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Abstract
When the level separation of a qubit ismodulated periodically across an avoided crossing, tunneling to
the excited state—and consequently Landau–Zener–Stückelberg interference—can occur. The types
ofmodulation studied so far correspond to a continuous change of the level separation.Herewe study
periodic latchingmodulation, inwhich the level separation is switched abruptly between two values
and is kept constant otherwise. In this case, the conventional approach based on the asymptotic
Landau–Zener formula for transition probabilities is not applicable.We develop a novel adiabatic-
impulsemodel for the evolution of the system and derive the resonance conditions. Additionally, we
derive analytical results based on the rotating-wave approximation (RWA). The adiabatic-impulse
model and theRWA results are comparedwith those of a full numerical simulation. These theoretical
predictions are tested in an experimental setup consisting of a transmonwhoseflux bias ismodulated
with a square wave form. A rich spectrum is observed, with distinctive features correspoding to two
regimes: slow-modulation and fast-modulation. These experimental results are shown to be in very
good agreement with the theoreticalmodels. Also, differences with respect to thewell known case of
sinusoidalmodulation are discussed, both theoretically and experimentally.

1. Introduction

Aparadigmatic example of quantummechanical time-evolution is the Landau–Zener (LZ) problem [1]: in its
modern formulation, a qubit is swept across an avoided crossing of the adiabatic energy states. Themodel is
characterized by the asymptotic LZ probability pLZ ofmaking a transition between the states, which is typically

calculated for energy sweeps linear in time. In a coherent system, if these traversals across the crossing are
repeated periodically, one observes the Landau–Zener–Stückelberg (LZS) oscillations of the qubit population,
caused by interference of the different evolutionary paths [2].

LZS interference has been realized in a variety of systems, such as Rydberg atoms [3], superconducting
qubits [4], semiconductor quantumdots [5, 6], donors in silicon nanowires [7], nitrogen vacancy centers in
diamond [8], nanomechanical oscillators [9], and ultracold atoms in accelerated optical lattices [10]. In these
experimental realizations, the periodicmodulation between two extrema of the transition energy has been
achieved by driving the qubit longitudinally with a triangular or sinusoidal signal. By assuming that the extrema
are sufficiently far away from the crossing, one can estimate that the transition occurs at the avoided crossing and
the transition probability amplitude can be approximated by the asymptotic LZ probability.

However, the LZmethod for calculating the transition probability is not applicable when the speed of the
sweep is increased.With increasing speed, the transition is no longer located strictly at the avoided crossing, but
instead it is spread over a larger energy range. This can be demonstrated in a qubit whose level separation is
changed abruptly. Applying naively the asymptotic LZ formulawould give =p 1LZ , predicting the
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disappearance of the characteristic interference pattern for repeated traversals.What happens instead is that for
a sudden switch the energy range of the LZ transition diverges,meaning that the end points are alwayswithin the
transition region, and thus the asymptotic LZ formula is not applicable.

In this paperwe study a qubit whose energy level separation is switched periodically between two constant
values, see figure 1(a).We call this type ofmodulation ‘periodic latching’ because in-between the switches the
qubit is latched onto afixed value of the energy separation. In this casewe can separate two relevant time scales,
fast and slow, for switching and latching, respectively. This brings in a qualitatively new conceptual aspect
compared to the sinusoidal or triangularmodulationwhere only one timescale (the period) exists for both the
transition and the adiabatic evolution.Moreover, periodic latching results in interference patternswith specific
features, qualitatively different from those obtained by sinusoidal or triangularmodulation.Wewill refer to
these effects generically as Stückelberg interference, to emphasize themore general character with respect to the
standard LZS interference, where the asymptotic LZmodel for transition probabilities is assumed to be valid.

The problemof discontinuous periodicmodulation appeared for the first time in nuclearmagnetic
resonance experiments where the nuclear spin evolutionwasmanipulated by periodic trains of sharp, intense
pulses [11]. Recently, the problemof qubitmodulationwithmultiple timescales has attracted renewed
attention. For example,modulationswith two different Fourier components (at frequenciesΩ and Ω2 , or atΩ
and Ω3 ) have been considered [12]. Also, aperiodic sequences of sharp pulses have been employed in
superconducting circuits to create quantum simulations [13] of weak localization of electrons in disordered
conductors [14] andmotional averaging [15], while bi-harmonicmodulation has been employed to simulate
universal quantum fluctuations [16]. The effect of sudden changes in the energy level separation is similar to that
produced by defects and two-level fluctuators [17–19]. To the best of our knowledge, the periodic latching
modulation has not been previously discussed in the literature.

The periodic latchingmodulation can be implemented in a circuit-QED setup [20], allowing us to test the
theoretical predictions against the experiment. Themagnetic flux threading the SQUIDof the transmon [20]
can bemodulatedwith a square pulse pattern, which naturally brings in two time scales: the duty cycle provides
the periodicity, while the raise and fall times occur on a different,much shorter, time-scale. However, the
transition frequencies in this setup lie in theGHz range. This presents a technical challenge for the realization of
the square pulses, which evenwith state-of-the art equipment cannot be generated and transmitted undistorted
in a cryogenic setup at such high frequencies.We demonstrate that this problem can be circumvented by driving
the qubit near resonancewhich effectively leads, in the rotating frame, to transition frequencies in theMHz
range. Rapid and precise control of the qubit’s transition frequency is generally important in, e.g., thefield of
quantum computing [21], and even in the study of quantumfields in curved spacetimes [22–25].Our results can
be seen as step along this line of research, and suggest that the use of a rotating frame could be an alternative
route to realizing these experiments.

The paper is organized in the followingway. In section 2, we construct an adiabatic-impulse theory
appropriate for themodeling of periodic latchingmodulations.We also derive the excited state population in the
steady state and the locations of the population extrema. Section 3 is devoted to our experimental realization
consisting of a transmonwith afluxmodulation of square wave form.We show that by dressing the transmon
with an additionalmicrowave drive, the resulting effectiveHamiltonian is of the generic avoided-crossing form.

