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Abstract

Objective: Non-invasive navigation techniques have recently been developed to determine
mechanical femorotibial alignment (MFTA) in extension. The primary aim of this study was to
evaluate the precision and accuracy of an image-free navigation system with new software
designed to provide multiple kinematic measurements of the knee. The secondary aim was to
test two types of strap material used to attach optical trackers to the lower limb.
Methods: Seventy-two registrations were carried out on 6 intact embalmed cadaveric specimens
(mean age: 77.8 ± 12 years). A validated fabric strap, bone screws and novel rubber strap were
used to secure the passive tracker baseplate for four full experiments with each knee. The MFTA
angle was measured under the conditions of no applied stress, valgus stress, and varus stress.
These measurements were carried out at full extension and at 30�, 40�, 50� and 60� of flexion.
Intraclass correlation coefficients, repeatability coefficients, and limits of agreement (LOA) were
used to convey precision and agreement in measuring MFTA with respect to each of the
independent variables, i.e., degree of flexion, applied coronal stress, and method of tracker
fixation. Based on the current literature, a repeatability coefficient and LOA of �3� were
deemed acceptable.
Results: The mean fixed flexion for the 6 specimens was 12.8� (range: 6–20�). The mean
repeatability coefficient measuring MFTA in extension with screws or fabric strapping of the
baseplate was �2�, compared to 2.3� using rubber strapping. When flexing the knee, MFTA
measurements taken using screws or fabric straps remained precise (repeatability coefficient
�3�) throughout the tested range of flexion (12.8–60�); however, using rubber straps, the
repeatability coefficient was43� beyond 50� flexion. In general, applying a varus/valgus stress
while measuring MFTA decreased precision beyond 40� flexion. Using fabric strapping,
excellent repeatability (coefficient �2�) was observed until 40� flexion; however, beyond 50�

flexion, the repeatability coefficient was 43�. As was the case with precision, agreement
between the invasive and non-invasive systems was satisfactory in extension and worsened
with flexion. Mean limits of agreement between the invasive and non-invasive system using
fabric strapping to assess MFTA were 3� (range: 2.3–3.8�) with no stress applied and 3.9� (range:
2.8–5.2�) with varus and valgus stress. Using rubber strapping, the corresponding values were
4.4� (range: 2.8–8.5�) with no stress applied, 5.5� (range: 3.3–9.0�) with varus stress, and 5.6�

(range: 3.3–11.9�) with valgus stress.
Discussion: Acceptable precision and accuracy may be possible when measuring knee kinematics
in early flexion using a non-invasive system; however, we do not believe passive trackers should
be mounted with rubber strapping such as was used in this study. Flexing the knee appears to
decrease the precision and accuracy of the system. The functions of this new software using
image-free navigation technology have many potential clinical applications, including assess-
ment of bony and soft tissue deformity, pre-operative planning, and post-operative evaluation,
as well as in further pure research comparing kinematics of the normal and pathological knee.
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Introduction

When planning and carrying out primary and revision total

knee arthroplasty, lower limb alignment, knee joint laxity, and

whether a varus/valgus deformity is correctable by manual

stress are all crucial pieces of information. Visual assessment of

flexion angle and coronal alignment is difficult and unreliable

[1, 2]. Laxity of the knee and the ability to correct coronal

deformity completely with manual stress can be estimated by

an examiner performing standard clinical tests; however, these

rely on clinician experience and are highly subjective.

The gold standard in estimating mechanical alignment

of the lower limb is the ‘‘long-leg radiograph’’ or ‘‘hip-

knee-ankle’’ (HKA) radiograph. For many years, the
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definition by Moreland et al. [3] has been used: mechanical

femorotibial alignment (MFTA) of the lower limb is given by

the lesser angle intersecting the mechanical femoral axis

(the line from the center of the femoral head to the knee

center) and the mechanical tibial axis (the line from the knee

center to the ankle center). However, radiographs may be

prone to rotational error and do not permit dynamic

quantification of knee laxity or kinematics in flexion [4, 5].

As yet, surgeons in the out-patient setting do not have a

validated method of establishing MFTA throughout flexion

which allows dynamic assessment of the soft tissues using

standardized force application. These parameters would

allow superior patient assessment and planning of knee

reconstruction.

