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Abstract. We study a version of the well-known Hospitals/Residents
problem in which participants’ preferences may involve ties or other
forms of indifference. In this context, we investigate the concept of strong
stability, arguing that this may be the most appropriate and desirable
form of stability in many practical situations. When the indifference is
in the form of ties, we describe an O(a2) algorithm to find a strongly
stable matching, if one exists, where a is the number of mutually accept-
able resident-hospital pairs. We also show a lower bound in this case in
terms of the complexity of determining whether a bipartite graph con-
tains a perfect matching. By way of contrast, we prove that it becomes
NP-complete to determine whether a strongly stable matching exists if
the preferences are allowed to be arbitrary partial orders.

Keywords: stable matching problem; strong stability; hospitals/residents
problem; polynomial-time algorithm; lower bound; NP-completeness.

1 Introduction

The Hospitals/Residents problem [3] is a many-to-one extension of the classical
Stable Marriage problem (SM), so-called because of its widespread application to
matching schemes that match graduating medical students (residents) to hospital
posts. In particular the National Resident Matching Program (NRMP) in the
USA [14], the Canadian Resident Matching Service [1], and the Scottish PRHO
Allocations (SPA) matching scheme [6] all make use of algorithms that solve
variants of this problem.

An instance of the classical Hospitals/Residents problem (HR) involves two
sets, a set R of residents and a set H of hospitals. Each resident in R seeks to be
assigned to exactly one hospital, and each hospital h ∈ H has a specified number
ph of posts, referred to as its quota. Each resident ranks a subset of H in strict
order of preference, and each hospital ranks, again in strict order, those residents
who have ranked it. These are the preference lists for the instance. Note that
preference lists are consistent in the sense that a resident r appears on a hospital
h’s list if and only if h appears on r’s list. Consistency of preference lists will
be assumed throughout. A resident-hospital pair (r, h) are mutually acceptable
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if they are each on the other’s preference list, and we denote by A (a subset of
R×H) the set of mutually acceptable pairs, with |A| = a.

A matching M is a subset of A such that |{h : (r, h) ∈ M}| ≤ 1 for all r
and |{r : (r, h) ∈ M}| ≤ ph for all h. For a matching M , we denote by M(r)
the hospital to which r is assigned in M (this is null if r is unassigned), and by
M(h) the set of residents assigned to h in M . For a pair (r, h) ∈ A, we define
h ≺r M(r) to mean that either r is unassigned in M , or r prefers h to M(r).
Likewise, we define r ≺h M(h) to mean that either |M(h)| < ph, or h prefers r
to at least one of the members of M(h).

A matching M in an instance of HR is stable if there is no pair (r, h) ∈ A\M ,
such that h ≺r M(r) and r ≺h M(h). If such a pair (r, h) exists it is said to be
a blocking pair for the matching M , or to block M . The existence of a blocking
pair potentially undermines the matching, since both members of the pair could
improve their situation by becoming matched to each other.

An instance of HR can be solved by an extension of the Gale/Shapley (GS)
algorithm for SM [2, 3]. SM can be viewed as a restriction of HR in which each
hospital has quota 1 (and the residents and hospitals are re-named men and
women). As with SM, a stable matching exists for every instance of HR, and all
stable matchings for a given instance have the same size [3]. The extension of
the GS algorithm finds one such matching in O(a) time [3].

Recent pressure from student bodies associated with the NRMP has ensured
that the extended version of the GS algorithm that is employed by the scheme
is now resident-oriented, meaning that it produces the resident-optimal stable
matching for a given instance of HR [13]. This is the unique stable matching
M0 in which every resident assigned in M0 is assigned the best hospital that
he/she could obtain in any stable matching, and any resident unassigned in M0

is unassigned in any stable matching.

In this paper we consider generalisations of HR in which preferences involve
some form of indifference. This is highly relevant for practical matching schemes
— for example, a popular hospital may be unable or unwilling to produce a strict
ranking over all of its many applicants.