Figure 1. (a) Schematic of the avoided crossing, showing qubit energy levels as a function of the instantaneous transition frequencies.
The eigenenergies ϵ± are representedwith thick solid lines. The blue arrowed lines and the dashed lines illustrate the periodic latching
modulation. (b)Diagramof various regimes at differentmodulation parameters. The range of experimentally achievable parameters
is shown as a rectangle (drawn smaller for clarity).
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In section 4we compare the experimental data with the numerical results for the transmon, including higher
energy levels, andwe discuss the slow-modulation and the fast-modulation regimes. In this sectionwe also
develop an analyticalmodel based on the rotating-wave approximation (RWA). Also, we compare the
experimental and numerical datawith those resulting from sinusoidal driving, and extract the sideband traces
demonstrating the differences in the two forms of driving. Section 5 concludes the paperwith a summary and
future prospects.

2. Stückelberg interference under periodic latchingmodulation

Conventionally, the periodic level-crossing problemhas been studied in terms of the genericHamiltonian

 
ν σ σ= + +H t f t

gˆ ( )
2

[ ( )] ˆ
2

ˆ . (1)z x

This represents a quantummechanical two-level system (qubit) with off-diagonal coupling g, and diabatic
energy level separation ν modulated by a time-periodic function f(t). The types ofmodulation f(t) studied so
far have been of sinusoidal and triangular form [3–10]. The latter case corresponds precisely to the linear time-
dependence originally introduced by Landau [1], while the former can be approximated as linear near the
avoided crossing region. In both of the above cases there is only one time scale involved in f(t), that is, the period
of themodulation. Accordingly, the dynamics of the time-periodic system is formally discretized into an
adiabatic evolution interrupted by instantaneous non-adiabatic LZ transitions in the close vicinity of the avoided
crossing [2]. The probability of a single transition between the adiabatic energy states is given by the celebrated
LZ formula.Moreover, the periodic LZ transitions can interfere, leading to LZS-oscillations of the qubit
population [2].

2.1. The LZ approach
In the case of latchingmodulation, the transition frequency is instantaneously and periodically switched
between two constant values. In contrast to the previous studies, the adiabatic evolution and the transitions are
now clearly separated in the time domain. This kind of time-evolution can be achieved by using amodulation f
(t) with two very different timescales: one very slow, realizing the simplest adiabatic evolution in a time-
independent form for a time π Ω2 ,whereΩ is the angular frequency of themodulation; and the other one very
fast, corresponding ideally to a sudden change in the frequency of the qubit. Since in-between the sudden
transitions the system is ‘latched’ to one of the transition frequencies, wewill refer to suchmodulation as
periodic latchingmodulation. In practice, the latchingmodulation can be createdwith a squarewave function
(50%duty cycle) with amplitude δ,

δ Ω=f t t( ) sgn[cos( )]. (2)sq

Let us recall the LZ formula:

π= −p
g

v
exp

2
, (3)LZ

2

LZ

⎡
⎣⎢

⎤
⎦⎥

where the rate of change of the diabatic energy separation evaluated at the crossing is given by =vLZ

f t t[d ( ) d ]cross. A direct application of this formula for the case of ideal sudden latchingwould correspond to an
infinite LZ speed = ∞vLZ . Then the LZ formula yields =p 1LZ , predicting the absence of interference and
therefore constant qubit population [2]. The reason for the inadequacy of the LZ approach for the problemof
latching is that this formalism requires the asymptoticmatch of the adiabatic and diabatic states far enough from
the avoided crossing point. In our case this assumption is not satisfied, since δ can be such that the latching
points are inside the transition region. The problemof thewidth of the transition and the validity of the LZ
approximation has been studied previously in the literature. It has been shown [2, 26] that if the LZ speed
increases to values >v g 4LZ

2 then the transition time scales as ∼t v1LZ LZ . As a result, thewidth of the
transition region increases as ∼v t vLZ LZ LZ . In our case it can easily exceed the range of the extreme points of

the latchingmodulation, when ν δ≳ ±v 4( )LZ
2.

Conversely, if onewishes to study the parameter regime outside the region of validity of the LZ formula, the
sinusoidalmodulation is not the optimal choice. To reach a large LZ speedwith amodulation

δ Ω=f t t( ) sin( )sin wewould need to increaseΩ to values above themodulation amplitude δ, as can be checked
from the criterion above. However, for Ω δ≫ motional averagingwashes outmost of the features in the
spectrum [15]. This effect ofmotional averaging is indeed observed in our experiments with sinusoidal
modulation described below. In contrast, in the case of latchingmodulationwe have the advantage of using an
additional very fast time-scale (the linear ramp time). The fast ramp, together with the finite δ, automatically
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ensures that we are outside the regime of validity of the LZ formula and therefore frees the slow-time variables δ
andΩ, for realizing interference.

Thuswe have to develop a different approach to calculating the non-asymptotic transition probabilities
suitable for the case of periodic latchingmodulation. This is done next by employing the so-called adiabatic-
impulsemethod.

2.2. Unitary evolution of a qubit under periodic latchingmodulation
Let us consider that the latching period starts from right r( ) latch position, where the transition frequency is
ν δ+ . The other latch position is referred to as ‘left’ ℓ( ) and the corresponding energy gap is ν δ− , see
figure 1(a). TheHamiltonian is diagonalized straightforwardly in both latches, leading to the eigenenergies

ϵ ν δ= ± + +± g
2

( ) , (4)r( ) 2 2

ϵ ν δ= ± − +ℓ
± g

2
( ) , (5)( ) 2 2

and the corresponding eigenstates ψ∣ 〉ℓ
±

r( , ) , see the appendix.
We can switch from the eigenbasis of the ‘right latch’ to that of the ‘left’ bymaking a unitary transformation

≡
−

− −
ℓ→U

p p

p p

1

1
, (6)r

s s

s s

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

where ψ ψ= 〈 ∣ 〉ℓ
+ −p r

s
( ) ( ) and ψ ψ− = 〈 ∣ 〉ℓ

− −p1 r
s

( ) ( ) . Since Ĥ is symmetric, ps can be taken to be real,

representing the sudden-switch transition probability. Naturally, = =ℓ ℓ ℓ→ →
−

→U U Ur r r
T1 .When the system is

switched fromone latch to the other, we assume that it does not have time to react by adjusting its state.
Accordingly, the (instantaneous) unitary time-evolution during the switching is given by ℓ→Ur or ℓ→U r . The
validity of this sudden approximation is studied in detail in the appendix.

