finite piece compared to Eq. (2) due
to the analytic continuation. Note that we again include the Born level color structure into
the definitions of the amplitudes; summing and averaging over colors and spins yields trivial
subprocess-dependent additional prefactors. Equation (6) is explicitly free of IR divergencies
and hence finite for ε → 0. A similar factorization and cancellation up to box diagrams has
been demonstrated in Ref. [40].

2.1 Anomalous WWγ couplings

We parametrize deviations of the SM electroweak sector by extending the SM Lagrangian
by the most general, QED-preserving, Lorentz and CP-invariant operators up to dimension
six [41],

LWWγ = −ie

[
W †

µνW
µAν −W †

µAνW
µν + κW †

µWνF
µν +

λ

m2
W

W †
λµW

µ
ν F

νλ

]
. (8)

It is customary to express the κ-induced deviation from the SM operators§ by ∆κ = κ− 1.
The parameters ∆κ and λ are related to the electric quadrupole moment QW and magnetic
dipole moment µW of the W boson [41],

µW =
e

2mW

(2 + ∆κ+ λ) , QW = −
e

m2
W

(1 + ∆κ− λ) . (9)

Retaining unitarity at high energies is crucial to meaningfully modeling physics beyond
the SM. On the one hand, if probability conservation is violated, the cross section receives a
sizable contribution from probing the matrix elements at large invariant masses, even though
the parton luminosities tame the matrix elements’ unphysical growth in this particular phase

§We recover the electroweak part of the SM by choosing the parameters κ = 1 and λ = 0.
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space region. On the other hand, if unitarity is conserved, the phenomenology is mainly
dominated by comparatively low invariant masses by the same reason. In order not to violate
unitarity, the parameters ∆κ and λ have to be understood as low-energy form factors, and
their precise momentum dependence does depend sensitively on physics beyond the SM.
However, a widely-used phenomenological parametrization is (cf. Refs. [11, 41]),

∆κ =
∆κ0(

1 + (pγ + pW )2/Λ2
)nκ

, λ =
λ0(

1 + (pγ + pW )2/Λ2
)nλ

, (10)

where Λ represents the scale at which the beyond-the-SM interactions become strong, i.e.
the scale at which W compositeness is resolved. pγ and pW denote the final state momenta of
the photon and the W , respectively. Unitarity imposes nκ > 1/2 and nλ > 1 [42]; customary
choices by experimentalists are dipole profiles nκ = nλ = 2 [10,15–18]. Note that we do not
include anomalous CP-violating operators since they have already been tightly constrained
by measurements of the neutron electric dipole moment [11, 43].

We include the anomalous interactions by constructing purpose-builtHelas routines that
implement the effective Lagrangian of Eq. (8) in a straightforward way using FeynRules

(Ref. [44]) to arrive at the analytical expression for the anomalous vertex function.

3 Numerical results

3.1 Selection criteria, general Monte Carlo input and photon iso-
lation

Throughout, we use CTEQ6M parton distributions [45] with αs(mZ) = 0.118 at NLO,
and the CTEQ6L1 set at LO. We choose mZ = 91.188 GeV, mW = 80.419 GeV and
GF = 1.16639×10−5 GeV−2 as electroweak input parameters and derive the electromagnetic
coupling α and the weak mixing angle from SM-tree level relations. The center-of-mass
energy is fixed to 14 TeV for LHC and to 1.96 TeV for Tevatron collisions. We consider one
family of light leptons in the final state, which we treat as massless, i.e. we quote results for
pp, pp → e−ν̄eγj +X or pp, pp → µ−µ̄eγj +X when we speak of W−γ + jet production.

Jets are recombined from partons with pseudorapidity |η| ≤ 5 applying the algorithm of
Ref. [46] with resolution parameter D = 0.7. The reconstructed jets are required to lie in
the rapidity range

|yj| ≤ 4.5 . (11)

The charged lepton and the photon are required to fall into the rapidity coverage of the
electromagnetic calorimeter, i.e. we impose

|ηℓ| ≤ 2.5 , |ηγ | ≤ 2.5 . (12)

7
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Figure 3: Minimal photon-jet separation in the azimuthal angle – pseudorapidity plane for
W−γ+jet production at the LHC. Plotted are the leading order and next-to-leading order dis-
tributions for different isolation scales E = pγT , p

W,γ
T , max(pℓT , p

γ
t , /pT ) in Eq. (13). The upper row

displays the lower row’s minRjγ distributions around the isolation cone in more detail. The iso-
lation parameter is δ0 = 0.6 (indicated by the vertical line), and µF = µR = 100 GeV. Cuts are
chosen as described in the text.