The most natural form of indifference involves ties. A set R′ of k residents
forms a tie of length k in the preference list of hospital h if h does not prefer ri

to rj for any ri, rj ∈ R′ (i.e. h is indifferent between ri and rj), while for any
other resident r who is acceptable to h, either h prefers r to all of the residents
in R′, or h prefers all of the residents in R′ to r. A tie on a resident’s list is
defined similarly. For convenience in what follows, we consider an untied entry
in a preference list as a tie of length 1.

We denote by HRT the version of the problem in which preference lists can
include arbitrary ties, and by HRP the version in which each preference ‘list’
can be an arbitrary partial order. This latter version allows for more complex
forms of indifference, generalising the case of lists with ties. For a given practical
application, a variety of external factors could contribute to a given preference
structure, yielding a more complex form of indifference represented by an arbi-
trary partial order. Given an instance I of HRT or HRP, a derived instance of



HR is any instance of HR obtained from I by resolving the indifference (breaking
all of the ties or extending each partial order to a total order).

These extensions of the original problem force a re-evaluation of the concept
of a blocking pair. We could view a pair (r, h) to be a blocking pair if, by coming
together (a) both parties would be better off, or (b) neither party would be worse
off, or (c) one party would be better off and the other no worse off. These three
possibilities give rise to the notions of weak stability, super-stability, and strong
stability, respectively, first considered by Irving [5] in the context of the Stable
Marriage problem. We now formally define these three forms of stability.

A matching M in an instance of HRT or HRP is weakly stable if there is no
pair (r, h) ∈ A \M , such that h ≺r M(r) and r ≺h M(h).

A weakly stable matching exists for every instance of HRP, and can be found
by forming a derived instance of HR, and applying the extended GS algorithm.
It turns out that, in contrast to HR, weakly stable matchings for an instance
of HRT may have different sizes, and it is notable that the problem of finding
the largest weakly stable matching, and various other problems involving weak
stability, are NP-hard [9, 12].

To define super-stability and strong stability we need to extend our notation.
For a given matching M and pair (r, h) ∈ A, we define h�r M(r) to mean that r
is unassigned in M , or that r prefers h to M(r), or is indifferent between them.
Likewise, r �h M(h) means that |M(h)| < ph, or h prefers r to at least one
member of M(h), or is indifferent between r and at least one member of M(h).

A matching M is super-stable if there is no pair (r, h) ∈ A \ M , such that
h �r M(r) and r �h M(h).

By contrast with weak stability, it is trivial to show that there are instances
of HRT and HRP for which no super-stable matching exists. However, there is an
O(a) algorithm to determine whether an instance of HRT admits a super-stable
matching, and to find one if it does [7]. With some straightforward modifications,
this algorithm is also applicable in the more general context of HRP.

A matching M is strongly stable if there is no pair (r, h) ∈ A \ M , such
that either (i) h ≺r M(r) and r �h M(h); or (ii)h �r M(r) and r ≺h M(h). If
(r, h) ∈ M for some strongly stable matching M we say that (r, h) is a strongly
stable pair.

Again, it is easy to construct an instance of HRT that does not admit a
strongly stable matching (see [5] for further details). Clearly, as is implied by
the terminology, a super-stable matching is strongly stable, and a strongly stable
matching is weakly stable.

There is a sense in which strong stability can be viewed as the most appro-
priate criterion for a practical matching scheme when there is indifference in the
preference lists, and that in cases where a strongly stable matching exists, it
should be chosen instead of a matching that is merely weakly stable. Consider
a weakly stable matching M for an instance of HRT or HRP, and suppose that
h ≺r M(r) while h is indifferent between r and at least one member r′ of M(h).
Such a pair (r, h) would not constitute a blocking pair for weak stability (if
|M(h)| = ph). However, r might have such an overriding preference for h over



M(r) that he is prepared to engage in persuasion, even bribery, in the hope that h
will reject r′ and accept r instead. Hospital h, being indifferent between r and r′

may yield to such persuasion, and, of course, a similar situation could arise with
the roles reversed. However, the matching cannot be potentially undermined in
this way if it is strongly stable. On the other hand, insisting on super-stability
seems unnecessarily restrictive (and is less likely to be attainable).