In-between the switches, the system is ‘parked’ in either of the latchesℓ or r, and it gathers adiabatic phase in
the corresponding eigenbasis:

≡ϕ
ℓ ϕ

ϕ

− ℓ

ℓ
U e 0

0 e
, (7)r( , )

i

i

r

r

( , )

( , )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where ϕ ϵ ϵ π Ω≡ −ℓ ℓ ℓ
+ − 2r r r( , ) ( , ) ( , )⎡⎣ ⎤⎦ . During one period, the time-evolution of a state Ψ∣ 〉(0) starting from

the right latch can bewritten as

Ψ π
Ω

π
Ω

Ψ= U
2 2

(0) , (8)⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where

π
Ω

α γ

γ α
≡ =

−
ϕ ℓ ϕ

ℓ
ℓ ϕ→ →U U U U U U

2 *

*
, (9)r

r
T

r
r

2
( ) ( )

2
( )⎜ ⎟⎛

⎝
⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

and

α = − +ϕ ϕ ϕ ϕ− + − −ℓ ℓ( )p p1 e e , (10)s
i

s
ir r( ) ( ) ( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

γ ϕ= − − ℓ( )p p2i 1 sin . (11)s s
( )

Starting from the ground state Ψ ψ∣ 〉 = ∣ 〉−(0) r( ) , the probability offinding the system in the excited state after
one period is given by

γ ϕ= = − ℓ
+ ( )P p p4 1 sin . (12)2

s s
2 ( )

The structure of this equation resembles Stückelberg’s single-period population in the LZS-model [2], with ps
playing the role of the LZ probability. However, unlike the case of conventional continuousmodulation, the
probability ps does not depend on the frequency ofmodulation.Moreover, as already pointed out, the
asymptotic LZ probability formula for linear switching yields the incorrect result =+P 0, while in our case the
probability ps is not necessarily 1, allowing distinct evolutionary paths that can interfere. The LZ result can be
recovered only in the limit of large driving amplitude δ ω ω≫ ∣ − ∣ g,0 , inwhich casewe can neglect the effects
due to g, resulting in =p 1s .
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After n periods, one has [27]

π
Ω

≡
−

U
u n u n

u n u n

2 ( ) ( )

( ) ( )
, (13)

n
11 21

*

21 11
*

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with

ϕ α ϕ
ϕ

= +u n n
n

( ) cos i(Im )
sin

sin
, (14)11

γ ϕ
ϕ

=u n
n

( )
sin

sin
, (15)21

ϕ α=cos Re . (16)

Thus, the excited state population after n periods is

γ ϕ
ϕ

= =+P n u n
n

( ) ( )
sin

sin
. (17)21

2 2
2

2

By averaging over ≫n 1periods, we obtain the time-averaged excited state population

γ
α

γ
γ α

=
−

=
+

+P̄
1

2 1 (Re )

1

2 (Im )
, (18)

2

2

2

2 2

where γ α∣ ∣ + ∣ ∣ = 12 2 .

2.3. Resonances
Themaximumexcited state population +P̄ , i.e. a resonance, is obtainedwhen α =Im 0:

ϕ ϕ ϕ ϕ− + + − =ℓ ℓ( )p p1 sin sin 0. (19)r r
s

( ) ( )
s

( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
This can be analyzed further in the regimes ≈p 1s or ≈p 0s , resulting in the conditions

ϕ ϕ π− =ℓ
−m , (20)r( ) ( )

ϕ ϕ π+ =ℓ
+m , (21)r( ) ( )

respectively. Thefirst resonance condition is thus valid for relatively large values of δ compared to g and ν∣ ∣, i.e.
δ ν≳ ∣ ∣and δ ≫ g , while the second one is validwhen δ ν≲ ∣ ∣and ν∣ ∣ ≫ g . It is, however, instructive to plot
them in the entire range of δ (see figure 3). Let us note that in the case of sinusoidal or triangularmodulation one
obtains a resonance condition similar to equation (19) (see [29]) but, in contrast to those, in our case the validity
regimes of equations (20) and (21) do not depend on the value of themodulation frequencyΩ.

In addition to these resonances that refer to the cyclic evolution, we can identify certain resonance and anti-
resonance conditions originating from the single-period population +P from equation (12). The single-period
resonance is obtained from themaximumof +P ,

ϕ π= +ℓ n2 1

2
. (22)( )

If the evolution after one period results in the same initial state, that is =+P 0, we have anti-resonance or
coherent destruction of tunneling [30]. The anti-resonance condition can bewritten as

ϕ π= ′ℓ n . (23)( )

In the expressions above, +m , −m , n, and n′ are integers.We note that the single-period resonance and anti-
resonance analytic conditions obtained above are shifted from those given by the standard LZS-model for
sinusoidalmodulation, in agreementwith our numerical simulations andwith the experimental data presented
later. This is because in the case of continuousmodulation the system collects a Stokes phase [2] during the non-
adiabatic transitions, whereas in the case of latchingmodulation it does not. Also, the average steady state
population (18) depends on the starting latch. The steady state occupation can be obtained by averaging over all
possible initial phases of themodulation pulse [31]. Nevertheless, we aremainly interested on the locations of
the resonances, which remain invariant under the averaging.

The theoretical description presented here is valid everywhere in the parameter space δ Ω( , )of the latching
modulation.However, a number of analytically intuitive results can be obtainedwhen Ω ≫ g , a limit called the
RWA regime [29], see figure 1(b). These results are presented in section 4. In the following sectionwe present
details of the experimental realization of the above scheme.
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3. Experimental realization

Wehave studied the above scheme in the conventional circuit-QED setup [20], which consists of a capacitively-
shuntedCooper pair box (a transmon) coupled to a coplanar waveguide resonator used for dispersive readout.
The periodic latchingmodulation is created by feeding a square pulse current, generated by an arbitrary
waveform generator, through theflux bias coil coupled inductively into the SQUID loop used to tune the
Josephson energy of the transmon. A schematic of the circuit and an optical image of the sample is presented in
figure 2. In the following, wewill show that this results in an effective two-levelHamiltonianwith periodic
latchingmodulation, thus realizing theHamiltonian studied in the previous section.