Recently, non-invasive image-free navigation techniques

have been introduced and validated for quantifying MFTA in

extension [6]. These techniques use similar frames of

reference to those used in navigation, for the first time

allowing the pre- or postoperative assessment to be matched

to the intraoperative evaluation. Preoperative non-invasive

kinematic assessment also overcomes the disadvantages

inherent in using intraoperative navigation-based MFTA

measurements to guide soft-tissue algorithms, including

unquantified influences of anesthesia, non-standardized pas-

sive examination forces with the patient supine and non-

weight/non-physiological load bearing, and the unknown

effect of arthrotomy on alignment and laxity measurements.

Non-invasive attachment of optical trackers and their

movement relative to and representative of the bony anatomy

of the lower limb is an area of ongoing research [7, 8].

Various materials have been proposed for attachment of non-

invasive trackers, including the fabric strapping validated by

Clarke et al. [6] and rubber strapping [9]. Rubber strapping

has the advantage of being less expensive, allowing new

strapping to be used on each subject, and is used in some

commercially available image-free navigation systems as a

means of fixing optical trackers to the foot. Fabric strapping

may be more expensive and may therefore have to be used on

multiple individuals, which has implications for infection

control in a clinical setting [10, 11].

The primary aim of this study was to compare a non-

invasive system with a validated and commonly used

intraoperative computer navigation system in terms of repeat-

ability of MFTA measurement and agreement with the invasive

system. This non-invasive system uses novel software designed

to quantify MFTA in flexion. The novel workflow is based on

validated software currently used during computer-assisted

high tibial osteotomy. We aimed to observe the effects of knee

flexion and application of coronal force on MFTA measure-

ment repeatability and agreement. The secondary aim was to

compare proposed methods of non-invasive tracker attach-

ment; firstly using a previously validated fabric strap [6], and

then using a rubber strap.

Materials and methods

A single investigator trained in clinical examination of the

knee carried out all testing on 6 knees using 4 intact

embalmed cadaveric specimens. Average age of specimens

was 77.8 years (range: 57–90 years); two were female.

The image-free OrthoPilot navigation system (B. Braun

Aesculap, Tuttlingen, Germany) was used with passive optical

trackers. The optical camera was positioned two meters from

the specimen. Experimental software allowed registration of

the centers of the hip, knee and ankle following a series of

prescribed lower limb movements and localization of key

bony landmarks. The registration algorithms in this software

are identical to those in validated, commercially available

software used in computer-assisted surgery (KneeSuite, B.

Braun Aesculap), with changes being made only to the

measurement sequence.

The limbs were put through 24 full cycles of flexion and

extension to minimize systematic error due to progression of

tissue elasticity. The experiments were carried out over 6 days

during which the temperature of the laboratory was controlled

and constant. The specimens were not refrigerated between

experiments. Several runs of the protocol were performed on

a specimen unsuitable for the experiment due to stiffness.

Three separate methods of tracker fixation were used:

standard bone screws, a previously untested rubber strap

securing a standard baseplate, and a fabric strap securing the

baseplate. Both methods of strapping included eyelets through

which baseplate studs secured the strap. The fabric strap and

baseplate used in this study had been validated previously [6].

Trackers were secured 6–8 cm proximal to the proximal pole

of the patella overlying the distal vastus medialis obliquus

muscle, and 3–4 cm distal to the tibial tuberosity, again on the

medial aspect of the lower limb. Registration was then carried

out as described above. Following this, measurements of

coronal alignment were taken, initially with no coronal stress

applied, and then with applied valgus and varus stress. The

load applied was equivalent to that used during routine

clinical examination of the knee soft tissues – this method has

demonstrated reproducible results [12]. These three measure-

ments of coronal alignment were recorded by the system at

the point of maximum knee extension, then at 30�, 40�, 50�

and 60� of knee flexion. One specimen had a maximum mean

flexion of 58.8�, not reaching 60�. Maximum flexion angle

was recorded.

The experiment protocol was repeated four times on each

of the 6 knee specimens with each type of tracker mounting

(bone screws, rubber strapping and fabric strapping). Between

each run of the protocol the trackers were taken off and

relocated, and a new registration performed. This created

72 separate episodes of registration, during each of which 25

data points were recorded. The protocol design allowed

analysis of the effect of knee flexion and type of tracker

mounting on repeatability as four values were obtained with

all independent variables of degrees of knee flexion, tracker

mounting and knee specimen remaining constant. The only

change between these four points was a new system

registration to minimize potential random error from a

single erroneous registration [13].