Hence, strong stability avoids the possibility of a matching being undermined
by persuasion or bribery, and is therefore a desirable property in cases where it
can be achieved.

In this paper we present an O(a2) algorithm for finding a strongly stable
matching, if one exists, given an instance of HRT, thus solving an open problem
described in [7]. Our algorithm is resident-oriented in that it finds a strongly sta-
ble matching with similar optimality properties to those of the resident-optimal
stable matching in HR, as mentioned above. This algorithm is a non-trivial ex-
tension of the strong stability algorithms for the stable marriage problem due to
Manlove [10] and Irving [5]. We also prove that the complexity of any algorithm
for HRT under strong stability has the same lower bound as applies to the prob-
lem of determining if a bipartite graph has a perfect matching. By contrast, we
show that the problem of deciding whether a given instance of HRP admits a
strongly stable matching is NP-complete.

The remainder of this paper is structured as follows. In Section 2 we present
the polynomial-time algorithm that finds a strongly stable matching in an in-
stance of HRT, when one exists. In Section 3 we establish the complexity of the
algorithm to be O(a2). The lower bound for the problem of finding a strongly
stable matching in an instance of HRT is given in Section 4, whilst Section 5
contains the NP-completeness result for HRP under strong stability. Finally,
Section 6 presents our conclusions and some open problems.

2 An algorithm for strong stability in HRT

In this section we describe our algorithm for finding a strongly stable matching,
if one exists, given an instance of HRT, and prove its correctness. Before doing
so, we present some definitions relating to the algorithm.

A hospital h such that |{r : (r, h) ∈ M}| = ph is said to be full in the
matching M . During the execution of the algorithm residents become provision-
ally assigned to hospitals, and it is possible for a hospital to be provisionally
assigned a number of residents that exceeds its quota. At any stage, a hospital is
said to be over-subscribed, under-subscribed or fully-subscribed according as it is
provisionally assigned a number of residents greater than, less than, or equal to,
its quota. We describe a hospital as replete if at any time during the execution
of the algorithm it has been over-subscribed or fully subscribed.

The algorithm proceeds by deleting from the preference lists pairs that cannot
be strongly stable. By the deletion of a pair (r, h), we mean the removal of r and
h from each other’s lists, and, if r is provisionally assigned to h, the breaking of
this provisional assignment. By the head and tail of a preference list at a given



point we mean the first and last ties respectively on that list (recalling that a
tie can be of length 1). We say that a resident r is dominated in a hospital h’s
list if h prefers to r at least ph residents who are provisionally assigned to it.

A resident r who is provisionally assigned to a hospital h is said to be bound
to h if h is not over-subscribed or r is not in h’s tail (or both). The provisional
assignment graph G has a vertex for each resident and each hospital, with (r, h)
forming an edge if resident r is provisionally assigned to hospital h. A feasible
matching in a provisional assignment graph is a matching M such that, if r is
bound to one or more hospitals, then r is matched with one of these hospitals
in M , and subject to this restriction, M has maximum possible cardinality.

A reduced assignment graph GR is formed from a provisional assignment
graph as follows. For each resident r, for any hospital h such that r is bound
to h, we delete the edge (r, h) from the graph, and we reduce the quota of h by
one; furthermore, we remove all other edges incident to r. Each isolated resident
vertex is then removed from the graph. Finally, if the quota of any hospital h is
reduced to 0, or h becomes an isolated vertex, then h is removed from the graph.
For each surviving h we denote by p′h the revised quota.

Given a set Z of residents in GR, define N (Z), the neighbourhood of Z, to
be the set of hospital vertices adjacent in GR to a resident vertex in Z. The
deficiency of Z is defined by δ(Z) = |Z| −

∑
h∈N (Z) p′h. It is not hard to show

that, if Z1 and Z2 are maximally deficient, then so also is Z1 ∩ Z2, so there is a
unique minimal set with maximum deficiency. This is the critical set.