In order not to spoil the cancellation of the IR singularities and to minimize contributions
from non-perturbative jet fragmentation associated with collinear photon-jet configurations,
we apply the photon isolation criterion of Ref. [47]:

∑

i,Riγ<R

pparton,iT ≤
1− cosR

1− cos δ0
pγT ∀R ≤ δ0 . (13)

The index i in Eq. (13) runs over all partons found in a cone around the photon of size R
in the azimuthal angle–pseudorapidity plane. The IR-safe cone size around the photon is
given by δ0, and, in principle, pγT can be replaced by an arbitrary energy scale E , which then
determines the penetrability of the photon cone by soft QCD radiation.

In a realistic experimental setting, the photon identification efficiency depends on the

8



number of finite-sized calorimeter towers that enter the candidate photon reconstruction (cf.
Ref. [48]). It is therefore worthwhile to note that the isolation scale choice implicitly enters
in the photon definition and different scale choices will be accompanied by different identi-
fication efficiencies for small values of δ0. A detailed investigation of this direction should
include effects ranging from pile-up and underlying event to NLO-corrected jet fragmentation
and is beyond the scope of this work. For values of δ0 much larger than the electromagnetic
calorimeter cell size of ∆R ≈ 0.04, however, Eq. (13) is a “sliding-cut” prescription, which is
experimentally well-defined on the level of already reconstructed particles. We can therefore
compare the impact of the IR-safe isolation criterion to the NLO scale uncertainty, which
turns out to be of order 10%. Replacing pγT in Eq. (13) by other intrinsic scales to the
process, e.g. by max pjT , corrects our NLO results at the level of 1% for inclusive cuts and
δ0 = 0.6 (Fig. 3). Comparing the LO and NLO inclusive distributions we find a large net
increase of the differential cross section. The differences in the choice of the isolation scale,
however, are only visible in the jet-photon separation distribution around the photon cone
minRjγ ≈ δ0. For larger separations minRjγ > δ0 we do not find any notable phenomeno-
logical impact of the isolation scale once we take into account the cross section’s residual
scale dependence on µR, µF . For the isolation scale E = pW,γ

T = |pγ
T +pℓ

T + /pT
| the threshold

behavior around δ0 changes most significantly when comparing LO and NLO distributions
(we denote the neutrino’s four-momentum by /p in the following). The behaviour at LO is a

consequence of pW,γ
T = pjT and the W recoiling against the photon-jet pair if the jet is emitted

around the photon cone. Therefore, probing smaller parton-photon separations effectively
means increasing the transverse momentum of the W for central events. The isolation scale,
however, is set by the jet itself. Due to the exponential drop-off of the pWT = |pℓ

T + /pT
| spec-

trum, collinear jet-photon configurations are highly attenuated for separations smaller than
δ0 at LO, see Fig. 3. At NLO the kinematical LO correlation of the jet and Wγ-system is
modified by additional parton emission, which allows the W to be emitted at smaller trans-
verse momenta. Thus, QCD radiation into the photon cone around the threshold δ0 becomes
more probable than at LO. At the same time, however, pW,γ

T decreases and more partons get
vetoed at distances smaller than δ0, and a steep drop-off is still visible in minRjγ around δ0
at NLO for E = pW,γ

T in Fig. 3. In addition, we add events with a positive-definite weight to
the minimum-separation distribution with the second resolved jet approximately balancing
the jet-photon-W system in pT , which also modifies the minRjγ threshold behaviour.