We start with the full Hamiltonian of the transmon, including the couplingwith the resonator:

ω β φ φ= + + + − − −( ) ( )H a a eV n a a E n n E Eˆ ˆ ˆ 2 ˆ ˆ ˆ 4 ˆ cos ˆ cos ˆ , (24)r rms g
† 0 †

C
2

J1 1 J2 2

where = ΣE e C2C
2 is the single-electron charging energy, ΣC is the total parallel capacitance (including the

shunt), EJ1 and EJ2 are the Josephson energies of the two Josephson junctions, and ng is the effective offset of the

number of Cooper pairs. The resonator frequency is ω = L C1r r r and â denotes the annihilation operator of

the resonatormode. Also, ω=V C2rms r r
0 and β = ΣC Cg [20]. In the following, wewill concentrate on the

bare qubit part consisting of the three last terms in the aboveHamiltonian.
TheHamiltonian (24) results from the circuit quantization of the qubit coupled to the resonator. As usual,

φ1 and φ2 denote the gauge-invariant phase differences across the two junctions, and they fulfill thefluxoid
quantization condition

φ φ πΦ Φ π− = 2 (mod 2 ). (25)1 2 0

Here Φ = h e20 is the flux quantum, andΦ is the totalmagnetic flux through the loop, which is the sumof the
external biasflux Φext and the screening flux Φs. Normally the loop inductance of a transmon is negligibly small,
therefore Φ Φ≈ ext, and, to simplify the notations, we take the flux Φ Φ Φ∈ −[ 2, 2]ext 0 0 .We define

φ φ φ≡ +ˆ ( ˆ ˆ ) 21 2 , ≡ +ΣE E EJ J1 J2 and assume that the transmon asymmetry ≡ − ≪Σ( )d E E E 1J2 J1 J . The

transmon isflux-biased at a constant value Φdc, on top of whichwe overlap the time-dependent square pulse
flux: Φ Φ Φ= +t t( ) ( )ext dc sq . As a result, the transmon part ofHamiltonian(24) can bewritten as

Figure 2. (a)Optical image (artificially colored) of the transmon samplewith a detail of the SQUID loop of the transmon. (b)
Measured spectrumas a function of the dc-component Φdc of the externally-appliedmagnetic field Φ t( )ext , together with numerical
fitting (dashedwhite line). The lower drawing is a schematic of the equivalent electrical circuit.
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πΦ
Φ

φ

πΦ
Φ

πΦ
Φ

φ

= − −

+

Σ

Σ

( )H E n n E

E
t

ˆ 4 ˆ cos cos ˆ

sin sin
( )

cos ˆ . (26)

g0 C
2

J
dc

0

J
dc

0

sq

0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

It is convenient to introduce the standard harmonic oscillator creation and annihilation operators b̂, b̂
†

associatedwith the operators φ̂ and n̂,

φ φ= +( )b bˆ ˆ ˆ , (27)zpf
†

φ
= −( )n b bˆ

i

2
ˆ ˆ , (28)

zpf

†

where φ πΦ Φ≡ ΣE E2 [ cos( )]zpf C J dc 0
1 4⎡⎣ ⎤⎦ . Accordingly, we have =b b[ ˆ, ˆ ] 1

†
since φ =n i[ ˆ , ˆ] . In order to

minimize the effects of chargefluctuations, the constantflux bias is chosen so that the zero-point phase
fluctuations are small, φ ≪ 1zpf . In this case, the effective offset charge ng can be eliminated bymaking a gauge

transformation, similar to [20]. Since the phase is localizedwith only smallfluctuations around the equilibrium
position, the localminima of the cosine potential φcos can bewell approximated by a fourth order polynomial.

TheHamiltonian operator of the qubit part is thenwritten as

ω φ
πΦ
Φ

φ
πΦ

Φ

≈ − + − +

× − +

Σ( ) ( )

( )

H b b
E

b b
E

b b

b b
t

ˆ ˆ ˆ
12

ˆ ˆ
2

sin ˆ ˆ

1
1

12
ˆ ˆ sin

( )
, (29)

p0
† C † 4 J

zpf
2 dc

0

† 2

zpf
2 † 2 sq

0

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

where the plasma frequency ωp is defined as

ω πΦ
Φ

= ΣE E8 cos . (30)p C J
dc

0

⎛
⎝⎜

⎞
⎠⎟

Thefirst two terms in equation (29) comprise the conventional transmonHamiltonian: a harmonic oscillator
with a quartic perturbation. The latter two terms are due to the time-dependent fluxmodulation.Wewill show
that in the case of square pulsemodulation, these termswill produce the periodic latchingmodulation of the
qubit.

In terms of the unperturbed harmonic oscillator states ∣ 〉j{ }, one obtains 〈 ∣ + ∣ 〉 = +j b b j j( ˆ ˆ ) 2 1
† 2 and

〈 ∣ + ∣ 〉 = + +j b b j j j( ˆ ˆ ) 6 6 3
† 4 2 ; also the even powers of φ̂ do not couple states with different parity. By

truncatingHamiltonian(29) to theHilbert space spanned by the two lowest energy levels ∣ 〉 ∣ 〉{ 0 , 1 }, one gets

 ω σ= +H f tˆ
2

( ) ˆ , (31)z0 0 sq
⎡⎣ ⎤⎦

where the transition energy

 ω ω= − E , (32)p0 C

and the longitudinal drive

 πΦ
Φ

φ φ
πΦ

Φ
= −Σ ( )f t

E t
( )

2
sin 2 sin

( )
. (33)sq

J dc

0
zpf
4

zpf
2 sq

0

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

By comparingwith equation (2), we can identify the latchingmodulation amplitude
δ πΦ Φ φ φ πΦ Φ= −ΣE sin( )( 2 )sin( )J dc 0 zpf

4
zpf
2

sq 0 , where Φsq is the square wave amplitude of themagnetic
flux in the transmon SQUID loop.

