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ABSTRACT

The GroundWater Spatiotemporal Data Analysis Tool (GWSDAT) is a user friendly, open source, decision
support tool for the analysis and reporting of groundwater monitoring data. Uniquely, GWSDAT applies a
spatiotemporal model smoother for a more coherent and smooth interpretation of the interaction in
spatial and time-series components of groundwater solute concentrations. Data entry is via a stand-
ardised Microsoft Excel input template whilst the underlying statistical modelling and graphical output
are generated using the open source statistical program R. This paper describes in detail the various
plotting options available and how the graphical user interface can be used for rapid, rigorous and
interactive trend analysis with facilitated report generation. GWSDAT has been used extensively in the
assessment of soil and groundwater conditions at Shell's downstream assets and the discussion section
describes the benefits of its applied use. Finally, some consideration is given to possible future
developments.

© 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY license

Software availability

Software name: GWSDAT (GroundWater Spatiotemporal Data

Analysis Tool)
Developer: Wayne R. Jones

License: Free under a GNU General Public License (www.gnu.org)
agreement.

Documentation and support for users: User manual, example data
sets, FAQ document, presentations and posters.

Contact address: Shell Global Solutions (UK)
(wayne.w.jones@shell.com)

Year first official release: 2013

Hardware requirements: Standard PC

System requirements: Microsoft Windows (XP or later)

Software requirements: Microsoft Office (Excel, Word and
PowerPoint) and R (www.r-project.org)

Program Size: 13 MB

Availability: www.claire.co.uk/ GWSDAT

* Corresponding author.
E-mail address: wayne.w.jones@shell.com (W.R. Jones).

1364-8152 © 2014 The Authors. Published by Elsevier Ltd. Open access under CC BY license,
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1. Introduction
1.1. Background

Groundwater is water located beneath the Earth’s surface in soil
pore spaces and in the fractures of rock formations. Environmental
monitoring of groundwater is routinely conducted in areas where
the risk of contamination is high and for protecting human health
and the environment following an accidental release of hazardous
constituents. Groundwater monitoring strategies are designed to
establish the current status and assess trends in environmental
parameters, and to enable an estimate of the risks to human health
and the environment. It involves installing a network of monitoring
wells to enable access to the water table across the site (Barcelona
etal., 1985). Samples of groundwater are periodically collected from
these wells and sent to an accredited laboratory for chemical
analysis. The resulting spatiotemporal data set has to be reviewed,


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:wayne.w.jones@shell.com
http://www.r-project.org
http://www.claire.co.uk/GWSDAT
http://www.gnu.org
mailto:wayne.w.jones@shell.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2014.01.020&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2014.01.020
http://dx.doi.org/10.1016/j.envsoft.2014.01.020
http://dx.doi.org/10.1016/j.envsoft.2014.01.020
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

W.R. Jones et al. / Environmental Modelling & Software 55 (2014) 242—249

243

Bookl - Microsoft Excel

Add-Ins

Get Started

- Home Insert Page Layout Formulas Data Review View Developer
GWSDAT 2.0 ™
@ | User Manual
Insert Data File > |G Blank Data Input Template
| # | GWSDAT Analysis 5| Basic Example
[£5 | Load GWSDAT Session _?y Comprehensive Example

[Z7 | Browse for ShapeFile.. | D E F G H 1
@ About GWSDAT

3 GWSDAT (GroundWater Spatio-Temporal Data Analysis Tool)

4 Author: Wayne.W.Jones@Shell.com Version: 2.0

5

6 Historical Monitoring Data Well Coordinates GIS ShapeFiles
3 WellName | Constituent | SampleDate| Result| Units | Flags WellName| XCoord | YCoord | Aquifer Filenames (*.shp)
9 MW-01 BENZENE 31/10/2002 78|ug/l MW-01 97.43 57.81

