
,nn 

 
 
 
 

Liu, R., Phillips, D.B., Li, F., Williams, M.D., Andrews, D.L., and Padgett, 
M.J. (2015) Discrete emitters as a source of orbital angular 
momentum. Journal of Optics, 17(4), 045608. 

 

Copyright © 2015 IOP Publishing 

A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge 

 
Content must not be changed in any way or reproduced in any format 
or medium without the formal permission of the copyright holder(s) 

 

 
 
 
http://eprints.gla.ac.uk/104665/ 

 
 
 
  Deposited on:  07 April 7, 2015 

 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



Discrete emitters as a source of orbital angular momentum

R. Liu,1, 2 D. B. Phillips,1, ∗ F. Li,2 M. D. Williams,3 D. L. Andrews,3 and M. J. Padgett1

1SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
2Department of Applied Physics, School of Science,

Xi’an Jiaotong University, People’s Republic of China.
3School of Chemistry, University of East Anglia,
Norwich Research Park, Norwich NR4 7TJ, UK.

Generation of light carrying orbital angular momentum (OAM) is of fundamental interest due to
its applications in a broad range of fields, such as classical and quantum optical communications,
and optical micro-manipulation. Light carrying a well defined state of OAM is typically created by
imparting an azimuthally varying phase structure onto a plane wave. In this work, we investigate,
using numerical simulations and experiments, the OAM spectra of light radiated from a heavily
course grained emission pattern: an array of discrete circular apertures arranged in a ring configu-
ration, with a constant phase increment between adjacent apertures. We show how the number of
apertures and their relative phase defines the position and spacing of peaks in the OAM spectra.
We demonstrate that by spatially filtering beams emitted from such a configuration, higher order
peaks in the OAM spectra can be suppressed, leaving a single dominant lowest order peak, and
recovering a beam carrying a well-defined OAM state. We qualitatively interpret the efficiency of
generating beams this way in terms of the angular uncertainty principle.

A light beam carrying a defined state of orbital angular
momentum (OAM) has a complex field characterised by
ei`θ, where θ is the azimuthal angle about the optical
axis, and ` is the topological charge. Mode number `
describes how many integer multiples of 2π the phase
changes by around one circuit of the vortex core. The
helical phase gradient results in a Poynting vector that
is azimuthally skewed with respect to the optical axis,
and therefore such beams can be used to exert torque on
micro-scale objects [1, 2], and measure rotation rate of
remote spinning bodies [3, 4]. Higher values of |`| define
more highly twisted wavefronts, and as ` is a theoretically
unbounded degree of freedom there has also been much
investigation into the use of light beams carrying OAM
for generating a multi-state alphabet for classical and
quantum optical communications [5–7].

Beams carrying OAM have been generated in a variety
of ways: at first by transforming a Hermite-Gaussian to
Lagurre-Gaussian beam using cylindrical lenses [8], and
also by binary amplitude modulation using a spiral zone
plate to encode an azimuthally varying phase structure
onto a plane wavefront [9, 10]. Most commonly, spa-
tial light modulators (SLMs) that act as spatially pro-
grammable diffractive elements are used: by combining
the required azimuthally varying phase pattern with a
phase tilt to produce a forked grating hologram, light
carrying the desired mode of OAM is transmitted into
the first order of the diffraction pattern with high effi-
ciency [11, 12]. Recently the generation of vortex beams
using micro-scale silicon integrated photonic devices has
been demonstrated [13, 14], and it has also been theoret-
ically shown that beams carrying OAM can be produced
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by a chiral annulus of oriented dipole-emitters, where the
phase relationship between them is defined by the wave-
function of the whole system [15, 16].

All of these methods rely on imparting a spatially de-
pendent phase onto the emitted field to generate the de-
sired state. Recently there has been increasing interest
in simplified methods to generate beams carrying OAM,
specifically for non-optical regimes where the equivalent
to spatial light modulator technology does not currently
exist [17–21]. This often requires the fabrication of one-
off masks, and simplification of mask designs can poten-
tially facilitate such techniques.

