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Abstract
Mitochondrial 2-cys peroxiredoxin III (PrxIII) is a key player in antioxidant defence reducing

locally-generated H2O2 to H2O. A Phe to Leu (F190L) mutation in the C-terminal α-helix of

PrxIII, mimicking that found in some bacteria and parasites, increases its resistance to

hyperoxidation but has no obvious influence on peroxidase activity. Here we report on the

oxidized and reduced crystal structures of bovine PrxIII F190L at 2.4 Å and 2.2 Å, respec-

tively. Both structures exist as two-ring catenanes with their dodecameric rings inclined at

55o to each other, similar to that previously reported for PrxIII C168S. The new higher-reso-

lution structures reveal details of the complex network of H-bonds stabilising the inter-toroid

contacts. In addition, Arg123, the key conserved residue, that normally interacts with the

catalytic cys (Cp, cys 47) is found in a distinct conformation extending away from the Cp

while the characteristic Arg-Glu-Arg network, underpinning the active-site geometry also

displays a distinctive arrangement, not observed previously. This novel active-site organisa-

tion may provide new insights into the dynamics of the large-scale conformational changes

occurring between oxidized and reduced states.

Introduction
Mitochondria are not only the powerhouses of the cell but also the major intracellular sites of
reactive oxygen species (ROS) production [1]. Although ROS are best known for their damag-
ing effects on cellular macromolecules during oxidative stress, there is increasing evidence to
indicate that oxidizing agents such as H2O2 play vital roles in redox signalling [2]. During res-
piration linked ATP production in the mitochondrial inner membrane, there is significant elec-
tron leakage from the electron transport chain, especially from complexes I and complex III,
initially generating superoxide anions (O2

.-). However, most superoxide is reduced to H2O2 by
the mitochondrial Mn2+-requiring superoxide dismutase (MnSOD). Competitive kinetic stud-
ies have also estimated that 90% of mitochondrial H2O2 is further reduced to water by
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peroxiredoxin III (PrxIII) within this compartment [3]. Peroxiredoxin V (PrxV), a 1-cys Prx, is
also located in mitochondria in addition to other intracellular compartments [4]. Oxidative
stress becomes apparent when increased ROS production overwhelms the battery of intra- and
extra-mitochondrial anti-oxidant defence systems.

PrxIII is a prominent member of the ubiquitous peroxiredoxin family that function as thiol-
dependent peroxidases with dual roles in anti-oxidant protection and redox signalling in eu-
karyotes [5,6]. In mammalian cells, PrxI and II reside in the cytoplasm, PrxIII is mitochond-
rially-located and PrxIV is confined to the endoplasmic reticulum. Like other typical 2-Cys
Prxs, PrxIII employs its peroxidatic, active-site cysteine (Cys47) to react with hydrogen peroxide
forming cysteine sulfenic acid (CysOH) [7] (Fig 1). The resolving cysteine (Cys168) from the
adjacent monomer then forms a disulfide bond with the peroxidatic cysteine releasing an H2O
molecule. The resulting disulfide is reduced by mitochondrial thioredoxin (Trx2) that is itself re-
duced by a mitochondrial NADP-linked thioredoxin reductase (TrxR2). The sulfenic cysteine of
mammalian Prxs can be inactivated during times of oxidative stress by further oxidation to sulfi-
nic acid (Cys-SO2H) and even sulfonic acid (Cys-SO3H). These inactive, hyperoxidised Prx spe-
cies are considered to be integral players in H2O2-mediated signalling [6,8]. Inactive cytosolic
mammalian Prxs, in the cysteine sulfinic acid state, can be re-reduced by sulfiredoxin (Srx) and
ATP [9] whereas the CysSO3H Prx state is thought to be damaged irreversibly [10]. It has also