The algorithm, displayed in Figure 1, begins by assigning each resident to be
free (i.e. not assigned to any hospital), and each hospital h to be non-replete.
The iterative stage of the algorithm involves each free resident in turn being
provisionally assigned to the hospital(s) at the head of his list. If by gaining a
new provisional assignee a hospital h becomes fully or over-subscribed then it
is set to be replete, and each pair (r, h), such that r is dominated in h’s list, is
deleted. This continues until every resident is provisionally assigned to one or
more hospitals or has an empty list. We then find the reduced assignment graph
GR and the critical set Z of residents. As we will see later, no hospital in N (Z)
can be assigned a resident from those in its tail in any strongly stable matching,
so all such pairs are deleted. The iterative step is then reactivated, and this
entire process continues until Z is empty, which must happen eventually, since if
Z is found to be non-empty, then at least one pair is subsequently deleted from
the preference lists.

Let M be any feasible matching in the final provisional assignment graph G.
Then M is a strongly stable matching unless either (a) some replete hospital h
is not full in M , or (b) some non-replete hospital h has a number of assignees
in M less than its degree in G; in cases (a) and (b) no strongly stable matching
exists.

The correctness of Algorithm HRT-strong, and an optimality property of
any strongly stable matching that it finds, are established by means of three
key lemmas. Here we give sketch proofs of the three lemmas. The full proofs,
together with some auxiliary lemmas, appear in [8].



assign each resident to be free;
assign each hospital to be non-replete;
repeat {

while some resident r is free and has a non-empty list
for each hospital h at the head of r’s list {

provisionally assign r to h;
if h is fully-subscribed or over-subscribed {

set h to be replete;
for each resident r′ dominated on h’s list

delete the pair (r′, h); } }
form the reduced assignment graph;
find the critical set Z of residents;
for each hospital h ∈ N (Z)

for each resident r in the tail of h’s list
delete the pair (r, h);

} until Z == ∅;
let G be the final provisional assignment graph;
let M be a feasible matching in G;
if (some replete hospital is not full in M) or
(some non-replete hospital has fewer assignees in M than its degree in G)

no strongly stable matching exists;
else

output the strongly stable matching specified by M ;

Fig. 1. Algorithm HRT-strong

Lemma 1. A matching output by Algorithm HRT-strong is strongly stable.

Proof (Sketch). We suppose that a pair (r, h) blocks a matching M output by
Algorithm HRT-strong, and show that (r, h) cannot have been deleted. Hence r
must be bound to both h and M(r) in G, the final provisional assignment graph.
But we also show that, if any resident is bound to two hospitals in G then the
algorithm reports that no strongly stable matching exists, a contradiction. ut

Lemma 2. No strongly stable pair is ever deleted during an execution of Algo-
rithm HRT-strong.

Proof (Sketch). We let (r, h) be the first strongly stable pair deleted during some
execution of the algorithm, and let M be a strongly stable matching containing
(r, h). We consider both points in the algorithm at which (r, h) could be deleted.
If (r, h) is deleted because r becomes dominated in h’s list, we show that one of
the residents provisionally assigned to h at this point must form a blocking pair
for M with h. If, on the other hand, (r, h) is deleted because r is in h’s tail at
a point when h is provisionally assigned a resident from the critical set Z, then
we show that there is some resident r′ ∈ Z and some hospital h′ ∈ N (Z), with
r′ provisionally assigned to h′ at this point, such that r′ is not assigned in M to
a hospital from the head of his current list, and h′ is assigned in M at least one
resident from the tail of its current list. It follows that (r′, h′) blocks M . ut



Lemma 3. Let M be a feasible matching in the final provisional assignment
graph G. If (a) some non-replete hospital h has fewer assignees in M than pro-
visional assignees in G, or (b) some replete hospital h is not full in M , then no
strongly stable matching exists.

