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AN AXIOMATIZATION OF MULTIPLE-CHOICE TEST SCORING

ANDRIY ZAPECHELNYUK

University of Glasgow

ABSTRACT. This note axiomatically justifies a simple scoring rule for multiple-
choice tests. The rule permits choosing any number, k, of available options and
grants 1/k-th of the maximum score if one of the chosen options is correct, and
zero otherwise. This rule satisfies a few desirable properties: simplicity of imple-
mentation, non-negative scores, discouragement of random guessing, and rewards
for partial answers. This is a novel rule that has not been discussed or empirically
tested in the literature.
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1. Introduction. Multiple-choice questions are routinely used in examinations.
They are simple to implement and score, and do not have apparent disadvantages
relative to essay questions (Akeroyd 1982, Bennett, Rock, and Wang 1991, Bridgeman
1991, Walstad and Becker 1994, Brown 2001).

A multiple-choice question seeks a single correct answer from a list of options.
Multiple-choice questions are almost universally evaluated by the number right scoring
rule that grants the unit score if a single correct option is chosen and zero otherwise.
This method suffers from recognized drawbacks: it encourages guessing and does
not permit expressing partial knowledge. From a test-maker’s point of view, this is
undesirable, as it interferes with inference of true knowledge of a test-taker from her
response to the test. A correct answer may equally signify knowledge and luck. From
a test-taker’s point of view, this is also undesirable. A risk averse test-taker who is
hesitating between a few answers is forced to gamble to grab her chance and cannot
opt for a lower, but more certain score.

The problem of guessing is traditionally addressed by penalizing wrong answers
with negative scores, called formula scoring (e.g., Holzinger 1924). This approach is
implemented, for example, in the SAT and GRE Subject tests. Interestingly, formula
scoring does not really solve the problem: if a risk-neutral test-taker can eliminate
some options but hesitates among the remaining ones, she strictly prefers to make a

Date: March 14, 2015.
Zapechelnyuk: Adam Smith Business School, University of Glasgow, University Avenue, Glasgow
G12 8QQ, UK. Phone: +44(0)141-330-5573. E-mail: azapech@gmail.com
Acknowledgements: 1 would like to thank David Budescu, Oscar Volij, and Ro’i Zultan for helpful
comments.
1



2 ANDRIY ZAPECHELNYUK  UNIVERSITY OF GLASGOW

guess (Budescu and Bar-Hillel 1993, Bar-Hillel, Budescu, and Attali 2005). Negative
scores per se have also been criticized for contributing to high omission rates and
discrimination against risk-averse and loss-averse test-takers (Ben-Simon, Budescu,
and Nevo 1997, Burton 2005, Delgado 2007, Budescu and Bo 2014).E]

Anther well-known scoring method that discourage guessing and elicit partial knowl-
edge is subset selection scoring (Dressel and Schmidt 1953)E] which allows a test-taker
to choose a subset of options and grant score 1 for the correct option and —ﬁ for each
incorrect option in the chosen set. The literature also studies complex scoring meth-
ods that elicit test-takers’ ordinal ranking, confidence, or probability distribution over
available options (Bernardo 1998, Alnabhan 2002, Swartz 2006, Ng and Chan 2009).
Though such scoring rules are advantageous in theory, the evidence suggests that they
might not be advantageous in practice (Budescu and Bar-Hillel 1993, Bar-Hillel, Bude-
scu, and Attali 2005, Espinosa and Gardeazabal 2013, Budescu and Bo 2014). The
problem is a distortion between the inference from responses and the true knowledge
caused by test-takers’ strategic considerations. With complex scoring, test-takers’
responses depend not only on their knowledge, but also on specifics of the scoring
rule and personal characteristics (risk attitude, loss aversion, etc.).

To sum up, there are a few desirable properties of multiple-choice scoring;:

(a) simplicity;

(b) non-negative scores;

(c) discouragement of guessing;
(d) rewards for partial answers.

This note axiomatically derives a scoring rule that satisfies the above properties.
The rule permits to select any number & out of n available options and grants 1/k-th
of the maximum score if one of the chosen options is correct, and zero otherwise.
This rule is uniquely determined by a simple requirement. A risk-averse test-taker
who is indifferent between a few options should prefer to choose all of them, rather
than choosing either of them (and “prefer” replaced by “indifferent” for a risk-neutral
test-taker).

To the best of our knowledge, this rule has not been discussed or empirically tested
in the literature. It is a variant of subset selection scoring mentioned above, however,
it assigns scores to selected subsets differently, and therefore has different properties.
Most notably, subset selection scoring discourages guessing “too much” and penalises
wrong answers harsher than our rule (see more details in Section 3). Thus, our
scoring rule, at least hypothetically, evokes less distortion of responses due to strategic
considerations of test-takers.