Fig 1. Schematic illustration of various states of PrxIII during the reaction cycle. The homodimer of the PrxIII dodecamer represents a functional unit
during the reaction cycle: (i) the peroxidatic cysteine (SHper) reduces hydrogen peroxide and is converted to its sulfenylated (SOH) form. (ii) the Cp loop
housing the peroxidatic cysteine unfolds from its FF to LU conformation. (iii) the peroxidatic cysteine forms a disulfide bond with the resolving cysteine
eliminating an H2O molecule (iv) mitochondrial thioredoxin (Trxred) reduces the disulfide bond to regenerate the reduced active-site cysteine while the Cp
loop re-assumes the FF state conformation. The sulfenylated cysteine intermediate can be further oxidized to its sulfinylated or sulphonylated forms while it
remains in the FF state at elevated H2O2 levels.

doi:10.1371/journal.pone.0123303.g001
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been reported that Srx can be translocated from the cytosol to mitochondria in response to oxi-
dative stress [11].

Structural analysis has shown that Prxs undergo a large conformational change during the
transition from oxidized to reduced states [12]. Depending on whether the peroxidatic cysteine
(Cp) is reduced or disulfide-bonded, the active site is either in the fully folded (FF) or locally
unfolded (LU) conformation. The two catalytic cysteines are separated by 13 Å in the FF state
while they require to be in close proximity to enable disulfide bond formation on oxidation.
Thus, during the catalytic cycle, the Prx structure will alternate rapidly between FF and LU
states requiring large-scale movement of the Cp loop.

It has been established that the YF motif in the C-terminal α-helix is involved in promoting
the hyperoxidation step by delaying the conformational change from FF to LU [6]. The YF
motif is absent in most prokaryotic Prxs that are generally resistant to hyperoxidation and
function exclusively in combating oxidative damage. However, a similar YL motif is present in
some bacteria [13] and parasites [14] although its involvement in regulating the sensitivity of
these Prxs to H2O2-induced inactivation has not been studied to date.

Prxs have a remarkably high catalytic efficiency towards H2O2 with second order rate con-
stants of ~ 107 M-1 s-1 [15]. This is linked to the microenvironment around the active site low-
ering the pKa of the cysteine to provide an optimised substrate binding site [16]. The Cp-
thiolate is stabilised and activated for nucleophilic attack on its peroxide substrate by hydrogen
bonding to a conserved Arg residue (Arg123) and a backbone amide group [16,17]. These au-
thors also concluded that an Arg–Glu–Arg hydrogen-bonding network leads the guanidinium
group of the active-site Arg to be in position to support the Cp. Kinetic and computational
studies have revealed that, not only Arg123 but also Arg146 in human PrxIII, is equally vital
for activity and it has been proposed that both Arg residues interact directly with substrate
[17].

Although there is an underlying basic functional dimeric unit, typical 2-Cys Prxs exist as
higher order toroidal structures. In most cases, they form decameric rings although octamers
and dodecamers have also been observed [18,19]. The transition from dimers to toroids is
known to be redox and concentration dependent in most cases [20]. The ring structure can fur-
ther assemble into more complex quaternary states. Jang et al have reported an association of
the PrxII decamer into a dodecahedral structure on hyperoxidation in vitro [21]. Moreover, a
TEM study of bovine PrxIII has demonstrated a tendency for individual dodecameric toroids
to stack end to end, forming long filaments (40–50 rings) in the case of the C47S mutant [7].
Remarkably, the 3.3 Å crystal structure of bovine PrxIII C168S has revealed a quaternary orga-
nisation consisting of interlocking dodecameric rings forming a two-ring catenane [22]. Trans-
mission electron microscopy (TEM) analyses of PrxIII samples in dilute solution before and
after crystallization have demonstrated that the population consists largely of single toroids to-
gether with 3–5% double interlocked rings suggesting that catenane formation is a dynamic
process and not simply an artefact of crystal packing [20].

In this paper, we report on the crystal structures of both oxidized and reduced forms of bo-
vine PrxIII F190L to 2.4 Å and 2.2 Å, respectively and examine some of its novel structural and
enzymatic properties.