Besides thefluxmodulation, the qubit is also driven via the resonator by anothermicrowave field of
frequencyω. By neglecting the quantumfluctuations of the resonator, the second term inHamiltonian (24) can
bewritten as

β
φ

ω ω σ= − =( )H
eV

n t b b g tˆ 2
cos( )i ˆ ˆ cos( ) ˆ , (34)d

rms
r y

0

zpf

†

where nr is the number of coherent quanta in the resonator,ω is the driving frequency, and in the latter equality
we havemade the two-state truncation and defined  β φ≡g eV n(2 )rms r

0
zpf . The vacuum Jaynes–Cummings

coupling to thefirst transition is defined by  β φ≡g eVrms0
0

zpf , thus =g g n2 r0 .
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Next, we transform into a frame rotating at the driving frequencyω around the z-axis, implemented by the
unitary transformation ωσ− texp[ i ˆ 2]z .With an additional rotation σ σ→ˆ ˆy x , we obtainfinally the effective
Hamiltonian:

 
ω ω σ σ= − + +H t f t

gˆ ( )
2

( ) ˆ
2

ˆ , (35)z xeff 0 sq
⎡⎣ ⎤⎦

which defines a σx-coupled qubit with frequency ν ω ω= −0 modulated by f t( )sq . In other words, in our

experiment the genericHamiltonian (1) is realized as an effectiveHamiltonian in the subspace of dressed states
formed by the qubit and the transverse driving field.

The dependence of the energy level separation on the applied externalmagnetic flux given by equations (30)
and (32) can be used to extract the transmon parameters.We have diagonalized the full transmonHamiltonian,
and byfittingwith themeasured spectrum (white dashed line infigure 2)we can extract =E h 0.35C GHz,

=ΣE h 8.4J GHz, and ≈d 0.1. The relaxation rate Γ π =2 1.21 MHz and the dephasing rate Γ π =2 3.12 MHz
were obtained by independent characterizationmeasurements [32]. The value π ≈g 2 800 MHz for the Jaynes–
Cummings coupling between the resonator and the transmonwas extracted from vacuumRabimode splitting
data. To allow a goodfidelity in the transmission of the square pulse at relatively high frequencies, the qubit was
minimally filtered, with the downside of an increased noise level. The readout of the transmon is based on the ac
Stark shift of the resonance ωr from its bare frequency ω π =2 3.795r GHz, resulting in a change in the
microwave reflection coefficient S11, which is recorded by a vector network analyzer. For each point in the
spectra (corresponding to detuning ω ω− 0 andmodulation frequencyΩ) we average over 70 such
measurements.

4. Results and discussion

In this section, we present the experimental results and compare themwith the theoretical predictions, see
figure 3. Infigure 3(b)we show the experimental result for the qubit under periodic latchingmodulation as a
function of the frequency of detuning ν π ω ω π= −2 ( ) 20 and the latching frequency Ω π2 . Themulti-cycle
analytic resonance conditions equations (20) and (21), in addition to the the single-period anti-resonance
condition of equation (23), are overlaid on top of the right half of the data.We note that equations (20) (yellow)
and (21) (gray) explainwell the resonances within their validity ranges: ω ω π δ π∣ − ∣ ≲ =2 2 1000 MHz, and
ω ω δ π∣ − ∣ ≳ =2 1000 MHz respectively. The position of the single-period antiresonance condition
equation (23) (red) agrees with the experiment aswell, although the comparison in the low-Ω region is limited

Figure 3. Stückelberg interference pattern for periodic latchingmodulation as a function of detuning ω ω− 0 and latching frequency
Ω. (a) Simulation of the transmondispersive shift equation (36) and (b)measured reflection coefficient with parameters
ω π =2 2.620 GHz, δ π =2 100 MHz, π =g 2 20 MHz, Γ π =2 1.21 MHz, Γ π =2 3.12 MHz,T=50mK. The resonance conditions
(20), (21), together with the antiresonance condition (23), are plottedwith continuous yellow, grey, and red lines, respectively.
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by the poor signal-to-noise ratio. In the following subsectionswewill provide amore in-depth quantitative
comparison between the data and the theory.

4.1. Comparisonwith numerical simulations
Infigure 3(a) we show the numerical simulations for the latchingmodulation together with the resonance
conditions resonance conditions (20), (21), and the antiresonance condition (23). The analytic conditions
coincide remarkably well, within their range of validity, with the resonances and antiresonances obtained from
the numerical results.

These numerical results are obtained by calculating numerically the steady state population of the driven and
modulated transmon in a thermal bath by using the quantum trajectorymethod [34]. A transmon is a only
weakly anharmonic, therefore in order to take into account the thermal excitationsmore precisely, the
Hamiltonians (31) and (34) are extended for the five lowest eigenstates [20, 33].We assume that the driving
field couples only the ground state and the first excited state. This approximation is reasonable since the
detuning of the field is smaller than the anharmonicity EC, that is  ω ω∣ − ∣ < E0 C. In the dispersive limit
[20, 33], the transmon population shifts the eigenfrequency of the resonator by

∑Δω χ=
=

P , (36)r

i

i i
0

4

where Pi is the steady state population of the ith level and χ ω ω ω= − −−g i[ ( )i i i r0
2

1

ω ω ω− + − −+/i( 1) ( )]i i r1 the state dependent dispersive frequency shift and ω ω= + −i i E[ (1 ) 2]i 0 C

denote the transmon eigenenergies. Infigures 3–6, we show the numerical shift Δωr with respect to the
background value calculated for an undriven transmon.

In the simulationwe have set the temperature of the environment toT=50mK,which is the base
temperature of the refrigerator.We note however that due to reduced filtering,most likely the noise level felt by
the qubit is higher than in the ideal situation. Effective qubit temperatures larger than 100mKhave been
determined previously in transmons that do not thermalize properly [35]. Indeed in our simulationswefind
that by increasing the temperature to higher values results in reduced contrast of thefine structures of
figure 3(a), in accordancewith the experiment. Other sources of non-ideality in the experiment are the presence
ofmildmicrowave resonances in the cables and in the sample holder, and the imperfect generation and
transmission of square pulses to the qubit.

From figure 3we can clearly distinguish two regimes, depending on the ratio of the amplitude δ of the
latchingmodulation and its frequencyΩ: a slow-modulation regime for δ Ω ≳ 2 and a fast-modulation regime
for δ Ω ≲ 2. Aswewill see, the ratio δ Ω appears as the argument of the sideband amplitudes in the rotating-
wave approximation approach developed in section 4.3. In the slow-modulation regime afine structure of
resonances appear and the differences between the latchingmodulation and other types ofmodulation become
visible, while in the fast-modulation regime the sidebands are the prominent feature. Note that in the spectrum

Figure 4. Stückelberg interference pattern for periodic latchingmodulation as a function of detuning ω ω− 0 and latching amplitude
δ. The results are shown in a compact formwith the simulation (a) for negative detunings and experiment (b) for positive detunings.
Thewhite ellipses indicate the theoretically-predicted positions of themaxima. Themodulation frequencywas fixed at Ω π =2 50
MHz and the other parameters are the same as infigure 3.
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shown infigure 3we cover awide range of values δ Ω ≈ …0.8, , 33 in both the slow-modulation and the fast-
modulation frequency regimes.