In this work we aim to investigate, through a com-
bination of experiments and scalar wave optics simula-
tions, how light beams carrying defined states of OAM
can be generated from simplified phase patterns: a set
of a few discrete apertures of fixed relative phase. The
circular apertures are equally spaced in a ring configura-
tion, with a constant relative phase step between adja-
cent apertures. We measure the OAM spectrum of our
emitted beams and show how this depends upon the rel-
ative size of the apertures and the ring, show how spatial
filtering can be used to purify the output to produce a
well defined OAM state, and consider the efficiency of
the beam generation in terms of the angular uncertainty
principle.

MODAL DECOMPOSITION

An optical field U(r, θ) (where r and θ define the radius
and azimuthal angle respectively in a cylindrical coordi-
nate system) can be described as a linear superposition
of orthogonal complex valued modes Ψi of a particular
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FIG. 1: (a) Schematic of experimental set up. The diagram shows how the spatial filter is used to block undesired diffraction
orders from SLM 1. Only light flattened to a plane wave is focussed into the fibre coupler after SLM 2. (b) An example of the
phase hologram displayed by SLM 1. (c) An example of the phase hologram at SLM 2, used to measure the OAM spectrum
of the beam. ` = +2 is shown in this case. In (b) and (c), the grey-scale level is mapped linearly to phase, with white = 0
and black = 2π. (d-k) A range of emitter phase patterns, for different values of n (the number of apertures) and m (the total
integer multiple of 2π the phase changes by around the entire ring). The value given in the middle of each pattern is equal to
2πm.

basis set:

U(r, θ) =

∞∑
i=1

ciΨi(r, θ) (1)

Here i indexes each orthogonal mode, and ci are a set
of complex coefficients defining the amplitude and rela-
tive phase of each mode. Coefficients ci can be found by
performing a modal decomposition, which exploits the
orthonormal property of each mode:

〈Ψi|Ψj〉 =

∫∫
Ψ∗iΨjrdrdθ = δij (2)

This states that the overlap integral between modes (also
know as an inner product) is only non-zero for two modes
of identical mode index. Therefore, the coefficients ci
describing the optical field U(r, θ) in the Ψ basis, may be
found by taking the inner product of U(r, θ) with each
mode in turn [22]:

ci = 〈Ψi|U〉 (3)

In this work it is convenient to consider the Laguerre-
Gaussian (LG) basis, as this orthogonal set of modes
are stable upon propagation and each has a well defined
OAM state described by ` [8, 23]. At a plane perpendic-
ular to the optical axis, each LG mode is described by
a 2D complex function, characterised by the azimuthal
index `, radial index p, and beam waist ω. In the formal-
ism described above, each unique mode LG`,p is therefore
assigned a unique index i.

The OAM spectrum describes the intensity of each
mode `, P`, summing over contributions from all values of
radial index p that are representable with our experimen-
tal beam of finite area, therefore from p= 0 to p= pmax:

P` =

pmax∑
p=0

|c`,p|2 (4)

As can be seen from the fact that we take the modulus
square of c`,p in equation 4, the OAM spectrum contains
no information about the relative phase of the modes, and
therefore is invariant upon propagation of the beam, and
so can be measured in any plane of the freely propagating
beam.

To investigate the OAM spectrum of our simplified
emission patterns theoretically, we numerically integrate
equation 3, taking U as the complex field imposed by the
pattern at the emission plane, and then find the OAM
spectra using equation 4. We also experimentally mea-
sure the OAM spectrum using the method detailed be-
low.

EXPERIMENTAL SET-UP

Figure 1 shows a schematic of our optical set-up. We
use an SLM to encode the emitter phase pattern onto a
planar wavefront of Gaussian intensity. The use of an
SLM provides a flexible method to investigate a range of
aperture configurations. A laser of wavelength 633 nm is
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transmitted through a single mode fibre (to ensure we
only have the TEM00 mode present) and magnified to
overfill SLM 1.