Results

Activity of PrxIII F190L and its resistance to hyperoxidation
Mammalian PrxIII contains a highly-conserved YF motif located in its C-terminal α-helix that
is responsible for its susceptibility to hyperoxidation. In contrast this region is poorly conserved
in prokaryotes although some bacteria and parasites have a similar YL motif of unknown
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function. To evaluate the possible role of the poorly-characterised YL motif, an F190L PrxIII
mutant was generated from native bovine PrxIII. Firstly the intrinsic peroxidase activity of
PrxIII F190L was assessed and found to be identical to the wild-type enzyme (Fig 2A). Wild-
type and mutant PrxIII hyperoxidation status was also determined with an antibody that

Fig 2. The effect of F190L to peroxidase activity and sensitivity to hyperoxidation. a. Time course of PrxIII dependent NADPH oxidation coupled to
H2O2 reduction for PrxIII wild-type and F190L. NADPH oxidation was monitored at 340 nm in a 1 ml reaction mixture containing with 5 μM of PrxIII, 2.1 μM
Trx, 1.5 μM TrxR2 and 0.5 mMNADPH in 50 mMNaH2PO4 buffer, pH 7.4 containing 150 mMNaCl, 1 mM EDTA. A reaction mix without PrxIII was used as
the negative control. This is a representative result from three independent experiments with similar results. b. Dose-dependent increase in PrxIII wild-type
and F190L mutant hyperoxidation after exposure to hydrogen peroxide at the indicated concentrations. PrxIII hyper-oxidation was monitored by western
blotting using an antibody that recognizes primarily the sulfinic or sulfonic acid forms of Prxs (α-SO2-3). The assay was carried out in the presence of 1 mM
DTT as reductant. Western blots were used for quantification of hyperoxidized PrxIII by densitometry. Intensity of hyper-oxidized PrxIII was normalized
against loading control blotted with an anti-His antibody. Error bars represent the mean ±S.D. from three independent experiments.

doi:10.1371/journal.pone.0123303.g002
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primarily recognizes Prx active-site CysSO2 and CysSO3 moieties [23]. During exposure to in-
creasing H2O2, both PrxIIIs were recycled in the presence 1mM dithiothreitol (DTT). The mu-
tant was found to be relatively insensitive to hyperoxidation even at high peroxide levels as
compared to the wild-type control (Fig 2B). These data highlight the importance of the large
Phe 190 residue in conferring overall PrxIII sensitivity to hyperoxidation while having no obvi-
ous effect on enzymatic function.

Reduced bovine PrxIII F190L is present as a two-ring catenane in the
crystal structure
In the presence of 1mMDTT, reduced PrxIII F190L crystallized with a P21212 space group.
The data-processing and refinement statistics for the PrxIII F190L model are listed in Table 1.
Twelve monomers are present in the asymmetric unit forming a toroidal structure. As reported
for PrxIII C168S, the peroxidatic cysteine (Cys47) is located at the end of a long helical segment
similar to that adopted in the FF conformation in typical 2-cys Prxs although the C-terminal
region including the resolving cysteine (Cys168) appears to be unstructured in these cases
(Fig 3A).

Overall, there are 6 homodimers interacting by hydrophobic contacts to complete an (α2)6
dodecameric toroid. Interestingly, PrxIII F190L is also present as 2 physically interlocked dode-
cameric rings—a two-ring catenane (Fig 3B), as described previously for the C168S mutant
[22]. Thus, in several respects, PrxIII does not behave as a typical 2-cys Prx. These include a
distinct C-terminal region that renders PxIII less sensitive to hyperoxidation than other typical
2-cys Prxs [24], and a unique ability to form dodecameric toroids (rather than decamers) with
a large central cavity that favors further assembly into two-ring catenanes.

Table 1. Data collection and refinement statistics.