10 MW-01 GW 31/10/2002|  92.23|Level |MW-02 856.57 50.64

L MW-01 TOLUENE 31/10/2002 470]ug/l MW-03 2295 74.64

12 MW-01 XYLENE 31/10/2002 430]ug/I MW-04 83.64 81.26

13 MW- BENZENE 31/10/201 40000|ug/l MW-05 42.2 114.64

14 MW- GW 31/10/201 92.3|Level MW-06 62.4 44 57

15 MW- TOLUENE 31/10/201 1200{ug/l MW-07 126. 7243

16 MW-02 XYLENE 31/10/201 1100)ug/l W-08 126.95 104.15

17 MW-03 BENZENE 31/10/2002|ND<10 _|ug/l \W-09 141.84 42.09

18 MW-03 GW 31/10/201 94.43|Level W-10 111.50 23.05

19 MW-03 TOLUENE 31/10/2002 1.1[ug/ MW-11 88.05 7.88

20 MW-03 XYLENE 31/10/2002|ND<0.50 |ug/l

21 MW-04 BENZENE 31/10/2002 250]ug/l

Fig. 1. GWSDAT example data input template. The Historical Monitoring Data table captures the concentration data, groundwater levels and, if present, NAPL thickness. The Well
Coordinates Table stores the location of the monitoring well. The GWSDAT add-in menu is displayed at the top left.

analysed statistically, interpreted, and the results presented to
environmental regulators in a clear and understandable manner.

The most basic method of level and trend evaluation involves
investigating the time-series of groundwater constituent concen-
trations independently on a well by well basis. The more sophis-
ticated spatial methods, typically, involve fitting a concentration
trend surface (i.e. Kriging) to evaluate spatial pattern and trend
(Cameron and Hunter, 2002; Gaus et al., 2003). However, although
spatiotemporal data lies at the heart of current research in statis-
tical methods (see Cressie and Wikle (2011)), the most common
practice is to independently apply spatial modelling techniques to
separate monitoring events (e.g. Ricker (2008)) or apply a single
spatial model to a data set which has been consolidated over a time
period (e.g. Aziz et al. (2003)). The joint modelling of both spatial
and time elements in a single spatiotemporal modelling framework
leads to a more coherent interpretation of site groundwater char-
acteristics (Evers et al., in press).

Whilst there is a range of freely available groundwater data
analysis applications, the most sophisticated tend to be designed
for large scale long term groundwater monitoring networks (Aziz
et al., 2003; Cameron, 2004). These have a relatively large initial
data warehousing setup burden, which may be viewed as a barrier
to the more widespread use of advanced groundwater monitoring
techniques to smaller more short term monitoring programmes.
Similarly, whilst GIS applications (e.g. ArcGIS) have excellent visu-
alisation tools for geographical interpretation they also have a high
initial data setup cost, operator competence requirements, and
perhaps surprisingly, only a limited number of geostatistical
modelling techniques available.

2. Software design and aims
2.1. Development aims

To a large extent, GWSDAT has been developed to address the
barriers discussed in Section 1.1. However, its most important aim is
to provide a simple to use, but statistically powerful decision sup-
port tool to environmental engineers and practitioners who
routinely report on the status of numerous groundwater moni-
toring sites. Such an application needs to be easy to setup yet

powerful in its ability to objectively analyse and rapidly report on a
groundwater monitoring site’s characteristics.

In common with many other environmental applications, it was
recognised that there would be a benefit in providing the software
in an open and transparent manner because policy makers and
environmental regulators generally prefer code and techniques
which are fully transparent and supported by sound science
(Carslaw and Ropkins, 2012).

2.2. Software architecture

GWSDAT has been designed to integrate with Microsoft Excel, a
software routinely used by environmental engineers for storing and
analysing environmental (e.g. soil and groundwater) data. The user
entry point to GWSDAT is a custom built Excel Add-in menu (see
top left of Fig. 1).