Calculation of the intraclass correlation coefficient (ICC)

was performed using IBM SPSS� Statistics 17.0 software

(IBM Corp., Armonk, NY); other simple calculations were

performed using Microsoft Excel� (Microsoft Corp.,

Redmond, WA). Reliability within each method of tracker

fixation used in measuring MFTA was analyzed by calculat-

ing the ICC [14]. A coefficient of �0.75 demonstrates very
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good reliability [15, 16]. The repeatability coefficient was

calculated to demonstrate repeatability between test–retest

measurements for each method of tracker fixation [17]. The

four recorded data points with all variables constant across the

6 specimens were divided into two pairs (tests 1 and 2, tests 3

and 4) to allow calculation. The repeatability coefficient

defines the interval within which 95% of test–retest differ-

ences lie, i.e., within two standard deviations of the test-retest

differences [17].

According to the manufacturer, in measuring coronal

alignment the device and software are expected to have a

precision of 1� when repeatedly measuring a fixed point in

space. We therefore determine a repeatability coefficient of

�2� (i.e., ±1�) as demonstrating excellent precision in line

with the manufacturer’s standard. In the clinical setting, the

accepted range for satisfactory postoperative function and

implant survivorship following total knee arthroplasty is ±3�.
It is therefore critical that the device be able to measure

MTFA precisely within this range. A repeatability coefficient

of 3� conveys that 95% of all measurements are within a range

of ±1.5�.
To compare the reliability of measurements between the

invasive and two non-invasive methods of tracker mounting,

the ICC was calculated. Bland-Altman plots were generated

as a visual representation of the limits of agreement. To

calculate the standard deviation of the differences, the 95%

limits of agreement, calculated using the corrected standard

deviation of the differences (SDc) [17] (mean difference

±1.96 SDc), were calculated to analyze agreement between

the invasive and non-invasive methods of tracker fixation.

Acceptable limits of agreement were once again set at 3� for

measurements of MFTA.

Results

Each specimen exhibited some degree of fixed flexion

deformity when measured using the invasive method.

The mean fixed flexion for the 6 specimens was 12.8�

(range: 5–18�). The mean maximum flexion using invasive

trackers was 68.2� (range: 58–95�). All measurements of

maximum flexion using invasive trackers for specimen 1 were

58�, therefore we could not measure kinematics at 60� knee

flexion in this specimen.

Table I shows the mean repeatability coefficient for the

range of flexion tested in this experiment (12.8–60�). The

bone screw and fabric strap fixation provided superior

precision compared to rubber straps in all conditions of

applied coronal stress. Precision in repeatedly measuring

maximum extension and flexion was satisfactory using all

methods of tracker fixation.

Flexion of the knee and application of coronal stress

appears to reduce precision (Figures 1–3). Precision in

measuring MFTA using bone screws or fabric strapping to

secure trackers was acceptable throughout the tested range of

flexion when no coronal stress was applied (Figure 1).

Repeatability of measurements using rubber strapping

became unacceptable beyond 50� knee flexion.

Applying varus/valgus stress at �30� flexion decreased the

precision of measurement using all methods of tracker

fixation; however, fabric strap fixation remained within the

limits of acceptable precision until 40� of knee flexion when

Figure 1. Repeatability coefficient at each 10� interval of knee flexion for all three methods of tracker mounting (bone screws, rubber strapping and
fabric strapping). Repeatability was acceptable (53�, indicated by red line) throughout flexion for bone screws and fabric strapping, but unacceptable
for rubber strapping beyond 50�.

Table I. Mean and range of the repeatability coefficient for measuring
MFTA using three methods of tracker fixation and applying three
conditions of coronal stress throughout the range of knee flexion tested.
All kinematic parameters measured in the study are summarized in this
table and identified in the first column. (No range is given for maximum
extension/flexion as this is a single point of measurement.)