Oxidised Reduced

PDB code 4MH3 4MH2

Data collection

Space group P21212 P21212

Unit cell (Å) a = 142.89 b = 290.88 a = 139.57 b = 260.82

c = 81.14 c = 81.66

Resolution (Å)* 102.06–2.4(2.53–2.4) 93.35–2.2(2.32–2.2)

No. of unique observations* 130007(17808) 149669(21040)

Multiplicity* 4.1(3.5) 6.1(5.1)

Completeness(%)* 98.2(93.9) 98.7(96.3)

Mean I/σ* 11.3(1.8) 11.4(1.6)

Rmerge(%)* 9.5(73.2) 8.9(73.8)

Wilson plot B-factor (Å2) 55.8 38.2

Refinement

Rwork/Rfree (%) 18.2/22.1 18.1/21.9

rmsd for bond lengths (Å) 0.012 0.012

rmsd for bond angles (deg) 1.58 1.50

Ramachandran plot (%)

Favored 95.61 97.02

Allowed 100.00 100.00

*Values in parentheses are for the highest-resolution shell.

doi:10.1371/journal.pone.0123303.t001
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Fig 3. PrxIII forms interlocked rings in both oxidized and states. a. Detailed cartoon diagram of reduced and oxidized PrxIII F190L showing the transition
between fully folded (FF) and locally unfolded (LU) forms. The active-site cysteine sulfur atom is shown as yellow sticks. Different chains are colored in cyan
and blue, respectively. b. Surface diagram of the reduced PrxIII F190L catenane showing two interlocking dodecameric rings in orange and blue,
respectively. Both oxidized and reduced states of the protein display a very similar catenaned structure.

doi:10.1371/journal.pone.0123303.g003
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Ring-ring interactions
As indicated, the most remarkable feature of the current structure is its presence as a two-ring
catenane consisting of two interlinked dodecameric rings. Each (α2)6 toroid has an external di-
ameter of 150 Å enclosing a large 70 Å central cavity. The two rings are inclined at an angle of
55° allowing large areas of contact between the dodecamers.

In this higher resolution 2.2 Å structure, a detailed picture is revealed for the first time of
the precise nature of the ring-ring interactions stabilising the catenated state. The major inter-
toroidal contact area comprises a network of hydrogen bonds between residues Ser59, His62,
Asp63 and Glu67 from chain A of ring 1 and Pro9, Tyr10, Phe11, Lys12, Arg109 and Asp110
from chain H of ring 2 (Fig 4A). Specifically, the backbone N of Tyr10 interacts with the side
chain hydroxyl of Ser59. Similarly, the Lys12 amide N binds to the carboxyl group of Asp63
while a water molecule links the carboxyl groups of Asp63 and 110 with the amide N of Phe11.
In addition, the Asp110 carboxylate also forms a contact with the imidazole N of His62. Finally
the guanidinium group of Arg109 forms 2 hydrogen bonds with the carboxyl group of Glu67.
A second region of inter-ring hydrogen bonds is observed between the ε-amino group of Lys88
from chain A of ring 1 and the carboxyl groups of Glu116 and 117 from chain G of ring 2
(Fig 4B). In total, there are 8 areas of inter-toroid contact arising from the presence of four
non-crystallographic symmetry related copies of 2 distinct interfaces. A potential third site of
interaction involving hydrogen bond formation between Lys12 from chain C and Tyr10 from
chain J, as observed for the C168S mutant, is absent in the current structure.

Locally unfolded conformation of oxidized PrxIII
In the absence of DTT, PrxIII was crystallized in the same space group as for the reduced form
but in a slightly different unit cell. This 2.4 Å structure shows all the major structural and orga-
nisational features of its reduced counterpart. In this case, the Cp loop around Cys47 adopts
the locally unfolded (LU) conformation (Fig 3B) and the disulfide bond between the Cys47 of
one monomer and Cys168 from its companion subunit is visible while the residues beyond
Pro169 are not traceable. Although in dilute solution, the oxidized PrxIII toroid is much less
stable than the reduced species showing significant dissociation into dimers, it still exists as
dodecamers in the crystal structure, indicating that oligomer formation is concentration-de-
pendent as reported previously (19). Most strikingly, oxidized PrxIII also forms a two-ring
catenane that is almost identical to the reduced form with the planes of the rings again inclined
at 550 to each other.