It is also possible tomeasure the qubit population as a function of detuning by varying themodulation
amplitude at afixedmodulation frequency, which is the standard representation of the LZ interference [2]. To
check this, infigure 4we plot a few population oscillations as a function of the detuning ω ω− 0 and latching
amplitude δ at afixedmodulation amplitude Ω π =2 50MHz. This spectrum covers the parameter range
δ Ω ≈ 0.5, ..., 4.5. Although the interference pattern is visible, this representation is not optimal for extracting
the differences between sinusoidal and other types ofmodulation [12].

4.2. Comparison between periodic latchingmodulation and sinusoidalmodulation
Wenow compare the spectrumof the systemunder periodic latchingmodulationwith that of a sinusoidal
modulation. Infigure 5we show the spectrum for sinusoidalmodulationwith exactly the same parameters (the
same qubit frequency ω0 and the samemodulation amplitude) as in figure 3. One notices already from the full
spectra offigures 3 and 5 that the structures at low and intermediatemodulation frequencies are rather different.

Figure 5. Stückelberg interference pattern for sinusoidalmodulation as a function of detuning ω ω− 0 andmodulation frequencyΩ.
(a) Simulation of the transmondispersive shift equation (36) and (b)measured reflection coefficient with sinusoidalmodulation of
amplitude δ π =2 100 MHz.Other parameters are same as infigure 3.

Figure 6.Population and frequency shifts along the second sideband. (a) Comparison between sinusoidal (blue) and periodic latching
(black)modulation, with the samemeasurement parameters and the samemodulation amplitude as in figure 3. The axis on the left
represents the total dispersive shift Δωr of the cavity, as predicted by the numerical theoretical simulation (continuous lines), see
equation (36). The right axis shows themeasured change in themicrowave reflection coefficient ∣ ∣S11 (data points), referenced to the
value corresponding to the ground state of the qubit. The vertical (red) arrows indicate the position of antiresonances (coherent
destruction of tunneling) predicted by equation (23). (b) Comparison between the numerical simulation (continuous black line) and
the RWAapproximation for periodic latchingmodulation, leading to analytical results equations (41) and (44) (green line) for the
population Pe of the first excited state of the two-level transmon. The parameters are as in figure 3 except hereT=0mK.At small
values ofΩ the RWA is represented as a dashed line to indicate that it is outside its expected range of validity.
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To illustrate the differences, infigure 6(a) we present a comparison between the sinusoidal and the latching
modulation along the second sideband, where for clarity we show the spectra in the low-frequency range, up to
70MHz.Here, in order to eliminate the asymmetry seen in the cavity response between positive and negative
ν ω ω= −0 , we calculate the average of the sidebands = −m 2 andm=2. The rather poor signal to noise ratio
does not allowus to clearly identify all the population oscillations, but some differences can be seen clearly.

Best seen in figure 6(a), thefirstmaximumof the second latching sideband is shifted to higher values ofΩ
when compared to that of the sinusoidalmodulation. At very large values of themodulation frequency Ω δ≫ ,
both the latching and the sinusoidal-modulation sidebandwould eventually decrease to zero. In the low-Ω limit,
the dispersive shift due to the sinusoidalmodulation remains around Δω π ≈2 0.9r MHzwhenΩ is decreased,
whereas in the case of the latchingmodulation there is a considerable drop (ideally to zero). This is due to the fact
that for the periodic latchingmodulation the qubit spends almost no time around ω ω− = 00 .We have
confirmed this behaviourwith several other values of δ.

4.3. RWAdescription
In order to get a better understanding of the spectra we develop here an alternative analytic description in terms
of theHamiltonian (35) and the RWA. This description is valid at relatively largemodulation frequencies
Ω ≳ g , shown schematically infigure 1(b).

We transform theHamiltonian equation (35) into a frame co-rotatingwith the longitudinalmodulation f(t)
by employing the unitary transformation

∫σ
τ τ= −U t fˆ ( ) exp

i ˆ

2
( )d , (37)z

t

0

⎛
⎝⎜

⎞
⎠⎟

which, in the Bloch-sphere picture, corresponds to a frame rotating around the z-axis with the instantaneous
angular velocity f(t). In this frame, the new effectiveHamiltonian is obtained from equation (35) by

′ = + ∂H U HU U Uˆ ˆ ˆ ˆ i ( ˆ ) ˆ
t

† †
,

 
ω ω σ σ σ= − + ++

⋆
−H t

g
A t A tˆ ( )

2
( ) ˆ

2
( ) ˆ ( ) ˆ , (38)zeff 0

⎡⎣ ⎤⎦
where ∫ τ τ=A t f( ) exp i ( )d

t

0

⎡⎣ ⎤⎦.
We perform a Fourier-series expansion for the effective periodic transverse driveA(t):

∑ Δ= Ω

=−∞

∞

A t( ) e , (39)
m

m
m ti

where Δm are the sideband amplitudes. For sinusoidalmodulationwith δ Ω=f t t( ) cos( )sin , the Jacobi–Anger

relation [36] immediately gives Δ δ Ω= J ( )m m
sin , where Jm(x) is the Bessel function of the first kind. For the

periodic latchingmodulationwith δ Ω=f t t( ) sgn[cos ]sq , the driving amplitude has a piecewise representation

∫
π
Ω

π
Ω

π
Ω

π
Ω

π
Ω

π
Ω

π
Ω

π
Ω

= =
− + < < +

+ < < +

τ τ

δ

δ

−

− −

π
Ω

π
Ω

+

( )
A t

k
t

k

k
t

k
( ) e

e if
2

2

2

2
,

e if
2

2 3

2

2
,

(40)f

t

t
sq

i ( )d

i

i

t

k

k
0

sq

2

(2 1)

⎧
⎨
⎪⎪

⎩
⎪⎪ ⎡⎣ ⎤⎦

where k is an integer, fromwhichwe obtain the sideband amplitude for periodic latchingmodulation

∫Δ Ω
π π

Ωδ
Ω δ

π πδ
Ω

= =
−

−Ω−
π

Ω
A t t

m

m

2
e ( )d

2
sin

2 2
. (41)m

m tsq

0

i
sq 2 2 2

2

⎜ ⎟⎛
⎝

⎞
⎠

Note that the sideband amplitudes of both sinusoidalmodulation and latchingmodulation transform in the
sameway under → −m m, namely Δ Δ= −− ( 1)m

m
m

sq sq and Δ−m
sin = Δ−( 1)m

m
sin.