We now move on to investigate the general features of Wγ+jet production with inclusive
cuts on jets, photon, and lepton; we require

pjT ≥ 50 GeV, pℓT ≥ 20 GeV, pγT ≥ 20 GeV . (14)

To avoid the collinear photon-lepton configurations we impose a finite separation in the
azimuthal angle-pseudorapidity plane of

Rℓγ =
√
∆φ2

ℓγ +∆η2ℓγ ≥ 0.2 . (15)

For the jet-lepton separation we choose

Rjℓ ≥ 0.2 , (16)
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and for the photon isolation we impose

δ0 = 0.6 . (17)

It is customary to also analyze the cross sections’ behavior with an additional ’no resolvable
2nd jet’–criterion [2], i.e. a veto on the second jet, if it gets resolved,

pj,vetoT ≥ 50 GeV , |yvetoj | ≤ 4.5 (exclusive NLO) . (18)

This allows us to identify the dominant contributions to the NLO-inclusive cross section. In
addition, it was shown in Ref. [5] that this cut leads to seemingly stable exclusive Wγ+jet
production cross sections at the LHC. Similar observations have been made for the other
diboson+jet cross sections provided in Refs. [2–4, 6–8]. The stabilization of the exclusive
cross section does, however, not provide a reliable estimate of the perturbative cross sections’
uncertainties over the whole phase space. We will discuss this in more detail in Sec. 3.2.

3.2 NLO QCD Wγ+jet production in the SM at the LHC

We quote the inclusive cross sections at the LHC for the chosen cuts in Tab. 1. The dif-
ferences comparing W+ to W− is mainly due to the different parton distributions at the
LHC. The cross sections’ scale dependencies, estimated by varying µF = µR by a factor
two around 100 GeV, is reduced from approximately 11% to 7% when including the NLO
QCD corrections. As already pointed out, introducing a veto on the second resolved jet,
leads to considerable stabilization of the integrated NLO cross section; the one jet-exclusive
cross sections (Tab. 2) exhibit scale variations of 0.5% for W−γ+jet and 2% for W+γ+jet
production, respectively. Naively, this suggests that vetoing the second hard jet amounts
to a perturbative stabilization of the NLO cross section at a lower exclusive rate by effec-
tively rejecting the µR-dependence of the real emission dijet contributions to the hadronic
NLO Wγ+jet cross sections. However, given that extra jet radiation becomes important in
the tails of the transverse momentum distributions, Fig. 4, the veto introduces substantial
uncertainties in this very phase space region. This can be inferred from Fig. 5, where we ex-
emplarily examine the impact of the fixed-scale variation µF = µR = 50 GeV, . . . , 200 GeV
on the photon’s transverse momentum for both inclusive and exclusive production. For
completeness we note that dynamical scale choices, such as µR = µF = max pjT , result in
quantitatively similar uncertainty bands. While the distribution’s uncertainty band’s rela-
tive size is uniform over the entire range of the distribution for inclusive production, the jet

σNLO
incl [fb] K = σNLO

incl /σ
LO

W−γj 615.3± 2.8 1.49
W+γj 736.5± 3.5 1.41

Table 1: Inclusive next-to-leading order cross sections and total K factors for the processes pp →
e+νeγj + X and pp → e−ν̄eγj + X at the LHC for identified renormalization and factorization
scales, µR = µF = 100 GeV. The cuts are chosen as described in the text.
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Figure 4: Transverse momentum of theW and maximum jet transverse momentum at leading order
(dashed) and next-to-leading order (solid). The lower panels display the differential K factor, with
the K factors of the total inclusive and exclusive production plotted as dashed horizontal lines.
The W momentum is reconstructed from its decay products in the transverse plane.

σNLO
excl [fb] K = σNLO

excl /σ
LO

W−γj 429.2± 0.8 1.04
W+γj 495.1± 1.0 1.06

Table 2: Exclusive next-to-leading order cross sections and total K factors for the processes
pp → e+νeγj+X and pp → e−ν̄eγj+X at the LHC for identified renormalization and factorization
scales, µR = µF = 100 GeV. The cuts are chosen as described in the text.

veto stabilizes dσNLO
excl /dp

γ
T exclusively in threshold region, which dominates the integrated

exclusive rate. In fact, the distributions for µ = 50 GeV and µ = 100 GeV, which are used
to generate the uncertainty band in Fig. 5, intersect at pγT ≈ 100 GeV signaling an accidental
cancellation of the renormalization and factorization scale dependence for the small total K
factors of the exclusive sample. The large uncertainty in the exclusive pγT distribution’s tail
then translates into an only mild overall scale dependence σNLO

excl . Similar conclusions have
been drawn for WZ+jet production in Ref. [8].