In addition, the two major regions of inter-chain contact in oxidised PrxIII F190L described
above are identical to those in the reduced structure. However, the third potential point of in-
teraction between Lys12 and Tyr10, observed previously in the C168S mutant and absent in re-
duced PrxIII F190L, is again evident in its oxidized counterpart where these two residues are in
close proximity, enabling hydrogen bond formation.

Arg123 exhibits a distinctive, previously-unobserved conformation
As described before, Arg123 of PrxIII (or its equivalent) is highly-conserved in typical 2-Cys
peroxiredoxins and plays an important role in supporting peroxidase activity. Point mutations
in Arg123 or Arg146 located 3–4 Å and 6–7 Å from the active site Cys47 respectively, each lead
to a decrease in catalytic power by 5 orders of magnitude. Double mutants show a further
100-fold loss of peroxidase function suggesting a cooperative role for these two Arg residues
[17].

In previous publications, e.g. on the reduced (FF) structure of PrxIV [23], the guanidinium
group of the major Arg residue (Arg200) has been shown to interact directly with the
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peroxidatic cysteine sulfur lowering its pKa, thereby favoring thiolate formation and greatly en-
hancing its reactivity. This key Arg residue maintains an identical conformation after conver-
sion of PrxIV to the oxidized (LU) state that is accompanied by large-scale movement of the
peroxidatic and resolving cysteines. In contrast, with PrxIII F190L in its reduced state, the

Fig 4. Ring-ring interactions. Detailed representation of the hydrogen bonding network in different contact areas between the rings. The two rings are
colored in blue and orange, respectively. The hydrogen bonds are shown in dotted yellow lines with the distance in angstroms (Å).

doi:10.1371/journal.pone.0123303.g004
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conformation of this conserved Arg is quite distinct; instead of facing the active-site thiolate,
the Arg side chain adopts an average conformation inclined away from the Cp sulfur to a dis-
tance of 4–5 Å (Fig 5A). Interestingly, however, individual active-site geometries around the
2-ring catenane display considerable microheterogeneity in this region with the Arg side chain
adopting a variety of positions ranging from 3.4 Å to 5.2 Å from the cysteine sulfur. These data
strongly suggest that the Arg side chain is highly mobile and can move away readily from its in-
teraction with the cysteine thiolate during the initial phase of the catalytic cycle.

Distinctive features of the Arg-Glu-Arg network in PrxIII
A further interesting difference relates to the organisation of the Arg-Glu-Arg network, first re-
ported by Hall et al [16], in which the conserved second Arg in the typical 2-Cys Prxs (Arg223
in PrxIV) contributes to the positioning of the active-site first Arg (Arg200 in PrxIV) via a se-
ries of hydrogen bonds, establishing a basis for their cooperative interactions as suggested from
mutation analysis (Fig 5B). A similar but distinctive hydrogen-bonding network is also present
in the PrxIII structure; however, the locations of all three key residues are different from other
Prxs as is the nature of the bonding network itself. In our PrxIII structure (reduced), the main
chain carbonyl of Arg123 interacts directly with the guanidino group of Arg146 in addition to
both residues interacting indirectly via Glu50. In contrast, no direct interaction between these
2 key Arg moieties is apparent in the equivalent PrxIV structures. In addition, Arg 146 is too
distant to have direct contact with bound substrate or the active-site cysteine as proposed by
Nagy et al [17]. Inspection of the Arg-Glu-Arg network in the oxidised PrxIII structure again
reveals the presence of a hydrogen bond between the main chain carbonyl of Arg123 and gua-
nidino side chain of Arg146 (Fig 5B). However, the hydrogen bonds linking Arg123 to Glu50
are altered as a result of the extension of the Arg123 side chain towards the location occupied
by the active-site Cys47 in the reduced state. In direct contrast, the reported geometry and hy-
drogen bonding arrangements of the Arg-Glu-Arg network in PrxIV are identical in both oxi-
dized and reduced forms [23].