The statistical engine used to perform geostatistical modelling
and display graphical output is the open source statistical pro-
gramming language R (R Development Core Team, 2012). The R
project is used across a wide range of disciplines and has been
adopted with eagerness by the environmental sciences community
(Carslaw and Ropkins, 2012). Members of the R community
contribute statistical routines and functionality to this collaborative
project by means of an open standardised package structure, which
can be downloaded and installed from http://cran.r-project.org/
web/packages/. GWSDAT makes use of several of these packages,
which are all individually referenced in this article. A Graphical
User Interface (GUI) is provided via the R packages rpanel (Bowman
et al., 2007) and tkrplot (Tierney, 2011) which obviates the need for
training GWSDAT users in the R programming language.

3. Data input
3.1. Background

Before describing the application of GWSDAT in more detail it is
necessary to give a brief explanation of the nature of groundwater
monitoring data. In general, routine sampling of a monitoring well
involves measuring the groundwater elevation and taking a sample
of the groundwater which is subsequently sent for laboratory
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analysis to ascertain the dissolved concentration of a prescribed set
of solutes (e.g. Toluene, Benzene). If the concentration is deemed
lower than that which could be detected using the method
employed by the laboratory then it is classified as a ‘non-detect’. In
such circumstances, the laboratory quotes the detection threshold
concentration value below which the solute could not be detected.

An additional important consideration for petroleum hydro-
carbon applications is the presence of a layer of Non-Aqueous Phase
Liquid (NAPL), such as gasoline or diesel, on the surface of the water
table. This circumstance often arises when the amount of
contamination is sufficient to exceed the natural solute level of
groundwater. Samples containing NAPL are not often sent for a full
chemical analysis (unless performing NAPL forensics) because the
levels of solute concentrations are too high for the traditional lab-
oratory methods, which are geared towards lower concentrations.
Hence, NAPL data poses the challenge of how to handle unspecified
high solute concentration values and identify trends in NAPL layer
thickness.

3.2. Input data format

Groundwater monitoring data is entered into GWSDAT by
means of a simple standardised Microsoft Excel input sheet (Fig. 1).
There is no requirement to gather any data that would not have
already been recorded in a standard groundwater monitoring data
set. The following summarises the GWSDAT data input format but
the reader is referred to the user manual for a full and detailed
explanation of GWSDAT data input specification.

Each row of the Historical Monitoring Data table (left hand table
in Fig. 1) corresponds to a unique combination of well id, sampling
date, aquifer zone, solute name and concentration. Non-detect so-
lute data is entered using the notation ‘ND < X', where X represents
the laboratory reported detection threshold concentration. If pre-
sent, NAPL thickness data is also entered in this table using the
constituent name ‘NAPL’ with an appropriate unit, e.g. metres, mm.
Optionally, groundwater level data is entered here (using the con-
stituent name ‘GW’) as an elevation above a common datum, e.g.
metres or feet above sea level or some other common reference
height.

The Well Coordinates table (middle table in Fig. 1) stores the
coordinates of the groundwater monitoring wells. Any arbitrary
coordinate system with an aspect ratio of 1 can be used, i.e. a unit in
the x-coordinate is the same distance as a unit in the y-coordinate.

The third optional GIS Shapefiles table can be populated with file
locations of GIS shapefiles (Esri, 1998) for use as basemaps or site
plans. Two GWSDAT input data sets of varying complexity (basic
and comprehensive) are included with the software to serve as
both an example of the GWSDAT data input format and provide a
quick way of getting started.

3.3. Data processing

On initiation of a GWSDAT analysis, the user is asked to select
from a variety of data processing options including the handling of
non-detects and, if present, NAPL. In accordance with the common
convention, the default option is to substitute the non-detect so-
lute concentration data with half its detection limit. Note, how-
ever, that this can mask trends in the data and lead to erroneous
estimates of summary statistics in cases with a high proportion of
non-detect results (Helsel, 2004). This issue is discussed in more
detail in Section 6. If NAPL is present the user is prompted to
substitute NAPL data points with site data set maximum observed
solute concentrations. This option is to provide a more realistic
picture of the area of impacted groundwater (high concentrations)
in the event that NAPL in wells prevents direct measurement of

solute concentrations as discussed in Section 3.1. The data pro-
cessing step is concluded with a series of data validation pro-
cedures to check for common data input errors.