Proof (Sketch). We suppose that condition (a) or (b) is satisfied, so that some
hospital h must satisfy |M(h)| < min(dG(h), ph), where dG(h) denotes the degree
of vertex h in G (i.e. the number of residents provisionally assigned to h). We
also suppose that there is a strongly stable matching, M ′, for the instance. We
show that |M ′| ≤ |M |, so that some hospital h′ must also satisfy |M(h′)| <
min(dG(h′), ph′). Clearly h′ then forms a blocking pair for M ′ with one of the
residents provisionally assigned to it in G. ut

Lemmas 1 and 3 prove the correctness of Algorithm HRT-strong. Further, Lemma
2 shows that there is an optimality property for each assigned resident in any
strongly stable matching output by the algorithm. To be precise, we have proved:

Theorem 1. For a given instance of HRT, Algorithm HRT-strong determines
whether or not a strongly stable matching exists. If such a matching does exist,
all possible executions of the algorithm find one in which every assigned resident
is assigned as favourable a hospital as in any strongly stable matching, and any
unassigned resident is unassigned in every strongly stable matching.

3 Implementation and analysis of Algorithm HRT-strong

For the implementation and analysis of Algorithm HRT-strong, we require to
describe the efficient construction of maximum cardinality matchings and critical
sets in a context somewhat more general than that of simple bipartite graphs.

Consider a capacitated bipartite graph G = (V,E), with bipartition V =
R ∪ H, in which each vertex h ∈ H has a positive integer capacity ch. In this
context, a matching is a subset M of E such that |{h : {r, h} ∈ M}| ≤ 1 for all
r ∈ R, and |{r : {r, h} ∈ M}| ≤ ch for all h ∈ H.

For any vertex x, a vertex joined to x by an edge of M is called a mate of
x. A vertex r ∈ R with no mate, or a vertex h ∈ H with fewer than ch mates,
is said to be exposed. An alternating path in G relative to M is any simple path
in which edges are alternately in, and not in, M . An augmenting path is an
alternating path both of whose end points are exposed. It is immediate that an
augmenting path is of odd length, with one end point in R and the other in H.

The following lemmas may be established by straightforward extension of the
corresponding results for one-to-one bipartite matching.

Lemma 4. Let P be the set of edges on an augmenting path relative to a match-
ing M in a capacitated bipartite graph G. Then M ′ = M ⊕ P is a matching of
cardinality |M |+ 1 in G.

Lemma 5. A matching M in a capacitated bipartite graph has maximum car-
dinality if and only if there is no augmenting path relative to M in G.



The process of replacing M by M ′ = M ⊕ P is called augmenting M along
path P .

With these lemmas, we can extend to the context of capacitated bipar-
tite graphs the classical augmenting path algorithm for a maximum cardinality
matching. The algorithm starts with an arbitrary matching – say the empty
matching – and repeatedly augments the matching until there is no augment-
ing path. The search for an augmenting path relative to M is organised as a
restricted breadth-first search in which only edges of M are followed from ver-
tices in H and only edges not in M are followed from vertices in R, to ensure
alternation. The number of iterations is O(min(|R|,

∑
ch)), and each search can

be completed in O(|R|+ |H|+ |E|) time.
During the breadth-first search, we record the parent in the BFS spanning

tree of each vertex. This enables us to accomplish the augmentation in time
O(|R|+ |H|+ |E|), observing that, for each vertex h ∈ H, the set of mates can
be updated in constant time by representing the set as, say, a doubly linked list,
and storing a pointer into this list from any child node in the BFS spanning tree.

Hence, overall, the augmenting path algorithm in a capacitated bipartite
graph can be implemented to run in O((min(|R|,

∑
ch))((|R|+ |H|+ |E|)) time.

The following lemma (whose proof appears in [8]) points the way to finding
the critical set.

Lemma 6. Given a maximum cardinality matching M in the capacitated bipar-
tite graph GR, the critical set Z consists of the set U of unmatched residents
together with the set U ′ of residents reachable from a vertex in U via an alter-
nating path.