Discussion
The YF motif in the C-terminal helix of mammalian 2-cys Prxs, including PrxIII, has been
shown to be integral to establishing its susceptibility to hyperoxidation. It has been proposed
that the role of this helix is to cover the active site and to limit the dynamic movement of the
Cp loop [6]. In the F190L mutant, this helix is established to be destabilised allowing greater ac-
cess to the active-site thiolate and more rapid disulfide bond formation. As a consequence, its
capacity to react with a second molecule of H2O2 is greatly diminished, highlighting the impor-
tance of this conserved Phe residue in regulating the hyperoxidation status of the peroxidatic
cysteine. The mutant enzyme, however, displays identical peroxidase activity to the wild-type,
indicating that limitation in the rate of movement of the peroxidatic loop, while leading to in-
creased susceptibility to hyperoxidation, is not the rate-limiting step in the peroxidation reac-
tion, at least under in vitro assay conditions.

Surprisingly, in our case, it has proved impossible to locate the positions of the C-terminal
residues beyond residue 164 that are thought to be rather stable in other peroxiredoxins in the
reduced state. However, the C-terminal region of human PrxIII has also been shown to influ-
ence its susceptibility to hyperoxidation [24]. Selective substitution of several C-terminal resi-
dues in PrxIII making it more similar to a PrxII-like protein further increased its sensitivity to
hyperoxidation. This observation together with the lack of electron density of the C-terminal
region in the reduced forms of bovine PrxIII C168S may suggest that the PrxIII C-terminus is
not as ordered as in other 2-Cys Prxs. Interestingly, the Cp loop of chains F and G of the
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Fig 5. Arg123 and the Arg-Glu-Arg network are in a new conformational state. a. Structure alignment between reduced PrxIII F190L (orange) and PrxIV
C51A (cyan) showing Arg123, Glu50 and Arg146 are in different positions. The position of the peroxidatic cysteine is fixed. The 2Fo-Fc electron density map
around the residues of PrxIII is contoured at 1.0 σ. b. Detailed representation of the hydrogen bonding network in both reduced and oxidized PrxIII and PrxIV
from the same viewpoint. Hydrogen bonds are shown in dotted yellow lines.

doi:10.1371/journal.pone.0123303.g005
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reduced form had to be modelled in the dual conformation with half in FF and half in LU. The
existence of both LU and FF states at these specific sites may be the result of DTT oxidation or
X-ray radiation directly promoting generation of ROS leading to partial oxidation. For chains
F and G, Arg123 in the FF state was located in relatively close proximity (3.4–3.5Å) to Cys47 as
expected if it was returning initially to a position in the vicinity of the active-site cys immedi-
ately following its re-reduction (Fig 4). Interestingly, a dual conformation of the Cp loop has
also been modelled in the human Prx IV structure [25].

In previous studies, the conserved Arg has been shown to be present in only two highly sim-
ilar conformations, both with the Arg pointing towards the Cp [16]. Here, our structure reveals
a new and distinctive Arg123 conformation with its side chain inclined away from the active-
site Cys. In this orientation, Arg123 still forms good hydrogen bond contact with the adjacent
Glu50 and Arg146 residues and is strongly supported by the electron density map (Fig 5A).
The altered organisation of the Arg-Glu-Arg hydrogen-bonding network in the oxidized and
reduced states also demonstrates that these interactions can be more flexible than previously
reported. In addition, the new Arg123 conformation, together with the lack of C-terminal
structure and the dual conformation of the Cp loop at two specific sites suggests that our struc-
ture is not in the typical fully-reduced form, but may well represent a trapped intermediate
state. The most striking feature of the crystal structure of the PrxIII C168S mutant is its exis-
tence as 2-interlocking dodecameric rings. The PrxIII F190L mutant also forms a similar struc-
ture, irrespective of its redox state. This remarkable quaternary organisation appears to be a
unique feature of bovine PrxIII since no other similar Prx structure has been reported to date.