The emitter pattern is displayed on SLM 1, and con-
sists of a ring of n regularly spaced circular apertures,
each of radius ra, as shown in Fig. 1(b). The radius of
the ring is denoted by R. The maximum angular width
subtended by each aperture is β radians, and as can be
seen from the geometry of the pattern:

β = 2 sin−1(ra/R). (5)

The phase difference between adjacent apertures, δφ,
is set to advance in discrete steps. The size of δφ is
controlled by the number of apertures, n, and an inte-
ger m defining the number of integer multiples of 2π the
phase changes by around the entire ring. Therefore the
phase difference between adjacent apertures is given by
δφ = 2πm/n, and the total phase change around the ring
is given by 2πm. Figures 1(d-k) show some examples of
emitter phase patterns of varying n and m.

Within each aperture, a phase grating directs light (of
the correct plane polarization, as each SLM only diffracts
light of vertical polarzation) into the first order of the
resultant diffraction pattern. Light reflecting from the
region around the apertures is directed to the zero order,
where it is blocked by the spatial filter. The relative
phase between each aperture is controlled by adjusting
the phase of the vertical gratings. Adding a constant
phase to all pixels within an individual aperture has the
result of moving the positions of the ‘white-black’ phase
wrapping lines sideways. Therefore the relative position
of these lines from one aperture to the next defines the
relative phase between apertures.

The field at SLM 1 is re-imaged to SLM 2 via a 4-f sys-
tem, which enables the zero order undiffracted light from
SLM 1 to be blocked, and any additional spatial filtering
of the first order to be carried out if required. SLM 2
is used to measure the OAM spectrum of the resultant
beam [24]. This is performed by sequentially displaying a
series of phase gratings, defined by mode `slm2, on SLM 2,
to test a series of OAM modes from `slm2 = - 20 to + 20.
Each test mode `slm2 adds an azimuthally varying phase
`slm2θ to the field. Incident light of mode ` = −`slm2

is transformed into a plane wave due to cancellation of
the two phase terms of the same amplitude but opposite
sign. Therefore light of this mode is focussed onto the
optical axis of the first diffraction order by lens L1, and
transmitted down another single mode fibre to a pho-
todiode. Light of all other modes is not flattened to a
plane wave but retains a non-zero orbital angular mo-
mentum, and is therefore not focussed onto the optical
axis of the first diffraction order, and does not enter the
single mode fibre to reach the photodiode. By cycling
through values of `slm2 in this manner, the signal at the
photodiode records the intensity of light of each mode `
and the OAM spectrum is measured. We note that as

the OAM spectrum describes the relative power of each
mode `, the measurement hologram has no radial depen-
dence. Therefore, each value of ` in the OAM spectrum
represents a summation over all p accessible in our ex-
periment, when considering the description of the fields
in the LG basis set, as described earlier.

RESULTS

Measured OAM spectra. Figure 2 shows two mea-
sured OAM spectra for different emission pattern con-
figurations. The spectra consist of a series of regularly
spaced peaks multiplied by an envelope function. The
data are comparable to a previous experiment, conducted
by Yao et al. [25], who examined the OAM spectrum
emitted from a set of ‘wedge’ shaped circular sector aper-
tures. As described in [25], by considering the diffraction
in cylindrical coordinates it can be shown that the sepa-
ration of the peaks is given by the number of apertures,
n, and the position of the fundamental peak (containing
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FIG. 2: Measured OAM spectra of light generated by a ring
of circular apertures with phase patterns as shown in the top
left of each spectra (phase scale is identical to that shown
in Fig. 1). (a) 5 apertures, therefore the peaks in the OAM
spectrum are separated by 5 modes. m = 1, i.e. a relative
phase difference of δθ = 2π/5 between neighbouring aper-
tures, resulting in the maximum peak in the spectrum found
at ` = 1. (b) 6 apertures, m = -2, therefore δθ = π/3 be-
tween adjacent apertures, resulting in a maximum peak in
the spectrum found at ` = −2. In each case the photodiode
background signal (due to dark counts) has been subtracted
from the measured signal, which has then been normalised by
setting the dominant peak to a value of 1.
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FIG. 3: (a) - (f) Variation in the measured OAM spectra with number of apertures n, and the integer multiple of 2π the
phase changes by around the entire ring, m. Each row represents a single OAM spectrum of the type shown in Figure 2, with
the relative height of the peaks captured by the colour of the intensity plot as given in the scale bar. The dominant value of
the OAM spectrum can be controlled by appropriate selection of n and m. (g) - (k) show experimentally measured far-field
diffraction patterns of selected emission patterns. The emission phase patterns are shown for each case. These are in good
agreement with simulations of the system.