4. Graphical user interface
4.1. Introduction

In the interests of user-friendliness and productivity the results
of a GWSDAT analysis are interrogated and interpreted through the
GWSDAT user interface (see Fig. 2). It includes a wide range of
different plots for the visual inspection of groundwater monitoring
data. The objective assessment of trend is achieved by the appli-
cation of statistical smoothing models described in Appendix A. The
following sections describe the individual components of the
GWSDAT user interface in more detail.

4.2. Well trend plot

The well trend plot (see Fig. 3) enables the user to investigate
time series trends of solute concentrations and groundwater level
in individual wells. Sampled concentration values are displayed
using orange circles for non-detect data and black solid circles for
detectable data. The user can choose to overlay a linear (or log-
linear) regression model fit and use the non-parametric Mann—
Kendall approach to trend detection via the R package Kendall
(McLeod, 2011). Although this approach is widely used in envi-
ronmental sciences (e.g. Hirsch et al. (1982); Helsel and Hirsch
(2002)) its major weakness is that it can only detect monotonic
trend and in response GWSDAT adopts an additional methodology.
The solid blue line in Fig. 3 displays the estimate (together with a
95% confidence interval) of the mean trend level according to a
local linear regression model fit described in Appendix A.1. This
non-parametric model smoothing technique is not constrained to
be monotonic and can change direction as is clearly illustrated in
the figure. The trend between two points in time is, informally
speaking, deemed statistically significant if the associated confi-
dence intervals do not overlap (Fig. 4).

For evaluating the impact of changing (perhaps seasonal) water
table conditions groundwater elevation data can, optionally, be
overlaid in this plot. The time series of observed groundwater level
is represented by open circles joined by a black solid line see and
the values read off from the right hand axis (see Fig. 3). If present,
NAPL thickness data can also be displayed in a similar manner.

4.3. Trend and threshold indicator matrix

The trend and threshold indicator matrix is a summary of the
level and time-series trend in solute concentrations at a particular
time-slice of the monitoring period. The rows correspond to each
monitoring well and the columns correspond to the different sol-
utes. The date of the time-slice is displayed at the top of the plot
and also indicated by a vertical grey line in the well trend plot (see
Fig. 3). The user can select between the options of displaying
‘Trend’, ‘Threshold — Absolute’ or ‘Threshold Statistical’.

When ‘Trend’ is selected the cells are coloured to indicate the
strength and direction of the current trend as assessed by the
instantaneous gradient of the well trend smoother (see Section 4.2)
at the current time-slice. White cells indicate a generally flat trend
whilst reds and greens indicate strong upward and downward
trends, respectively. In the event that the trend cannot be calcu-
lated (e.g. no data) then the corresponding cell is coloured grey.
Blue cells represent non-detect data.

When ‘Threshold Absolute’ is selected the cells are coloured
according to whether the observed current solute concentrations
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Fig. 2. The GWSDAT graphical user interface is a stand-alone, point and click, Graphical User Interface (GUI) which enables the user to perform a rapid, rigorous and interactive

analysis of trends in the time-series, spatial and spatiotemporal components of the data.
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Fig. 3. Example of the GWSDAT well trend plot. The black solid circles represent
observed concentration values. Overlaid in the solid blue line is a local linear regres-
sion model fit with 95% confidence interval, shown as dashed blue lines. The open
circles joined by solid line represent groundwater elevation measurements which are
read off from the right hand axis.

are below a user specified threshold value, such as a risk-based
remedial objective. The cells are coloured red if the current solute
concentration is above the threshold value and green otherwise.
‘Threshold Statistical’ is similar but only colours the cell green if the
upper 95% confidence interval of the well trend smoother (see
Section 4.2) is below the threshold value.