Frandsen and Schwartzbach (2006) propose a different axiomatization of multiple-
choice scoring. The two defining axioms of Frandsen and Schwartzbach (2006) are

'For an alternative opinion see Espinosa and Gardeazabal (2010).

2Equivalent variants are elimination scoring (Coombs, Miholland, and Womer 1956, Bradbard
and Green 1986) and liberal scoring (Bush 2001, Bradbard, Parker, and Stone 2004, Jennings and
Bush 2006).
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invariance under decomposition (if a question is decomposable into two simpler ques-
tions, then the score of the complex question is the sum of the scores of the simpler
ones) and zero sum (the expected score of random guessing is zero). As a result, a
choice of k out of n available options gives score In (%) if it contains the correct answer
and —ﬁ In (%) otherwise. This scoring rule has a very nice interpretation from the
information-theoretical perspective. Yet it permits negative scores and qualitatively
compares to our rule in the same way as the subset selection scoring (see more details
in Section 3).

2. The scoring rule. A test-taker is permitted to choose any number of options
out of n > 2 available; only one option is correct.

A scoring rule assigns a numerical value f,(k) to a choice of k out of n options,
where z € {0, 1} indicates whether the chosen set contains the correct answer (z = 1)
or not (z = 0). The number of options, n, is fixed and omitted from notation.

We assume that scoring functions satisfy two primitive properties. First, we nor-
malize the scores to be in [0, 1] and assume that the maximum is achieved by choosing
the single correct option, while the minimum is achieved by choosing n — 1 incorrect
options:

fi(1) =1 and fo(n—1) = 0. (1)
Second, two equally uninformative responses, selecting all options and omitting the
question, should be scored equally:

fi(n) = fo(0). (2)
Denote by F the set of scoring functions that satisfy the above properties.

We now describe the choice of a test-taker. Denote by N = {1,...,n} the set of
available options. Let p = (p,)aen be a probability vector. The test-taker believes
that each answer a is correct with probability p,.

The test-taker has to chooses a subset A C N (possibly, A = N or A = &). The
test-taker is risk-averse (or risk-neutral) and evaluates a choice set A C N under a
probability vector p according to the expected utility:

U(A,p) = pau(f2(|A]) + (1 = pa)u(fo([A])),

where pa = > c4Pa and u : [0,1] — R is a utility function. We assume that u is
continuous and weakly concave, and normalize

u(0) =0 and u(1) = 1. (3)

We say that the test-taker prefers A to B (strictly prefers, indifferent) under proba-
bility vector p and use notation A 7, (>=,,~,)B if

U(A,p) > (>,=)U(B,p).

We now impose a requirement (axiom) on the test-taker’s choice that formalizes
the idea that test-takers should be discouraged from random guessing: “If you don’t
know which answer to choose, then choose both.” A test-taker should prefer to choose
all options about which she is indifferent, rather than choosing any single one.
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Axiom 1. If for some probability vector p, some A C N, and some a € A,
ar~pb forallbe A,
then
A 7z, a under risk-averse preferences,

A ~, a wunder risk-neutral preferences.

Essentially, when all options in A are equally likely to be correct, Axiom [I| requires
that choosing A yields the same expected score as the lottery associated with choosing
any single option a € A.

The consequent A ~,, a for a risk-neutral individual makes the axiom tight—a
risk-loving test-taker would actually prefer random guessing to choosing set A.

Axiom 1 pin down a unique scoring rule in F.

Theorem 1. The unique scoring rule in F that satisfies Aziom[1] is given by

fi(k) =
for every k € {1,...,n}, and fo(0) =

and fo(k) =0

3= | =

This scoring rule is simple, even relative to subset selection and elimination scor-
ing, and admits only nonnegative scores by design. It also discourages guessing, as
whenever a test-taker is indifferent between two disjoint sets A and B, she prefers to
choose both of them:

A,B C N are disjoint and A~, B = AUB , A.

Finally, this scoring rule rewards partial answers: a test-taker who can narrow down
her choice to a subset A of options but unsure about choosing within A gets a partial
credit for choosing the whole A.

3. Related scoring rules. To the best of our knowledge, the scoring rule in
Theorem , as well as its re-normalized version f that gives zero score to omission

- n—=k

——4, k>1,
fi(k) = =1k

and  fo(k) = n—l7
olk) {o, k=0,
has not been previously discussed nor empirically tested.

A closely related scoring rule is subset selection scoring. It grants score 1 for the
correct option and —ﬁ for each incorrect option in the chosen set. For a choice of
k out of n options it is:

k—1 k
gl(k)zl—n_ and go(k) = —

Frandsen and Schwartzbach (2006) use the axiomatic approach to derive the log-
arithmic scoring rule as the only one that satisfies the axioms of invariance under
decomposition (if a question is decomposable into two simpler questions, then the

n—1

3Set the maximum score to 1 and the omission score (A = @) to 0.
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score of the complex question is the sum of the scores of the simple ones) and zero
sum (the expected score of random guessing is zero):

n k n
hi(k) = In (k) and. ho(k) = ———In (k> .