During each iteration of the repeat-until loop of Algorithm HRT-strong we
need to form the reduced assignment graph, which takes O(a) time, then search
for a maximum cardinality matching in the bipartite graph GR. This allows us
to use Lemma 6 to find the critical set. The key to the analysis of Algorithm
HRT-strong, as with Algorithm STRONG in [5], is bounding the total amount
of work done in finding the maximum cardinality matchings.

It is clear that work done other than in finding the maximum cardinality
matchings and critical sets is bounded by a constant times the number of deleted
pairs, and so is O(a).

Suppose that Algorithm HRT-strong finds a maximum cardinality matching
Mi in the reduced assignment graph GR at the ith iteration. Suppose also that,
during the ith iteration, xi pairs are deleted because they involve residents in
the critical set Z, or residents tied with them in the list of a hospital in N (Z).
Suppose further that in the (i + 1)th iteration, yi pairs are deleted during the
proposal sequence. Note that any edge in GR at the ith iteration which is not
one of these xi + yi deleted pairs must be in GR at the (i + 1)th iteration, since
a resident can only become bound to a hospital when he becomes provisionally
assigned to it. In particular at least |Mi| − xi − yi pairs of Mi remain in GR at
the (i + 1)th iteration. Hence, in that iteration, we can start from these pairs
and find a maximum cardinality matching in O(min(na, (xi + yi + zi)a)) time,



where n is the number of residents and zi is the number of edges in GR at the
(i + 1)th iteration which were not in GR at the ith iteration.

Let s denote the number of iterations carried out, let S = {1, 2, . . . , s}, and
let S′ = S\{s}. Let T ⊆ S′ denote those indices i such that min(na, (xi +
yi + zi)a) = na, and let t = |T |. Then the algorithm has time complexity
O(min(n, p)a + tna + a

∑
i∈S′\T (xi + yi + zi)), where p is the total number of

posts, and the first term is for the first iteration. But
∑

i∈S′(xi + yi) ≤ a and∑
i∈S′ zi ≤ a (since each of these summations is bounded by the total number of

deletions and proposals, respectively), and since xi + yi + zi ≥ n for each i ∈ T ,
it follows that

tn+
∑

i∈S′\T

(xi+yi+zi) ≤
∑
i∈S′

(xi+yi+zi) ≤ 2a. Thus
∑

i∈S′\T

(xi+yi+zi) ≤ 2a−tn.

Hence the overall complexity of Algorithm HRT-strong is O(min(n, p)a + tna +
a(2a− tn)) = O(a2).

4 A lower bound for finding a strongly stable matching

To establish the lower bound of this section, we let strongly stable matching
in hrt be the problem of deciding whether a given instance of HRT admits a
strongly stable matching.

Let n denote the number of participants in an instance of HRT. We show
that, for any function f on n, where f(n) = Ω(n2), the existence of an O(f(n))
algorithm for strongly stable matching in hrt would imply the existence
of an O(f(n)) algorithm for perfect matching in bipartite graphs (the
problem of deciding whether a given bipartite graph admits a perfect matching).

The result is established by the following simple reduction from perfect
matching in bipartite graphs to strongly stable matching in hrt.

Let G = (V,E) be a bipartite graph with bipartition V = R ∪H. Let R =
{r1, . . . , rn} and H = {h1, . . . , hn}, and, without loss of generality, assume that
G contains no isolated vertices. Also, for each i (1 ≤ i ≤ n), let Pi denote the
set of vertices in H adjacent to ri.

We form an instance I of HRT as follows. Let pi = 1 for all i. Form a
preference list for each participant in I as follows:

ri : (Pi) (H\Pi) hi : (R) (1 ≤ i ≤ n)

In a given participant’s preference list (S) denotes all members of the set S listed
as a tie in the position where the symbol occurs.

It is straightfoward to verify that G admits a perfect matching if and only
if I admits a strongly stable matching. Clearly the reduction may be carried
out in O(n2) time. Hence, for any function f on n, where f(n) = Ω(n2), an
O(f(n)) algorithm for strongly stable matching in hrt would solve per-
fect matching in bipartite graphs in O(f(n)) time. The current best algo-
rithm for perfect matching in bipartite graphs has complexity O(

√
nm)

[4], where m is the number of edges in G.