Repeatability coefficient (�)

Condition Screws Fabric Rubber

MFTA (no stress applied) 2.0 (0.8–2.8) 1.7 (1.3–2.3) 2.3 (0.8–5.3)
MFTA varus stress 2.0 (0.9–3.2) 2.2 (1.6–3.7) 3.1 (1.3–6.6)
MFTA valgus stress 2.2 (1.5–2.9) 2.1 (0.8–3.7) 3.1 (1.4–7.6)
Max. extension 1.3 1.6 2.0
Max. flexion 1.6 1.8 1.5
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applying valgus stress (Figure 2), and 50� when applying

varus stress (Figure 3).

Bland-Altman plots demonstrated no systematic

error when plotting screw fixation versus fabric strap

fixation (Figure 4) and screw fixation against rubber

strap fixation (Figure 5). This is true for other conditions of

flexion.

Generating limits of agreement for each condition

created a large amount of data, which is summarized in

Table II.

The fabric strapping performed consistently better than the

rubber strapping in measuring MFTA. Agreement between

fabric strapping and screw fixation of the trackers was

acceptable (LOA 53�) in extension and at 30� knee flexion

with no coronal stress and with varus/valgus stresses applied.

Agreement generally worsened with increasing knee flexion

for all conditions, but especially when comparing screw

fixation and rubber strapping at 60�.
The agreement measuring the maximum extension

between values obtained using screw fixation and fabric

strapping was 3.4�, and for rubber strapping it was 3�. The

limits of agreement when measuring maximum flexion were

3.8� and 4.7�, respectively.

Discussion

Precision in measuring MFTA with no coronal stress

applied to the leg was well within the limits of accepted

repeatability throughout flexion using screw and fabric strap

fixation. Repeatability using rubber strapping was poor

beyond 50� in measuring MFTA and rotation. Precision of

MFTA measurement was uniformly worse with coronal

stress applied. Subjectively, movement of the trackers fixed

Figure 2. Repeatedly measuring MFTA with application of valgus stress resulted in a repeatability coefficient of43� when flexing the knee beyond 40�

when using fabric strapping and beyond 50� when using rubber strapping. Bone screw fixation of trackers resulted in satisfactory repeatability
throughout.

Figure 3. Repeatability of measuring MFTA with application of varus stress was again worsened by flexion. Fabric strapping remained acceptable until
450� knee flexion, rubber strapping until 30� knee flexion. Bone screw fixation gave a repeatability coefficient of 3.1� at 40� knee flexion, then
remained acceptable.

DOI: 10.3109/10929088.2014.885566 Quantification of lower limb mechanical alignment 67
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with rubber strapping was observed during the experiment,

and we have demonstrated that passive trackers should

not be secured with this material. Establishing a reliable

method of tracker fixation is very important before moving

forward with further laboratory-based and in vivo testing of

the device.

Applying varus and valgus stresses to the leg uniformly

decreased repeatability for all methods of tracker fixation and

reduced agreement between the invasive and non-invasive

methods, particularly beyond 30� of knee flexion. This is

most likely due to soft tissue artefacts; however, further

laboratory-based work is required to prove this statement

quantitatively.

No deleterious effects of strapping optical trackers to the

leg were noted on the cadavers. Clarke et al. reported no

complications such as tourniquet effect or intolerance of

strapping when using fabric strapping on patients, as assess-

ment can be carried out sufficiently quickly to prevent such

occurrences [6, 18].

Limitations of this study include the use of embalmed

cadaveric specimens, in which soft tissue artefact, joint

hydration and laxity differ from those in in vivo studies.

We acknowledge that performing four repeated measurements

and creating two pairs of values for analysis from each of the

6 knee specimens is not the same as having 12 sets of

independent pairs of measurements from 12 knee specimens.

However, having access to only 6 cadaveric lower limbs,

Figure 5. Bland-Altman plot displaying the mean difference between MFTA measurements with trackers secured using bone screws and rubber
strapping against mean MFTA measurements.

Figure 4. Bland-Altman plot displaying the mean difference between MFTA measurements with trackers secured using bone screws and fabric
strapping against mean MFTA measurements.

Table II. Mean limits of agreement and range for screws versus rubber
straps and screws versus fabric straps for the entire range of flexion
tested. All kinematic parameters measured in the study are summarized
in this table and identified in the first column. (No range is given for
maximum extension/flexion as this is a single point of measurement.).