the most power) is given by 2πm, the total phase differ-
ence around the pattern (for |m| < n/2). The shape of
the spectra can be understood by analogy with the in-
terference pattern generated by multiple linear slits [26].
Qualitatively the positioning of the peaks can be under-
stood as the OAM values which have a high overlap with
the emission pattern. For example, in 2(a), the phase at
the centre of each aperture matches the phase at equiv-
alent points in OAM beams of ` = 1, -4, 6, -9, 11 etc.,
hence the presence of the peaks at these values.

Figures 3(a-f) show a series of OAM spectra for differ-
ent numbers of circular emitters, n, and different values
of m. The spectra are displayed as intensity plots, with
each row representing the spectra of a particular choice
of m (consider each row as looking down on bar graphs of
the type shown in Fig. 2 from above, with the intensity
indicating the height of the bar). Figure 3 shows that the
relationship described in [25] also holds for the circular

aperture case. It can be seen that in each case the spectra
have a fundamental peak at ` = m, for |m| < n/2. Due
to the periodicity of the peaks in the spectra, the dom-
inant peak is always found within ±n/2 of the origin.
Analogously to the present case, the form of the spectra
is also found in light transmitted from discretely stepped
spiral phase plates, where the separation between peaks
is given by the total number of steps [27].

Figures 3(g-k) show some examples of the far-field
diffraction patterns of the emitted beam. Here we com-
pare experimentally measured far-field patterns to simu-
lated ones, and the agreement is evident. The simulation
was performed by taking the 2D Fourier transform of the
complex emission patterns, and here the intensity of the
resulting field is displayed, as this is what is captured ex-
perimentally with a camera. The emission pattern is also
shown for each case. We note that, as would be expected,
these results are comparable to the far-field patterns cre-
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ated by a beam carrying a defined OAM mode diffracted
by a set of pinhole apertures, which can be used to iden-
tify the OAM mode in question [28].

The envelope function of the OAM spectra can be cal-
culated by considering the Fourier transform of the trans-
mission function of a single aperture, which follows by
analogy with the case of linear diffraction from a single
slit [26]. In the case of ‘wedge’ shaped apertures, the in-
variance of the angular spread of the aperture with radius
simplifies the analysis, and results in an envelope function
with a power proportional to sinc2(α`/2), where α is the
angular width of the wedge. This shape is a direct conse-
quence of the angular uncertainty principle [29]: angular
position and angular momentum are conjugate variables,
and therefore subject to the Heisenberg uncertainty prin-
ciple [29]. Therefore increasing α corresponds to an in-
creased uncertainty in the angular position of photons
that pass through the aperture, and therefore the un-
certainty in their angular momentum is reduced, thus
narrowing the OAM spectrum. In the present circular
aperture case, despite the angular width of the circular
apertures now being radially dependent, we find the dif-
ference in the envelope function from the ‘wedge’ case is
small: the circular aperture envelope function is similar
to that of a wedge aperture of angular width β, the max-
imum angular width subtended by the circular aperture
(see Fig. 1(b)), as light from this radius will dominate
the signal.