5 NP-completeness of strong stability in HRP

In this section we establish NP-completeness of strongly stable matching in
smp, which is the problem of deciding whether a given instance of SMP admits
a strongly stable matching. Here, SMP denotes the variant of SM in which each
person’s preferences over the members of the opposite sex are represented as
an arbitrary partial order (hereafter this preference structure is referred to as a
preference poset). Clearly SMP is a special case of HRP in which A = R × H
and each hospital has quota 1. It therefore follows immediately that the problem
of deciding whether a given instance of HRP admits a strongly stable matching
is also NP-complete.

To prove our result we give a reduction from the following problem:

Name: restricted sat.
Instance: Boolean formula B in CNF, where each variable v occurs in exactly
two clauses of B as literal v, and in exactly two clauses of B as literal v.
Question: Is B satisfiable?

restricted sat is NP-complete (see [8] for further details). We now state and
prove the main result of this section.

Theorem 2. strongly stable matching in smp is NP-complete.

Proof. Clearly strongly stable matching in smp is in NP. To show NP-
hardness, we give a polynomial reduction from restricted sat, which is NP-
complete as mentioned above. Let B be a Boolean formula in CNF, given as
an instance of this, in which X = {x1, x2, . . . , xn} is the set of variables and
C = {c1, c2, . . . , cm} is the set of clauses. For each i (1 ≤ i ≤ n) and for each
r (1 ≤ r ≤ 2), let c(xr

i ) (respectively c(xr
i )) denote the clause corresponding to

the rth occurrence of literal xi (respectively xi).
We now construct an instance I of SMP, as follows. Let U = X1∪X2∪X

1∪
X

2 ∪ Z be the set of men in I, and let W = Y 1 ∪ Y 2 ∪ Y
1 ∪ Y

2 ∪ C be the set
of women in I, where

Xr = {xr
i : 1 ≤ i ≤ n} (1 ≤ r ≤ 2), Y r = {yr

i : 1 ≤ i ≤ n} (1 ≤ r ≤ 2),
X

r
= {xr

i : 1 ≤ i ≤ n} (1 ≤ r ≤ 2), Y
r

= {yr
i : 1 ≤ i ≤ n} (1 ≤ r ≤ 2),

Z = {zi : 1 ≤ i ≤ m}, C = {ci : 1 ≤ i ≤ m}.

Clearly |U | = |W | = 4n + m. Now, for each person p in I, we formulate ≺∗
p,

the preference poset of p. In order to define ≺∗
p, we will construct a relation ≺p,

where q ≺p r implies that p prefers q to r. We then obtain the partial order ≺∗
p

by taking the transitive closure of ≺p. Note that p is indifferent between q and r
if and only if q, r are incomparable in ≺∗

p (i.e. neither q ≺∗
p r nor r ≺∗

p q holds).
For each person q we will also define a subset P (q) of members of the opposite
sex; if r ∈ P (q) we say that r is proper for q.

– Preference poset of xr
i (1 ≤ i ≤ n, 1 ≤ r ≤ 2): y1

i ≺xr
i

c(xr
i ), y2

i ≺xr
i

c(xr
i ),

yr
i ≺xr

i
p, for every p ∈ W\P (xr

i ), where P (xr
i ) = {c(xr

i ), y
r
i , y1

i , y
2
i }.



– Preference poset of xr
i (1 ≤ i ≤ n, 1 ≤ r ≤ 2): y1

i ≺xr
i

c(xr
i ), y2

i ≺xr
i

c(xr
i ),

yr
i ≺xr

i
p, for every p ∈ W\P (xr

i ), where P (xr
i ) = {c(xr

i ), y
r
i , y

1
i , y2

i }.
– Preference poset of zi (1 ≤ i ≤ m): y ≺zi

p, for every y ∈ P (zi) and for
every p ∈ W\P (zi), where P (zi) = Y 1 ∪ Y 2 ∪ Y

1 ∪ Y
2
.