This is yet another example of the well-known fact that total K factors and total scale
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Figure 5: Transverse momentum of the photon for exclusive (left panel) and inclusive W−γ + jet
production (right panel). The uncertainty bands refer to fixed scale variations around µR = µF =
100 GeV by a factor two in the NLO computation only.

variations tend to be misleading when quantifying the impact of QCD quantum corrections
to a given process. A better understanding of the QCD effects can be gained from differential
K factors of (IR-safe) observables O,

K(O) =
dσNLO

dO

/
dσLO

dO
, (19)

which encode the phase space dependence of the corrections, projected onto the respective
observable. With unsuppressed extra jet radiation at the LHC’s large center-of-mass energy¶,
the distributions’ shapes are highly altered when including NLO inclusive corrections. While
the shapes of purely electroweak distributions, i.e. distributions of observables that involve
only photon, lepton and missing energy, survive to NLO QCD for the most part of the
phase space, semi-hadronic observables get significantly modified with respect to their LO
approximations due to additional jet radiation. Representatively, we show the azimuthal
angle–pseudorapidity separation of lepton and photon and the minimal distance between
jet and lepton in Fig. 6. We also plot the azimuthal angle between lepton and photon and

¶The proton is probed at small momentum fractions x ∼ 0.02 at LO, which results in
σLO(W±γj)/σLO(W±γjj) ∼ 2 for the chosen selection criteria. Note that this is qualitatively different
from the situation encountered in NLO Wγ production.
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Figure 6: Lepton-photon separation and minimum jet-photon separation at LO and NLO. The
horizontal lines display the K factors of the total inclusive and exclusive production.

W and photon in Fig. 8. The purely leptonic observables also receive sizable modifications
at the edges of the phase space, which are determined by the chosen cuts. If, e.g., the
Wγ system recoils against additionally emitted partons at NLO, the W and the photon are
forced to larger rapidity differences (Fig. 7), which communicates to the azimuthal angle–
pseudorapidity separation of lepton and photon at large values. Obviously this effect cannot
be buffered by the additional jet veto. It is important to note that the pseudorapidity
difference of the W and the photon in Fig. 7 is experimentally not observable because the
neutrino’s longitudinal momentum explicitly enters the observable’s definition. We show
the distribution for comparison only. All other observables do depend only on the missing
transverse momentum, which is experimentally reconstructed from the event’s calorimeter
entries [37].

The typical signatures ofWγ+jet production at the LHC are dominated by configurations
close to the pT -thresholds; the entire event is central with lepton and photon preferably
emitted at small angular distances in the transverse plane. The collinear photon-lepton
singularity is cut away by the requirement of Eq. (15). The photon is typically emitted
collinear to the W in the transverse plane. The jet recoils against the Wγ pair, and is
back-to-back to the W and the photon in the azimuthal angle distribution. For events with
W and γ back-to-back (e.g. |φWγ| ≥ 150 deg, where the inclusive NLO cross sections drops
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Figure 7: Lepton-photon and W -photon (pseudo)rapidity separation LO and NLO. The horizontal
lines display the K factors of the total inclusive and exclusive production. The W four-momentum
is defined from its decay products: pWµ = pℓµ + /pµ.

by about 80% to σNLO
incl = 131 fb) the jets tend to balance each other at small rapidity gaps

of order one. These gaps are due to the dominant qg- and q̄g-induced partonic subprocesses
of the dijet contribution. Due to the relatively large available phase space for additional jet
emission, the corrections are particularly large for this phase space region, K = 1.6. This
is in accordance with the large differential K factor around φWγ

<
∼ π in Fig. 8. Note that

this is also a part of the phase space which is more sensitive to the distinct photon isolation
scales. In addition, with W and photon back-to-back, events with |φWγ| ≥ 150 deg can be
understood as “genuine” pp → Wγ +X events, subject to anomalous couplings’ studies‖.