Sequence alignment of PrxIII with PrxI, II and IV reveals that the key residues involved in
the ring-ring interactions are not well conserved (S1 Fig). Thus while the residues equivalent to
Arg109 and Asp110 are conserved in most cases as are the amino acids corresponding to resi-
dues 9–12 in PrxIII, non-conserved substitutions at positions equivalent to Ser59, His62 and
Asp63 in PrxIII disrupt the potential for any possible interaction between monomers. For ex-
ample, Ser59, His62 and Asp63 in PrxIII are replaced by their counterparts Glu136, Arg139
and Ser140 in PrxIV. A further notable feature is that the inner diameter of the central cavity is
larger in PrxIII than Prxs I, II and IV (70Å versus 60Å respectively). The increased dimensions
of this cavity in PrxIII together with the unique hydrogen bonding arrangements that can
occur between adjacent monomers located at the interfaces of interlinked toroidal dodecamers
appear to be responsible for its exclusive ability to form 2-ring catenanes.

As reported previously [20], formation of these 2-ring catenanes is a dynamic concentra-
tion-dependent and reversible process as only a small proportion of double toroids (3–5%) are
visible by TEM in dilute solution before crystallisation or after crystal dissolution with the re-
minder present as single toroids. Although its physiological relevance, if any, has still to be es-
tablished, it is probable that the catenated form is the predominant state in the crowded
environment of the mitochondrial matrix where protein concentrations are reported to be
approx. 200mg/ml.

Interestingly, the recent discovery of a new enzyme for CS2 conversion to H2S and CO2 in
the acidothermophile, Acidianus A1-3 has revealed the underlying molecular basis for its exis-
tence as an unusual catenated, hexadecameric oligomer, that is responsible for some of its
novel enzymatic properties [26].

The ability of Prxs to form large supramolecular assemblies, including nanotubes, has been
exploited recently employing a Prx1 mutant as a molecular template to promote metal-induced
self-assembly of one dimensional nanoscopic structures housing linear arrays of Ni2+-functio-
nalised gold nanoparticles in their central cavities [27]. Formation of ordered arrays of protein-
metal complexes is increasingly being exploited in the assembly of electronic nanodevices for a
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variety of technological applications. The unique ability of PrxIII to form 2-ring catenanes may
similarly prove advantageous in the future development of advanced functional materials.

Materials and Methods

Mutagenesis, Protein Purification and Crystallization
Specific mutagenic oligonucleotide primers were designed to the region of the gene containing
Phe190 to permit its conversion to leucine. Site-directed mutagenesis of bovine PrxIII was per-
formed using the QuikChange™ Site-directedMutagenesis Kit (Stratagene) according to the man-
ufacturer's instructions. As bovine PrxIII, lacking its N-terminal 62 amino acid mitochondrial
targeting signal, was employed for these studies, residue 1 refers to the N-terminal alanine of the
mature protein. The N-terminally His-tagged bovine PrxIII F190L construct housed in pET14b
was overexpressed for 5h at 22°C in E. coli BL21 pLysS cells prior to disruption by French pres-
sure treatment. Purification was performed by zinc-resin affinity chromatography followed by
gel filtration chromatography (HiPrep 16/60 Sephacryl S-300, GE healthcare) in 50 mMNaCl,
20 mMHEPES (pH 7.2), 5 mM EDTA, with and without 10 mM dithiothreitol (DTT). Prior to
crystallization, the protein was concentrated to a final concentration of 15 mg ml-1.

Crystallization trials were performed at 16°C by using the sitting-drop vapor-diffusion
method. Brick-like crystals of the reduced form obtained from drops composed of 2 μl protein
solution mixed with a 2 μl volume of a 1 ml reservoir solution containing 34% (v/v) 2-methyl-
1,3-propanediol, 0.1 M phosphate-citrate pH 4.2, grew to a size of 0.5 × 0.2 × 0.2 mm in a
week. Rod-like crystals of the oxidized form obtained from drops composed of 2 μl protein so-
lution mixed with a 2 μl volume of a 1 ml reservoir solution containing 36% (v/v) 2-methyl-
1,3-propanediol, 0.1M phosphate-citrate pH 4.1, grew to a size of 1.0 x 0.1 x 0.1 mm in a week.