The resulting effectiveHamiltonianwritten in a frame rotating at frequency ω ω−0 around the z-axis
becomes

 ∑ Δ σ= +Ω ω ω

=−∞

∞
− +

+( )H t gˆ ( )
2

e ˆ h.c. . (42)
m

m
m t

eff
sq i 0

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

When ω ω Ω≈ + m0 , and if the other drivingfields are not too strong Δ Ω∣ ∣ <g n
sq , ≠n m, we canmake the

RWAby neglecting the non-resonant driving fields.WhenΩ is small, the RWA results can be improved by
adding Bloch–Siegert and higher order corrections (so-called generalized Bloch–Siegert shift [37]).

Wefind the steady state occupation probability Pe by solving the Lindblad formmaster equation analytically
around every resolvable resonance [15, 38]. Themaster equation including the pure dephasing and the
energy relaxation processes, with rates Γφ and Γ1, respectively, is written for two transmon levels using the
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Hamiltonian (35)


ρ

ρ Γ σ σ ρ Γ σ ρσ σ σ ρ ρσ σ= − − + − −φ − + + − + −( )t

t
H t t

d ˆ ( )

d

i ˆ ( ), ˆ ( )
1

4
ˆ , ˆ , ˆ

1

2
2 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (43)z zeff 1

⎡⎣ ⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦

Note that when decoherence is introduced, thewidths of the sidebands are broadened due to both the
decoherence rate Γ Γ Γ= + φ22 1 and the power broadening caused by the strong transverse driving, Δg m

sq [38],

yielding a linewidth Γ Δ Γ Γ≲ + g( )m2
2 sq 2

2 1 . By adding the contributions from all resolvable resonances, we get

∑
Δ

Γ ω ω Ω Δ
=

+ − + +

Γ
Γ

Γ
Γ=−∞

∞ ( )
( ) ( )

P
g

m g
(44)e

m

m

m

sq 2
sq 2

2
2

0
2 sq 2

2

1

2

1

for the steady state occupation probability of the qubit excited state. Infigure 6(b)we present the results of the
RWAmethod for the second sidebandm=2. In this figurewe use equation (44) with the sideband amplitude for
latchingmodulation given by equation (41).

Wefind that the results of the RWAare in reasonably good agreementwith the numerical ones down to
Ω π ≈2 20MHz (continuous green line). Below this value (dashed green line) we see deviations as the rotating-
wave approximation becomes inadequate for reproducing the numerical data. Nevertheless, the RWApredicts
relatively well the position of the resonances.

The RWAanalysis explains easily some of the features of the periodic latchingmodulation spectrum and the
sinusoidal spectrumnoted in the previous subsection. Firstly, note that in the limit Ω δ≫ the two spectrawill
both eventually drop to zero if ≠m 0 or saturate to Δ Δ∣ = ∣ =Ω δ Ω δ≫ ≫ 10

sq
0
sin ifm= 0,which follows

immediately from Δ δ Ω= J ( )m m
sin and the result for Δm

sq from equation (41). This can be understood as a
consequence of the time-energy uncertainty principle and ofmotional averaging [15]: the energy levels
corresponding to the latching points cannot be discriminated anymore if the time π Ω that the system spends at
each of these points ismuch shorter that the energy difference δ2 . Secondly, for δ Ω = ∣ ∣ ≠m 0 we get from
equation (41) that Δ∣ ∣ = 1 2m

sq . Thismeans that for the latchingmodulation all the sidebands have the same
amplitude at ω ω Ω δ− = = ±m0 for all ≠m 0. This property does not hold for the sinusoidalmodulation,
since ∣ ∣J m( )m take different values depending onm. Finally, using the RWAwe can understandwhy the first
maximumof the periodic latchingmodulation is shifted towards higher values compared to the sinusoidal, as
noted in the previous subsection, see figure 6(a). Indeed, the RWA is accurate around the region of the first
maxima, therefore one can simply analyze themaxima of the exact results for sinusoidal and the latching
modulation.Qualitatively, the existence of a shift originates in the rescaling of the argument δ Ω of the Bessel-
function solution for sinusoidalmodulation by π 2 in equation (41).

5. Conclusions

Wehave shown that the periodic latchingmodulation of the transition frequency of a qubit is conceptually
different from the continuous drive forms used in the conventional studies of LZS-interference.We have
adapted the adiabatic-impulsemethod for the case of abrupt and periodic switching, and the results are shown to
be in good agreementwithmore elaborate numerical calculations.We have studied the periodic latching
modulation experimentally by employing a transmonwithflux biasmodulatedwith a square pulse pattern.We
measured a spectrumwhere two regimes (slow-modulation and fast-modulation) can be clearly distinguished.
The spectrumhas a rich structure of sidebands, due to resonances and anti-resonances (coherent destruction of
tunneling). The experimental data were in good agreement with our theoreticalmodels, andwewere able to
extract the information about the pulse shape from the region of lowmodulation frequency. Our results open
theway for simulating various forms of dephasing noise and for realizing experiments where the switching of the
qubit frequency has a specific, non-sinusoidal time dependence.
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Appendix. Validity of the sudden approximation

Consider a time-dependentHamiltonian H tˆ ( ) that changes rapidly during the time-interval T[0, ]. The time
evolution during this interval can bewritten as an iterative solution:

 ∫ ∫ ∫τ τ τ τ τ τ= − − ′ ′ + …
τ

( )U H H Hˆ 1
i ˆ ( )d

1
d d ˆ ( ) ˆ . (A.1)T

T T

0 2 0 0

Suppose now that the system starts in the initial state ψ∣ 〉−
r , the lower eigenstate on the right side of the avoided

crossing. Then, in the spirit of [28], we introduce themeasure for the validity of the sudden approximation:

ψ ψ ψ ψ= − =− − + −w U U1 ˆ ˆ . (A.2)r r
T

r r
T

r( ) ( ) ( )
2

( ) ( )
2

This is the probability that the time-evolution during the sudden change ofHamiltonian brings the initial state
ψ∣ 〉−

r( ) into the orthogonal state ψ∣ 〉+
r( ) , with ψ ψ ψ ψ= ∣ 〉〈 ∣ + ∣ 〉〈 ∣− − + +Î r r r r( ) ( ) ( ) ( ) . For an instantaneous ÛT the state

remains unchanged ψ ψ∣ 〉 = ∣ 〉− −ÛT
r r( ) ( ) and =w 0r( ) .