Figure 4 highlights how the efficiency with which
the emission pattern produces OAM of a desired state
(taken as that of the fundamental mode) is related to the
angular uncertainty principle. We define the maximum
efficiency as the fraction of power in the dominant OAM
state, compared to the total transmitted power. As β
is increased from an initial value, shown in Fig. 4(a),
either by increasing ra, shown in Fig. 4(d) or decreasing
R, shown in Fig. 4(g) (as is evident from equation 5),
the envelope function of the OAM spectra is narrowed.
This reduces the amount of power in higher order (of
the absolute value) modes and therefore increases the
efficiency of power transmission into the dominant mode.
This follows simply from the fact that the angular uncer-
tainty of a photon in a beam of a pure single OAM state
is 2π, i.e. the beam intensity profile is a full ring with
no azimuthal variation in intensity for any specific radius.

Beam purification. We now show how the envelope
function can be further modified by spatially filtering the
beam emitted by SLM 1. Low pass spatial filtering of
the higher spatial frequencies of the discretely apertured
emission plane (at SLM 1), is equivalent to performing
a convolution of the complex field at the emission plane
with an Airy function. This blurs both the intensity and
phase information of the field at the emission plane into
something that more readily approximates a beam car-
rying a single value of topological charge `, as shown
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FIG. 4: Simulation demonstrating the relationship between
beta and transmitted efficiency. (a,d,g) emission patterns,
(b,e,h) far-field intensity pattern and (c,f,i) OAM spectra.

in simulations in Fig. 5. This effect can also be under-
stood by considering that spiral harmonics of increasing
mode number |`| form larger diameter rings at the Fourier
plane (if considering a constant value of p). This means
that higher (absolute) mode number spiral harmonics are
formed from a linear sum of a set of higher spatial fre-
quencies. Low pass spatial filtering removes these higher
spatial frequencies, and therefore preferentially removes
the higher (absolute) mode spiral harmonics, constrict-
ing the envelope function of the OAM spectrum. For this
technique to work, the spectra must be odd, and there-
fore contain a single fundamental mode. In the case of
even spectra, with two peaks symmetrically positioned
about the origin, constricting the envelope function will
purify both the positive and negative OAM modes to
the same extent, and therefore not produce a beam of
a single well defined OAM mode. The well separated
peaks in the OAM spectra also facilitate this separation.

This process can also be understood qualitatively in
terms of the angular uncertainty principle. In this case
the uncertainty in angular momentum is reduced as the
size of the spatial filter is decreased (by filtering out
higher order modes with larger radii), and therefore the
uncertainty in angular position is increased, transforming
localised points of light that correspond to the apertures,
into a continuous ring of light. Fig. 6 shows an experi-
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FIG. 5: Simulation showing the effect of spatially filtering the emitted beam. The case for two different emission patterns is
shown. Top row: (a) n = 6, m = 1 emission pattern (equivalent to field at SLM 1). (b) far-field amplitude and phase, (c)
far-field intensity, (d) Amplitude and phase of the conjugate image plane to (a) (equivalent to the field at SLM 2), after spatial
filtering with the filter size shown in (c). It can be seen that a well defined mode is recovered. (e) Intensity of the conjugate
image plane. Bottom row: (f-j) results for a emission pattern of n = 4, m = 1. (k) Simulated results showing the effect on the
beam purity (red) and power in desired order (blue) as a fraction of the total power in the desired mode transmitted from the
emission pattern shown in Fig. 4(g). For each point, the OAM spectrum of the beam was calculated by numerically integrating
equations 1 to 4. As shown in Fig. 4(i), the initial efficiency (and therefore unfiltered purity of the dominant mode) is 0.47.
As would be expected, when the unwanted modes are filtered out, some of the desired mode is also lost. In this example, to
obtain a purity of 0.9, the power in the desired mode is reduced to 60% of its unfiltered value, as shown by the vertical hashed
black line in (k).

mental demonstration of this effect. As the spatial filter
diameter is reduced, the OAM spectrum is progressively
constricted, and the image of the apertures recorded at
the SLM 2 plane is further blurred, until it reaches the
familiar doughnut shape of a beam carrying a well de-
fined mode of OAM. In this case, the measured spectrum
demonstrates a purity of 78%, calculated from the mea-
sured weight of the dominant peak in Fig. 6(d). The pres-
ence of the `=2 mode in Fig. 6(d) is most likely caused
by a slight misalignment in the position of the spatial
filter, causing a reduction in the measured purity of the
beam [30].