Limits of agreement (�)

Condition
Screws vs.

fabric straps
Screws vs.

rubber straps

MFTA (no stress applied) 3.0 (2.3–3.8) 4.4 (2.8–8.5)
MFTA varus stress 3.9 (2.8–5.2) 5.5 (3.3–9.0)
MFTA valgus stress 3.9 (2.9–5.2) 5.6 (3.3–11.9)
Max. flexion 3.9 4.7
Max. extension 3.4 3.0
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choosing to record two pairs of repeated measures on each

specimen, rather than only one pair, provided more oppor-

tunity to uncover measurement error, resulting in more robust

validation of the non-invasive method. By performing the

experiment over 6 specimens, we obtained variation in the

conditions of measurement, rather than repeating all the

experiments on a single cadaver. The fact that repeatability of

measurements taken using screw fixation of trackers was

borderline at 40� knee flexion when applying varus/valgus

stress points to a source of systematic error within the

experiments; it is highly likely that this is because the varus/

valgus force applied during testing was not standardized. Use

of transducers to dictate force application during coronal and

sagittal stress would have standardized the variable of applied

varus/valgus stress [6, 19, 20]. The lack of a quantified

coronal stress when assessing knee laxity on the operating

table is a limitation of current computer-assisted surgery

systems and the majority of the current literature [19, 21, 22].

Further work must attempt to standardize these forces and

will be included in our future protocols validating the use of

non-invasive navigation instruments to measure knee kine-

matics in flexion.

Clarke et al. [18] assessed the repeatability of measuring

MFTA in extension whilst applying a standardized force using

fabric strapping to secure the non-invasive trackers identical

to that used in this study, and using a similar software and

optical camera. Three clinicians performing 6 examinations

on one volunteer gave standard deviation within 1.1� for each

clinician, and similar values between clinicians. Further work

by the group [6] using this non-invasive device on 30

volunteers gave inter-registration agreement limits of ±1.6�,
1.3� and 1.1� for measuring MFTA with no applied stress,

varus stress, and valgus stress, respectively. Levels of

agreement between registrations using the non-invasive

system were encouraging and similar to those in this study;

however, we have gone on to analyze the effect of knee

flexion on the accuracy of non-invasive limb alignment

measurement.

Establishing the ‘‘normal’’ static and dynamic alignment

of the lower limb is an area of ongoing research [23–27], with

authors noting ethnic variance [25] and questioning what is

‘‘normal’’ mechanical alignment [26]. Bellemans et al. [26]

revealed that 32% of males and 17% of females from a cohort

of 250 young adults had varus alignment of �3� measured on

long-leg standing radiographs. Non-invasive, non-radiological

methods of determining MFTA in both supine and weight-

bearing conditions [6] may help in determining variation in

‘‘normal’’ alignment and whether this relates to development

of osteoarthritis [28], and in evaluating current aims in

restoring neutral versus ‘‘constitutional’’ alignment in total

knee arthroplasty [29, 30]. Controversy also exists with regard

to the recommendation that final alignment of the lower limb

following total knee replacement to within ±3� of neutral

[31, 32] affects clinical outcome [33] or survivorship [34].

These studies are based on static measurements of MFTA,

and a method allowing dynamic assessment of MFTA in the

early functional range may help establish the relationships

between final mechanical alignment, function and survivor-

ship in total knee arthroplasty.

The ability to develop a standardized method of coronal

knee laxity quantification which is available in the out-patient

setting prior to surgery would be a major advance in operative

planning, and would allow further development of soft tissue

balancing algorithms based on the presence of deformity and

whether this is fixed or correctable [21, 22, 35–38]. This

technology would also be of use in treatment of sports

injuries. As mentioned previously, current assessment of knee

collateral ligament injury relies on subjective clinical exam-

ination and stress radiographs [39–41]. Quantification of

lower limb mechanical alignment in dynamic weight bearing

and clinical examination would aid diagnosis and follow-up,

as well as research evaluating treatment modalities.

Our data adds to the existing literature an analysis of the

effect of knee flexion on non-invasive measurement of

MFTA, a comparison in terms of levels of precision and

agreement with a validated computer navigation system which

uses standard invasive hardware, and reveals the importance

of appropriate strapping for non-invasive optical trackers.
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