The above two rules reward correct answers more generously, but also penalize
incorrect answers more severely, as compared to our rule. Particularly, for each
number of chosen options k, scores assigned by the subset selection scoring rule are
k times as large as scores assigned by our rule, g.(k) = kf.(k).

There are two important consequences of this difference. First, scoring rules g and A
discourage random guessing “too much”, and hence violate our Axiom[I] For example,
consider a multiple-choice question with the set of options N = {ay, as, as, a4, as}, and
assume that a risk-neutral test-taker has beliefs p = (%, %, 0,0,0). Axiom |1 demands
that {a1} ~, {a1,a2}. But under both g and h, {a1} <, {a1,a2}.

Consider a more drastic example. Let p = (%, %,0,0, 0), that is, the test-taker
believes that option a; is twice as likely to be correct as option as, and the rest of
options are surely incorrect. One may expect that a risk-neutral (or close to risk-
neutral) test-taker would prefer the likely option a; to the set {ai, as}. This is indeed
the case under our scoring rule. However, {a;} <, {a1,as} under both g and h for
every risk-averse or risk-neutral test-taker.

Second, as compared to our rule, scoring rules g and h generate a higher variance
of lotteries, and thus evoke more distortion between the inference from responses and
the true knowledge caused by strategic considerations of risk-averse and loss-averse
test-takers (Budescu and Bar-Hillel 1993, Budescu and Bo 2014).

Finally, scoring rules ¢ and h admit negative values. There is some evidence
suggesting that negative scoring is undesirable, particularly, due to discrimination
against loss-averse test-takers (e.g., Delgado 2007, Budescu and Bo 2014). The re-
normalization of the score range to [0, 1] interval uncovers another potential problem:
these rules are too lenient on test-takers who know nothing. For an uninformative
answer or omission, the normalized subset selection rule gives score 1/2 irrespective of
n, while the normalized logarithmic scoring rule yields the score, for example, about
% for n = 6 and about }1 for n = 18. In contrast, for an uninformative answer or

omission, our scoring rule yields score % for every n.

4. Proof of Theorem We prove that the scoring rule stated in Theorem [1] is
the only one that satisfies Axiom [I| for an individual with risk-neutral preferences,
u(x) = x. Then we show that this scoring rule also satisfies Axiom [1| for any risk-
averse individual.

The expected utility of a risk-neutral test-taker from choosing set A is equal to the
expected score:

U(A,p) = pafi(|A]) + (1 = pa) fo(|A]).

For every a € N we have U(a,p) = pafi(1) + (1 — pa)fo(1), hence, a ~, b if and
only if p, = pp. Consider a probability distribution p that is uniform on some subset
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A, p, = p for all @ € A. Denote k = |A|. Then Axiom [l| implies that for every
k=2,3,...,n—1and every p € [0, 1]
pfi(1) + (1 =p)fo(1) = kpfi(k) + (1 — kp) fo(k),

or equivalently,
B(1() = fo(1) = KCA(R) = fo(k)) ) + fo(1) = fo(k) = 0.
Since the above has to hold for all p € [0, %], we have

Si(@) = fo(1) = k(f1(k) = fo(k)) =0, ke{2,....,n—1}. (4)
and
fO(l)_fO(k):[)? k€{277n_1} (5)
Recall that fo(n — 1) = 0 by (1), hence (5)) implies
f()(k’) :0, ke {17,71—]_}
Also recall that fi(1) =1 by ({)), hence becomes 1 = kfi(k), and consequently,
1
f1<k) :E7 ke {2,,n—1}
Finally, implies f,(0) = fi(n) = +.

We now verify that Axiom [I] is satisfied for a risk-averse test-taker. Let f be as
defined above. Let A be a set such that the test-taker is indifferent between any of
its options: for every a,b € A,

paul (1)) + (1 = pJulfo(1)) = pru(fi(1) + (1 = po)u(folL)).
Since fi(1) =1 and fo(1) = 0 and we have u(0) = 0 and u(1) = 1 by (@), the above
holds if and only if p, = p,. Thus, we have p, are the same for all a € A. Denote
D = po. Axiom [I] implies that
pulFi(1)) + (1= phufo(1)) < |ApuCA(IAD) + (1~ |Alpu(ho(|AD).
Using fo(k) = 0 and fi(k) = 1 for all k > 1, and that w(0) = 0 and u(1) = 1 by (),

Tk
we obtain |
p<tam ()
A
1 1 . . .
or u (W) > ik which is true by and concavity of u.
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