Of course, by spatially filtering the beam in this way,
unwanted light is removed and the total power in the
output beam is reduced. Ultimately, the efficiency of
OAM generation is related to how closely the complex
emission profile matches that of the desired mode, and
measurement of the OAM spectra of the emission plane
is a direct quantification of this. Consequently, in the
case considered here, emission patterns that exhibit a
narrower OAM spectrum have a higher overlap integral
with the desired fundamental mode. In Fig. 6(a), the
beam purity of the `=1 mode is 24%, therefore this is the
maximum efficiency with which we can expect to generate
an `=1 beam. After spatial filtering to produce the beam
shown in Fig. 6(d), 8% of the original transmitted power
is found in the `=1, now with a purity of 78%. This
reduction in the power of the desired mode is expected,
as can be seen in Fig. 5(k), which shows how both the
power in the desired mode, and the purity of the beam
depend upon the size of the spatial filter. Ideally, the

relative size of the spatial filter can be tuned with respect
to the size of the field in the Fourier plane, to maximise
the transmitted efficiency. For example, in Figs. 4(e)
and (h), β is held constant, but the scale of the far-field
pattern is changed, therefore requiring a different sized
spatial filter to purify the beam.

CONCLUSIONS

In this work we have investigated the OAM content of
beams emitted from a ring configuration of discrete circu-
lar apertures of constant relative phase. We have shown
that the OAM spectra of such an arrangement contains
a comb of peaks, with a dominant peak at ` = m, for
|m| < n/2 where 2πm is the total variation in phase
around a ring of n apertures. The condition |m| < n/2
arises from the fact that the dominant peak is always
closest to the origin of the OAM spectrum and because
the peaks are separated by n. We have shown how the
envelope function of the spectra controls the maximum
efficiency with which light is transmitted into the dom-
inant mode. We have discussed how the envelope func-
tion, and therefore the efficiency of beam generation, is
related to the angular uncertainty principle through the
maximum angular width subtended by each aperture (β)
in the emission pattern. We have also described how this
envelope function can be further constricted by spatially
filtering the beam, therefore suppressing the contribu-
tions of spiral harmonics of higher absolute values, and
creating a beam of well-defined OAM.
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FIG. 6: Measured result of spatially filtering the emitted beam. The image below each graph shows the recorded intensity at
SLM 2. (a) OAM spectrum of the emitted beam with no spatial filtering. (b) to (d) OAM spectra and corresponding intensities
at different levels of spatial filtering. (b) 400µm spatial filter. (c) 300µm spatial filter, (d) 150µm spatial filter. As the spatial
filter size is reduced, the envelope function of the OAM spectra is further constricted. In (d) the characteristic ring shaped
intensity distribution of a well-defined OAM mode is generated.

We note that the non-diffracting properties of light
emitted from similar masks has also been investi-
gated [31, 32]. The non-diffractive behaviour of beams
emitted from such patterns can be seen from the fact
that as n is increased, the emission profile approaches
that of a ring slit aperture, which can be used to gener-
ate approximations to non-diffracting Bessel beams [33].
We also note that similar masks have been proposed to
measure the OAM of an incident beam of a pure state of
OAM [28].

More generally, finding simpler methods to generate
beams of complex spatial modes creates beam shaping
opportunities outside the optical regime where the equiv-
alent to SLM technology does not currently exist [19, 20].
Our work highlights that the maximum efficiency with
which light can be generated by a complex mask is given
by the normalised overlap integral of the mask with the
desired mode, and that it is also important to consider
how efficiently the generated modes can be separated
from one another.
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