Evolution of the Bunyamwera virus polymerase to accommodate deletions within genomic untranslated region sequences

Mazel-Sanchez, B. and Elliott, R. M. (2015) Evolution of the Bunyamwera virus polymerase to accommodate deletions within genomic untranslated region sequences. Journal of Virology, 89(7), pp. 3957-3964. (doi: 10.1128/JVI.03436-14) (PMID:25609819)

Full text not currently available from Enlighten.

Abstract

The untranslated regions (UTR) present at the ends of bunyavirus genome segments are required for essential steps in the virus life cycle and provide signals for encapsidation by nucleocapsid protein and the promoters for RNA transcription and replication as well as for mRNA transcription termination. For the prototype bunyavirus, Bunyamwera virus (BUNV), only the terminal 11 nucleotides (nt) of the segments are identical. Thereafter, the UTRs are highly variable both in length and in sequence. Furthermore, apart from the conserved termini, the UTRs of different viruses are highly variable. We previously generated recombinant BUNV carrying the minimal UTRs on all three segments that were attenuated for growth in cell culture. Following serial passage of these viruses, the viruses acquired increased fitness, and amino acid changes were observed to accumulate in the viral polymerase (L protein) of most mutant viruses, with the vast majority of the amino acid changes occurring in the C-terminal region. The function of this domain within L remains unknown, but by using a minigenome assay we showed that it might be involved in UTR recognition. Moreover, we identified an amino acid mutation within the polymerase that, when introduced into an otherwise wild-type BUNV, resulted in a virus with a temperature-sensitive phenotype. Viruses carrying temperature-sensitive mutations are good candidates for the design of live attenuated vaccines. We suggest that a combination of stable deletions of the UTRs together with the introduction of temperature-sensitive mutations in both the nucleocapsid and the polymerase could be used to design live attenuated vaccines against serious pathogens within the family Bunyaviridae.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Elliott, Professor Richard
Authors: Mazel-Sanchez, B., and Elliott, R. M.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Journal of Virology
Publisher:American Society for Microbiology
ISSN:0022-538X
ISSN (Online):1098-5514

University Staff: Request a correction | Enlighten Editors: Update this record