Anomalous couplings generically modify the pγT distribution at large values, Eq. (10).
It is therefore worth commenting on the impact of the NLO corrections onto the region
of phase space characterized by very large pγT already at this point. Considering energetic
events in the tails of the pT distributions (e.g. pγT > 1 TeV) the picture is quite different
from the situation we have described above. Jet emission is logarithmically enhanced in the

‖These configurations give rise to large momentum transfers in the trilinear WWγ coupling. The QCD
corrections are therefore important to understand the deviations that result from anomalous couplings. We
will discuss this in more detail in Sec. 3.4.
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Figure 8: Leading order and next-to-leading order distributions of the azimuthal angle between
photon and lepton, and photon and W . The horizontal lines display the K factors of the total
inclusive and exclusive production.

dominant gluon-induced subprocesses qg → WγQ already at LO, which can easily be seen
from the Altarelli-Parisi [38] approximation of collinear emission q → QW as demonstrated
in Ref. [11]

dσ(qg → WγQ) = dσ(qg → qγ)
e2

16π2 sin2 θw
log2

pγT
2

m2
W

, (20)

for a diagonal CKM matrix. The preferred situation is therefore a collinear W -jet pair that
recoils against the hard photon. This region of phase space receives sizable QCD corrections:
The extra parton emission in these events has no preferred direction in the azimuthal angle
and is kinematically unsuppressed. The pWT distribution receives sizable corrections for the
same reason. The uncertainties in this region of phase space are dominated by the dijet
contribution, which is only determined to LO approximation in our calculation. Hence, our
NLO correction does not improve the cross sections’ stability in this extreme region of phase
space. However, as the anomalous couplings affect the pγT distribution at values much lower
than Λ ∼ TeV, see Eq. (10), the NLO corrections give rise to perturbatively predictive
deviations from the SM, see Sec. 3.4.

Vetoing the second resolved jet, Eq. (18), removes most of the characteristics of additional
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Figure 9: Leading order and next-to-leading order max(pjT ) and pγT distributions at the Tevatron,
including the respective differential K factors. The horizontal line represents the K factor of the
total inclusive production.

jet radiation. The total exclusive cross sections are tabulated in Tab. 2. Comparing the
uncertainty band of the photon transverse momentum in Fig. 5 and the respective phase
space dependence of the QCD corrections in Fig. 4, we conclude that perturbative stability
against variations of factorization and renormalization scales of dijet-vetoed pp → ℓνγj+X
production shows up as a subtraction of a O(α3α2

s) leading-order contribution (the real
emission dijet contribution) from a relatively stable inclusive NLO prediction. The vetoed
contribution is kinematically well-accessible and unsuppressed by QCD dynamics. The larger
scale dependence of the vetoed distributions’ tails compared to inclusive production remains
as an echo. At larger values of pγT , exclusive production does not yield a perturbatively
reliable result, which is also indicated by negative weights.

3.3 NLO QCD Wγj production in the SM at the Tevatron

For Tevatron collisions we find a total cross section of

σNLO = (14.86± 0.03) fb (K = 1.35) . (21)
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Tevatron, including the respective differential K factors. The horizontal line gives the K factor of
the total inclusive production.

The proton and the antiproton are tested at x ∼ 0.2 so that qQ̄-induced subprocesses domi-
nate the total hadronic cross section. The considerably lower center-of-mass energy compared
to the LHC in combination with the cuts on the jet transverse momentum effectively intro-
duces a jet veto, so that the Tevatron shapes resemble the NLO exclusive LHC distributions.
The shapes of the transverse momentum distributions at large pT are overestimated by the
LO approximation, yielding differential K factors of order 0.5 at NLO for the distributions’
tails. Since additional jet radiation is kinematically suppressed compared to the LHC, the
semi-hadronic observables typically receive smaller relative corrections around the σNLO/σLO

rescaled LO distributions. Yet, QCD-radiation effects are still sizable, and events tend to
be re-distributed to smaller minimum separations of the hadronic jets with respect to the
lepton and the photon, Fig. 10.
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Figure 11: Total K factor contours
for pp → e−ν̄eγj + X cross section at
the LHC for anomalous input parameters
|∆κ0|, |λ0| ≤ 0.5 with dipole form factor
n = 2 and the cutoff scale Λ = 1 TeV.