44. Spatial plot

The GWSDAT spatial plot (see Fig. 5) is for the analysis of spatial
trends in solute concentrations, groundwater flow and, if present,
NAPL thickness. It displays the locations of the named monitoring
wells together with sample solute concentration values collected
within the date interval displayed at the top of the graphic. If
desired, the major site features (e.g. roads, fuel tanks), supplied in a
GIS shapefile format, can be overlaid on the spatial plot as light blue
lines. As the user increments forwards and backwards through the
monitoring history, using the ‘+’ and ‘-’ Time Steps buttons, the
spatial plot is updated.

The estimated groundwater flow direction and magnitude is
depicted with blue arrows calculated using the method described
in Appendix A.2. Additionally, it is possible to overlay a contour plot
of groundwater elevation. This is achieved by drawing isopleths
through a fitted local polynomial regression model fit implemented
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using the R function loess — a 2D variant of the local linear
regression method explained in Appendix A.1.

The spatial distribution of solute concentration is estimated by
taking a time-slice through the spatiotemporal concentration
smoother (discussed further in Section 4.5). The model predictions
are superposed on the spatial plot with a user-specified colour key
located to the right of the plot. Alternatively, if no model based
predictions are required, the concentration smoother can be
replaced by size scaled colour coded circles representing the
magnitude of sampled solute concentration values. If NAPL is pre-
sent, the additional ‘NAPL-Circles’ option is available which displays
NAPL thickness measurements at the monitoring well locations
using a similar circle based representation, i.e. a bubble-plot.

The spatial plot uses the R packages, sp (Pebesma and Bivand,
2005), splancs (Rowlingson et al., 2012) and maptools (Lewin-Koh
et al.,, 2012).

4.5. Spatiotemporal trend analysis

One of GWSDAT'’s unique features is that the spatial and temporal
components of the solute concentration data are modelled jointly in a
single modelling framework described in Appendix A.3. The simul-
taneous statistical smoothing of both spatial and temporal compo-
nents provides a clearer and more insightful interpretation of the
groundwater monitoring site solute characteristics than would
otherwise be gleaned from analysing these two components
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separately. However, it is not an inconsiderable challenge to effec-
tively communicate the 3-dimensional nature of spatiotemporal
trend through a 2-dimensional medium of a computer monitor.
Furthermore, there is an additional constraint that the output from a
GWSDAT analysis is commonly used in paper-based non-interactive
reports submitted to environmental regulators. For this reason,
GWSDAT communicates spatiotemporal trend through automatic
plotting of the full temporal sequence of spatial plots (see Section 4.4).
This animation based approach provides a ‘movie’ clearly illustrating
how both the spatial and temporal distribution of historical ground-
water solute concentrations have changed over the monitoring
period.

The ‘animations’ menu located at the top-left of the GWSDAT user
interface (Fig. 2) provides three different methods for generating
animations. The first method plots and records the full sequence of
spatial plots in an R graphics window. The user can toggle forwards
and backwards through the sequence of spatial plots using the ‘Page
Up’ and ‘Page Down’ keyboard buttons. The second method is
identical but additionally generates a Microsoft PowerPoint slide-
pack of the full sequence of spatial plots. The third method uses
the R package animation (Xie, 2012), to generate a html animation
page (with controls) of spatial plots in the user’s internet browser.
The html animation can be viewed independently of GWSDAT, and
hence provides an excellent dynamic media for communicating
results to individuals who do not have direct access to GWSDAT.

4.6. Report generation

By left-clicking on any of the GWSDAT user interface plots, an
identical but expanded plot is generated in a separate R graphics
window. Plots can be saved to a variety of different formats
including ‘jpeg’, ‘postscript’, ‘pdf, ‘metafile’. Alternatively, with a
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single click of a mouse, plots and sequences of plots (e.g. spatio-
temporal animation described in Section 4.5) can be diverted
directly in to Microsoft Word or PowerPoint. This functionality,
implemented using the R package RDCOMClient (Lang, 2012), en-
ables the user to interactively compile a site groundwater moni-
toring report in an expeditious manner.