By using the expansion (A.1), we obtain for equation (A.2) in the second order in Ĥ

 ∫ ∫ ∫ψ τ τ τ τ ψ ψ τ τ ψ= −− − − −w H H H
1 ˆ ( )d ˆ ( )d

1 ˆ ( )d , (A.3)r
T T

r r
T

r(r)
2

( )

0 0

( )
2

( )

0

( )
2

and further,

 
ψ ψ ψ ψ Δ= − =− − − − ( )w

T
H H

T
H¯ ¯ ¯ , (A.4)r r r r r( )

2

2
( ) 2 ( ) ( ) ( ) 2 2

2

2⎡
⎣⎢

⎤
⎦⎥

where ∫ τ τ=H H¯ ˆ ( )d
T

T1

0
is the time-averagedHamiltonian during the time evolutionT. Note that the

transition probability depends only on the averagedHamiltonian H̄ .
For our system, theHamiltonian is

 
ν σ σ= + +H t f t

gˆ ( )
2

( ) ˆ
2

ˆ , (A.5)z xsq
⎡⎣ ⎤⎦

where f t( )sq ideally describes the periodic latchingmodulationwith an instantaneous switching events, see the

diagram infigure 1(a). However, in practice the rampbetween the two latches has a finite raise/fall timeT. Let us
use the parametrization for theHamiltonian at t=0 corresponding to the right side of the crossing

ϵ θ θ
θ θ

=
−

±Ĥ (0) cos sin

sin cos
, (A.6)

r r
r r

r r

( ) ( )
( ) ( )

( ) ( )

⎛
⎝⎜

⎞
⎠⎟

where ϵ±
r( ) =  ν δ± + + g( )

2
2 2 and ν δ ν δ θ+ = + + g( ) cos r2 2 ( ), ν δ θ= + +g g( ) sin r2 2 ( ). The

eigenstates ψ∣ 〉±
r( ) are

ψ

θ

θ
ψ

θ

θ
=

−
=− +

sin
2

cos
2

,
cos

2

sin
2

, (A.7)r

r

r

r

r

r

( )

( )

( )

( )

( )

( )

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

with ψ∣ 〉±Ĥ (0)
r r( ) ( ) = ϵ ψ∣ 〉± ±

r r( ) ( ) . The angle θ r( ) is found from

θ ν δ

ν δ
= +

+ + g
cos

( )
, (A.8)r( )

2 2

θ
ν δ

=
+ +

g

g
sin

( )
. (A.9)r( )

2 2

Similarly, on the left side theHamiltonian can be diagonalized and the eigenvalues and eigenfunctions are
obtained from the right-side values by replacing δwith δ− ,
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ϵ ϵ=ℓ
δ δ± ± →−

, (A.10)r( ) ( )

ψ ψ=ℓ ℓ
δ δ± ± →−

. (A.11)( ) ( )

Then the elements of thematrix equation (6) are θ θ≡ −ℓp sin[( ) 2]r
s

( ) ( ) and

θ θ− ≡ −ℓp1 cos[( ) 2]r
s

( ) ( ) . Explicitly, ψ∣ 〉ℓ
+
( ) = ψ ψ− ∣ 〉 + ∣ 〉+ −p p1 r r

s
( )

s
( ) and ψ∣ 〉ℓ

−
( ) =

ψ ψ− ∣ 〉 + − ∣ 〉+ −p p1r r
s

( )
s

( ) . Note that we have >g 0 and θ π∈ℓ [0, ]r( , ) , therefore ps and − p1 s come
out indeed positive, as used in themain text.

During the ramp timeT the change in the detuning δ= −f t t T( ) (2 1) can be assumed linear from δ− to
δ: The time-averagedHamiltonian is

 ν= +H g¯
4

, (A.12)2
2

2 2⎡⎣ ⎤⎦
∫ τ τ νσ σ= = +H

T
H g¯ 1 ˆ ( )d

2
ˆ ˆ . (A.13)

T

z x
0

⎡⎣ ⎤⎦
With these specifications we get

ψ ψ ν= +− −H g¯
4

, (A.14)r r( ) 2 ( )
2

2 2⎡⎣ ⎤⎦

ψ ψ ν θ θ= − +− −H g¯
2

cos sin , (A.15)r r r r( ) ( ) 2
( ) ( )⎡⎣ ⎤⎦

and the transition probability (A.3) during the linear ramp is

ν θ θ δ
ν δ

= − =
+ +

w
T

g
T g

g4
sin cos

4 ( )
, (A.16)r r r( )

2
( ) ( ) 2 2 2 2

2 2
⎡⎣ ⎤⎦

which is a Lorentzian peak around ν ω ω δ= − = −0 withwidth g andmaximumvalue

δ=w
T

4
, (A.17)max

2 2

see figure 7. The same expression is obtained if one starts from the state ψ∣ 〉+
r . If we consider the same sudden

jump limit on the left side of the crossing, the result is

δ
ν δ

=
+ −

ℓw
T g

g4 ( )
, (A.18)( )

2 2 2

2 2

yielding the samemaximumvalue as in equation (A.17). Thus, the sudden approximation is valid if the ramp
time δ≪ −T 1. Experimentally, we estimate = −T 1 2 ns, which for δ π =2 100MHz corresponds to

= =w T( 1 ns) 0.1max and = =w T( 2 ns) 0.4max respectively, see figure 7.We conclude that the sudden
approximation is fair when ω ω δ− =0 , and improves fast whenwemove away from the resonance.

Figure 7.Transition probability (A.16) as a function of ω ω− 0, with values π =g 2 20 MHz and δ π =2 100 MHz forT=2 ns
(dashed line) and 1 ns (solid line).
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