3.4 NLO QCD Wγ+jet production with anomalous WWγ cou-

plings at the LHC

We now include anomalous couplings to the NLO Wγ + jet cross section predictions. Most
stringent bounds on anomalousWWγ couplings are currently given by the combined analysis
of LEP data of Ref. [17],

1 + ∆κ0 = 0.984+0.042
−0.047 , λ0 = −0.016+0.021

−0.023 , (22a)

and recent fits at hadron colliders are from the Tevatron D/0 experiment Ref. [18]

1 + ∆κ0 = 1.07+0.16
−0.20 λ0 = −0.0+0.05

−0.04 . (22b)

Both bounds are at 68% confidence level, extracted from data assuming Λ = 2 TeV and
dipole profiles. Note, that both experiments are consistent with the SM prediction ∆κ0 =
λ0 = 0. Generically, these bounds select a region in the parameter space where the QCD
corrections are particularly important. This can be inferred from a scan over a wide (and
experimentally ruled-out) range of anomalous parameters in Fig. 11. We choose cuts in
resemblance to the selection criteria that are typically applied by the ATLAS collaboration
to probe anomalous trilinear couplings, e.g., Ref. [10]

pγT ≥ 100 GeV , pℓT , /pT ≥ 25 GeV , Rℓγ ≥ 1.0 , (23)

where /pT denotes the missing transverse momentum. In addition, we choose inclusive
hadronic jet cuts

pjT ≥ 20 GeV , δ0 = 0.4 , Rjℓ ≥ 0.2 . (24)

These cuts yield a too low total rate at the Tevatron to be phenomenologically important.
This can also be inferred from comparing the pγT distributions at the LHC and the Tevatron
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Figure 12: Inclusive NLO QCD pp → e−ν̄eγj +X cross section contours at the LHC in fb after
applying the cut of Eq. (3.15). We show the W−γ+jet cross section for parameters κ0, λ0 that
are consistent with the LEP bounds. We choose dipole form factors n = 2 and a cutoff scale
Λ = 2 TeV [10,18].

for large values, where the effects of anomalous couplings will be visible, Figs. 5 and 9. We
therefore focus on anomalous couplings at the LHC. The qualitative reason why the QCD
corrections turn out large for parameter choices in the vicinity of the SM is easily uncovered
by examining the corrections’ pγT dependence. From Fig. 4 we infer∗∗ that K(pγT ) > K in the
threshold region and K(pγT ) < K in the tail of the distribution. Consequently, the region
of phase space, where the anomalous couplings’ impact is well-pronounced, i.e. pγT

<
∼ Λ,

provides a smaller fraction to the NLO cross section for inclusive cuts compared to the LO
approximation rescaled by the total K factor of inclusive production. Additionally, at low
transverse momenta, the distributions are dominated by SM physics due to small momentum
transfers in Eq. (10), so that they are largely independent of ∆κ0, λ0 in this particular phase
space region. In total, not only a large fraction of the cross section, but also a large share
of its increase compared to LO, is insensitive to the underlying anomalous parameters for
experimentally allowed values ∆κ0, λ0. This is completely analogous to anomalous WZ+jet
production [9]. The NLO inclusive cross section is therefore less sensitive to the anomalous
couplings than the LO cross section, and K = σNLO/σLO is large in regions, where the
distributions are dominated by their low pT behavior: K peaks around the SM, ∆κ = λ = 0,
Fig. 11. From Fig. 5 and the related discussion, it is also apparent that, in addition to
lost perturbative stability for large pγT , the effects of anomalous couplings are suppressed in
exclusive Wγ+jet production.

To increase the sensitivity to κ0 and λ0 in the experimentally allowed range, we addition-
ally require the W and the photon to be back-to-back in the transverse plane, by imposing
an azimuthal angle

|φWγ| ≥ 150 deg . (25)

∗∗We slightly abuse the notation: K(pγT ) is the differential K factor in the sense of Eq. (19) and K without
parentheses refers to the total K factor of exclusive production.
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Figure 13: Inclusive NLO QCD distributions of the photon transverse momentum in anomalous
pp → e−ν̄eγj + X at the LHC for different parameters κ0, λ0 that are consistent with the LEP
bounds. We choose dipole form factors n = 2 and a cutoff scale Λ = 2 TeV [10, 18]. The width of
the SM curve represents the SM scale uncertainty that results from varying µR = µF around the
central scale of 100 GeV by a factor two.