Additional report generation functionality include the ‘Well
Reporting’ procedure, implemented using the R package lattice
(Sarkar, 2008), which generates a matrix of graphs displaying time
series solute concentration values on a well by well basis (see
Fig. 6). This plot can be used to very concisely summarise the time
series trends in the complete set of solutes and monitoring wells. A
similar report procedure ‘GW Well Reporting’ also allows for the
overlay of the time series in groundwater elevation at each well.
Finally, the ‘Latest Snapshot’ procedure generates a sequence of
plots (to PowerPoint if required) which reports on the most recent
trends. This includes the latest spatial plot for each solute together
with the most recent three variants of the ‘Trend and Threshold
Indicator Matrix’ plot described in Section 4.3.

5. Discussion

Environmental risk-based management decisions are often
based on limited understanding of groundwater data, and relatively
limited statistical analysis of that data. GWSDAT has been designed
and developed as a user-friendly, interactive, trend analysis tool for
distilling the information from such groundwater monitoring data
sets. The application has been used operationally in the monitoring
and assessment of Shell’s global downstream assets (e.g. refineries,
terminals, fuel stations) for a period of over 4 years. Graphical
output generated from GWSDAT is routinely included in reports
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Fig. 6. Example of the GWSDAT Well report plot. The colour key at the top identifies each solute and the name of each well is displayed in a banner at the top of each of the
individual time series graphs. This clearly illustrates the correlation in time series trends across the different solutes.
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submitted to environmental regulators. Environmental engineers
using GWSDAT have reported numerous benefits:

e Rapid interpretation of complex data sets for both small and
large groundwater monitoring networks.

o Earlier identification of new spills or off-site migration.

e Reduced reliance on engineered remediation through increased
use of monitored natural attenuation remedies, where
groundwater data analysis supports its effectiveness.

o Earlier closeout of sites in needless long-term monitoring and/or
remediation.

e Simplified preparation of groundwater monitoring reports.

6. Future developments

The major area for future development is the addition of new
capabilities to GWSDAT. The assessment of solute plume stability is
currently carried out by visually inspecting the evolution of the
spatiotemporal solute concentration smoother. Feedback from
users has highlighted the need for additional quantitative tools to
supplement this graphical method. Development is currently un-
derway to incorporate plume mass balance tools, such as those
proposed in Ricker (2008), to automatically estimate plume char-
acteristics such as area, total mass and centre of mass. The in-
spection of these quantities over the monitoring period will more
objectively illustrate whether the plume is moving and if the plume
is growing, shrinking or stable.

Future versions of GWSDAT will use spatiotemporal model
standard errors to give the user a better understanding of model
uncertainty and goodness of fit. The spatial distribution of model
standard errors is of particular interest because it provides an
assessment of the design of the well monitoring network. Areas of
low monitoring density will have larger model standard errors. This
not only informs the user that the predictions in this area need to
be interpreted with care but also identifies potential locations
where the construction of new monitoring wells would improve
conceptual understanding of a site, and project decision-making.
Model standard errors could also be used in the calculation of the
solute plume characteristics mentioned above to provide a confi-
dence interval on these quantities.

Whilst simple to implement, the substitution of non-detect
concentration values is not without its disadvantages as discussed
by Helsel (2004). These are partly mitigated in GWSDAT by offering
the ‘worse case’ scenario of substitution with the full detection
limit as opposed to the usual value of half the detection limit.
However, the occurrence of different detection limits for the same
solute (perhaps because different laboratories were used during the
course of a long-term monitoring programme) is still troublesome
as substitution with any constant fraction leads to an apparent
trend in concentrations. The authors are currently researching
more sophisticated censored regression techniques to handle non-
detect data in the spatiotemporal modelling framework.
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Appendix A. Description of statistical modelling techniques
Appendix A.1. Well trend plot smoother