– Preference poset of yr
i (1 ≤ i ≤ n, 1 ≤ r ≤ 2): xr

i ≺yr
i

x1
i , xr

i ≺yr
i

x2
i . Let

P (yr
i ) = {xr

i , x
1
i , x

2
i } ∪ Z.

– Preference poset of yr
i (1 ≤ i ≤ n, 1 ≤ r ≤ 2): xr

i ≺yr
i

x1
i , xr

i ≺yr
i

x2
i . Let

P (yr
i ) = {xr

i , x
1
i , x

2
i } ∪ Z.

– Preference poset of ci (1 ≤ i ≤ m): ≺ci
= ∅. Let P (ci) contain those members

of X1 ∪X2 ∪X
1 ∪X

2
corresponding to the literal-occurrences in clause ci.

It is easy to verify that, for any two people q, r of the opposite sex, r is proper
for q if and only if q is proper for r.

Now suppose that B admits a satisfying truth assignment f . We form a
matching M in I as follows. For each clause ci in B (1 ≤ i ≤ m), pick any
literal-occurrence x ∈ X1 ∪X2 ∪X

1 ∪X
2

corresponding to a true literal in ci,
and add (x, ci) to M . For any xr

i left unmatched (1 ≤ i ≤ n, 1 ≤ r ≤ 2), add
(xr

i , y
r
i ) to M . Similarly, for any xr

i left unmatched (1 ≤ i ≤ n, 1 ≤ r ≤ 2), add
(xr

i , y
r
i ) to M . Finally, there remain m members of Y 1 ∪ Y 2 ∪ Y

1 ∪ Y
2

that are
as yet unmatched. Add to M a perfect matching between these women and the
men in Z. It is straightforward to verify that M is strongly stable in I.

Conversely suppose that I admits a strongly stable matching M . Then it
is not difficult to see that (m,w) ∈ M implies that w is proper for m and
vice versa. Also, for each i (1 ≤ i ≤ n), ci is matched in M to some man
x ∈ X1 ∪ X2 ∪ X

1 ∪ X
2

corresponding to an occurrence of a literal in clause
ci of B. Suppose that x = xr

i for some i (1 ≤ i ≤ n) and r (1 ≤ r ≤ 2) (the
argument is similar if x = xr

i ). Then by the strong stability of M , (x1
i , y

1
i ) ∈ M

and (x2
i , y

2
i ) ∈ M . Thus we may form a truth assignment f for B as follows: if

x = xr
i then set variable xi to have value T , otherwise if x = xr

i then set variable
xi to have value F . Any remaining variable whose truth value has not yet been
assigned can be set to T . Clearly f is a satisfying truth assignment for B. ut

6 Conclusion and open questions

In this paper we have described a polynomial-time algorithm for the problem of
finding a strongly stable matching, if one exists, given an instance of HRT. By
constrast we have shown that the corresponding existence question becomes NP-
complete for HRP. However, much remains to be investigated, and the following
questions are particularly noteworthy:

1. For a given instance I of HRT that admits a strongly stable matching M , it is
possible that I can admit weakly stable matchings of sizes > |M | and < |M |
(see [8] for an example). However all strongly stable matchings for a given
instance of HRT have the same cardinality [8]. In this paper, the robustness



of a strongly stable matching (against situations of persuasion or bribery)
has been our primary motivation for studying HRT under strong stability.
Nevertheless, further consideration should be given to the relative sizes of
weakly stable matchings compared to the size of strongly stable matchings,
given an instance of HRT.

2. The current algorithm for strong stability in HRT is resident-oriented. How-
ever, for super-stability in HRT there are both resident-oriented and hospital-
oriented algorithms [7]. The problem of describing a hospital-oriented algo-
rithm for HRT under strong stability remains open.

3. For a given instance of the stable marriage problem with ties, it is known
that the set of strongly stable matchings forms a distributive lattice, when
the set is partitioned by a suitable equivalence relation [11]. It remains open
to characterise any similar structure in the set of strongly stable matchings
for a given instance of HRT.
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