This cut effectively mimics “genuine” Wγ events with additional hadronic activity. Given
the hard pT requirements, this selection criterion can be replaced by a cut on |φℓγ| or ∆Rℓγ

without qualitatively changing the phenomenology (see also Figs. 7 and 8). The resulting
variation of the integrated W−γ + jet cross section for parameters (∆κ0, λ0) in the range of
Eq. (22) is of order 10%, Fig. 12. Comparing this variation to the uncertainty inherent to the
SM expectation at the given order of perturbation theory, which, e.g., yields σ ≃ 60.6 fb for
µR = µF = 50 GeV, we see that the cross sections’ increase due to the anomalous couplings
is compatible with the SM NLO scale uncertainty, signaling a vanishing sensitivity of the
total rate to ∆κ0, λ0.

This, however, does not hold for differential distributions at large momentum transfers,
e.g. for the pγT spectrum, which receives large anomalous couplings-induced modifications
of the distribution’s tail. The altered spectrum is well outside the SM-uncertainty band
for larger values of (∆κ0, λ0), with a particular sensitivity to λ0. Remember that λ0 dials
the dimension six operator in Eq. (8), which is not present in the SM. The characteristic
enhancement vanishes when the anomalous parameters approach their SM values, and the
shape deviations become comparable to the distribution’s uncertainty. The larger cross
section at large pγT compared to the SM translates into an increased cross section for the Wγ
back-to-back configurations, which is also visible in the pseudorapidity differences at small
separation, Fig. 14. The anomalous couplings’ impact on this distribution is qualitatively
different from the QCD corrections, which exhibit K(pγT ) < K for large pγT . Therefore,
the NLO cross section at small rapidity differences is smaller than the NLO-normalized LO
distributions suggests, Fig. 7. Yet, the NLO uncertainty from integrating over the small
pT configurations cover the anomalous couplings effect entirely, already by varying the scale
within a small intervall, as indicated in Fig. 14. Given the residual anomalous couplings-
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Figure 14: Inclusive NLO QCD distributions of the photon lepton rapidity difference in anomalous
pp → e−ν̄eγj + X at the LHC. We show histograms with different parameters κ0, λ0 that are
consistent with the LEP bounds. We choose dipole form factors n = 2 and a cutoff scale Λ = 2 TeV
[10,18].

induced deviations of the pγT shape, a more inclusive measurement strategy that relies on fits
to the inclusive pγT spectrum or on multivariate analysis of the distributions can supplement
traditional techniques and appears to be practicable. This is also motivated by the overall
theoretical uncertainty of order 10% becoming comparable to the estimated experiments’
systematics at the reported order of perturbation theory.

4 Summary and Conclusions

In this paper, we have calculated the differential NLO QCD corrections to Wγ production in
association with a hadronic jet, including full leptonic decays and all off-shell effects of the
W . We have given details on the calculation’s strategy and have also discussed the effects
of anomalous WWγ couplings. The corrections are sizable and exhibit substantial phase
space dependencies, and should be included in phenomenological analysis which employ
these processes, either as signal or as background. In particular, we have found the exclusive
production’s perturbative stability to be accidental — additional jet vetoing does not amount
to a experimental strategy which is under good theoretical control at the given order of
perturbation theory. Qualitatively identical results have been shown to hold for WZ + jet
production in Ref. [8], where the dominant QCD corrections are identical and only get tested
at different scales. This strongly indicates that the additional jet veto does not provide a
meaningful procedure for the entire class of massive diboson plus jet cross sections beyond
theoretical contemplation.

Even if theoretically less favored due to kinematical obstruction, inclusive Wγ+jet pro-
duction (and hence inclusive Wγ production) exhibits potential sensitivity to anomalous
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couplings via shape deviations of the pγT distribution. Integrated cross sections for our inclu-
sively chosen leptonic cuts, however, entirely loose their sensitivity to modifications of the
electroweak sector due to the low-pT QCD uncertainties. Providing the NLO corrections to
pp → ℓ± + γ + /pT + jet +X , we realistically asses the impact of anomalous couplings on the
characteristic pγT distribution in Fig. 13. For larger anomalous couplings that are still com-
patible with the combined LEP measurements, the distributions significantly deviate from
their SM expectation and fall well outside the SM distribution’s uncertainty. Comparing to
anomalous WZ+jet production, we find more sizable deviations in the distributions’ shapes
in the allowed parameter range. Whether the observed sensitivity can be carried over to the
experiment represents a challenging question, which is beyond the scope of this work. We
leave a more thorough investigation of this direction to future work.
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