The well trend plot smoother is fitted using a non-parametric
method called local linear regression. This involves solving locally
the least squares problem:

min g i i — - B(x; — X)Y*w(x; — x; h) (A1)

where w(x; — x; h) is a weight function with parameter h. The
weight function gives the most weight to the data points nearest
the point of estimation and the least weight to the data points that
are furthest away. For the weight function GWSDAT uses a
normally-distributed probability density function with standard
deviation h. Local linear regression is deployed in GWSDAT using
the R package sm (Bowman and Azzalini, 2010, 1997) and h is
selected using the method published in Hurvich et al. (1998).

Appendix A.2. Groundwater flow estimation

Vectors of groundwater flow strength and direction are esti-
mated using the well coordinates and recorded groundwater ele-
vations. The model is based on the simple premise that local
groundwater flow will follow the local direction of steepest descent
(hydraulic gradient).

For a given well, a linear plane is fitted to the local groundwater

level data:
L = a+bx,~+cyi+e,- (A.2)
where L; represents the groundwater level at location (x;, y;). Local
data is defined as the neighbouring wells as given by a Delaunay
triangulation (Ahuja and Schacter, 1983; Turner, 2012) of the
monitoring well locations. The gradient of this linear surface in
both x and y directions is given by the coefficients b and c. Esti-
mated direction of flow is given by:

§ = tan~! (%)

and the relative hydraulic gradient (a measure of relative flow ve-
locity) is given by

R = Vb2 + 2

For any given model output interval this algorithm is applied to
each and every well where a groundwater elevation has been
recorded.

(A.3)

(A4)

Appendix A.3. Spatiotemporal solute concentration smoother

The spatiotemporal solute concentration smoother is fitted us-
ing a non-parametric regression technique known as Penalised
Splines (Eilers and Marx, 1992, 1996). A full and detailed explana-
tion of applying this statistical method to groundwater monitoring
data is the subject of another paper (Evers et al., 2014). However,
the following outlines some of the most important aspects for the
purposes of GWSDAT.

Let y; be the natural log solute concentration at x; = (i1, Xi2, Xi3)
where x;; and x;; stand for the spatial coordinates of the well and x;3
represents the corresponding time point for the i-th observation
withi = 1,...,n. We start by modelling the solute concentration as
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m
Vi =Y b+ (A5)
=

where the b;, j = 1,...,m are m B-Spline basis functions, generally
second or third order polynomials (Eilers and Marx, 1996). The
measurement errors ¢'s are assumed to be independent and
identically normally distributed with zero mean and variance ¢°.
Rewriting Equation (A.5) in the more compact matrix notation

leads to

y = BX)a+e (A6)
The traditional ordinary least squares approach is to minimize
the objective function S(a) = |l¢[|* = |y — B(x)a||>. The well

known major disadvantage of this approach is its propensity to
overfit data leading to under smoothness in model predictions. To
overcome this hurdle, the objective function is modified with the
addition of a term that penalises the finite differences of the co-
efficients of adjacent B-splines. The objective function now takes
the form S(e) = ||y — B(x)a||? + A||D4||* where Dy is a matrix such
that Dy = AY, the d-th differences of o, and 2 is a nonnegative tuning
parameter.

By minimising the new objective function for a given value of 4,
we obtain the estimator of the parameters @ — (B'B + AD,D;) 'B'y.
Note that when A = 0, we have the standard ordinary least squares
estimate for a.

Optimal selection of the penalisation parameter A is a subtle and
important matter. A value which is too small leads to ‘overfitting’,
i.e. capturing the noise in the data. Conversely, a value which is too
large leads to over smoothing of the data, i.e. ‘underfitting’. Several
criteria have been traditionally proposed (e.g. Hurvich et al. (1998),
Wood (2006)) but the authors tackled this problem using a
Bayesian modelling framework which is detailed in Evers et al.
(2014).
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