Data Collection
The mother liquor with 25% (v/v) glycerol was used as a cryoprotectant. X-ray diffraction data
sets were collected at 100K by using synchrotron radiation (Diamond, UK) at the I02 beamline
equipped with an ADSC Q315r CCD detector. A total of 720 frames were recorded using 0.5°
of oscillation with a crystal detector distance of 340 mm and 407.4 mm, for reduced and oxi-
dized forms respectively. Data were processed to a resolution of 2.2 Å for the reduced form and
2.4 Å for the oxidized form by using the programs MOSFLM, SCALA, and TRUNCATE from
the CCP4 package [28]. Data collection statistics are summarized in Table 1.

Structure Determination
An initial phase set was obtained by molecular replacement with the program PHASER [29] by
using a dimer of PrxIII C168S (PDB code 1zye) as a search model to locate six dimers. This
gave a solution of a circular, hexameric assembly of dimers. By applying crystallographic two
fold symmetry, two interlocked dodecameric ring structures were found in one unit cell. This
structure was refined by ten cycles of rigid-body refinement, with a dodecameric ring treated as
12 domains, by using the program REFMAC in the CCP4 suite [28]. Structural modelling was
performed with Coot [30]. The TLS thermal mode was used, thereby allowing a separation of
the overall lattice vibrations before the standard restrained refinement of atomic coordinates
and the individual atom isotropic B-factors [28]. Molprobity was used to monitor the model
geometry[31]. All figures were drawn by PyMOL (Version 1.4, Schrödinger, Camberley, UK).
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Hyperoxidation assay
Wild type or PrxIII F190L (5μM) was mixed with 1mMDTT as reductant, various concentra-
tions of H2O2 were added and samples incubated for 10 min at room temperature. An equal
amount of sample buffer containing 100 mM dithiothrietol (DTT) was added before boiling
for 5 min. The extent of hyperoxidation of PrxIII was assayed by western blot analysis using an
antibody that recognizes the sulfinylated or sulfonylated forms of Prxs (α-SO2-3). After
SDS-PAGE separation, proteins were transferred to nitrocellulose membrane (GE Healthcare).
Nonspecific binding was blocked using 5% (w/v) nonfat dried skimmed milk in TBST buffer
(50mM Tris buffer, pH 7.5, containing 150mM NaCl and 0.1% (v/v) Tween 20). Primary anti-
body (α-SO2-3 for hyperoxidised form of Prxs and α-His for loading control) was diluted
1:1000, and incubations were performed for 16 h at 4°C. Secondary antibody was diluted
1:5000 in TBST buffer, and incubations were performed in a lightshielded box for 45 min at
room temperature. Specific proteins were visualized using an Odyssey SA imaging system
(LI-COR Biosciences). For quantification of fluorescent Western blots, scans were performed
at minimum intensities required to detect all relevant proteins. Densitometry was then per-
formed on unmodified output images using ImageJ (National Institutes of Health).

Peroxidase activity assay
Peroxidase activity was measured by monitoring NADPH oxidation as described previously
[20]. In short, a 1 ml assay mix containing 2.1 μMTrx2, 1.5 μMTrxR2 and 0.5 mMNADPH in
50 mMNaH2PO4 buffer, pH 7.4, 150 mMNaCl and 1 mM EDTA was incubated at 25°C. The
reaction was initiated by adding 0.1 mMH2O2. The A340 was recorded on an Ultrospec 4300
pro UV/Visible spectrophotometer over 180s to monitor the oxidation of NADPH as the re-
ducing substrate donor.

Accession numbers
Coordinates and structure factors have been deposited in the Protein Data Bank with accession
number: 4MH2, 4MH3

Supporting Information
S1 Fig. Sequence alignment of typical 2-cys Prxs. Sequence alignment of human PrxI to
PrxIV and bovine PrxIII showing difference between Prxs. Black arrows indicate the residues
involved in bovine PrxIII ring ring interactions.
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