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ABSTRACT

Aims. We present direct evidence of the detection of the main energy release site in a non-eruptive solar flare, SOL2013-11-
09T06:38 UT. This GOES class C2.6 event was characterised by two flaring ribbons and a compact, bright coronal source located
between them, which is the focus of our study.

Methods. We use imaging from SDO/AIA, and imaging spectroscopy from RHESSI to characterise the thermal and non-thermal
emission from the coronal source, and EUV spectroscopy from the Hinode/Extreme ultraviolet Imaging Spectrometer, which scanned
the coronal source during the impulsive peak, to analyse Doppler shifts in Fe xu (log7 = 6.2) and Fe xxiv (log7 = 7.2) emission
lines, and determine the source density.

Results. The coronal source exhibited an impulsive emission lightcurve in all SDO/AIA filters during the impulsive phase. RHESSI
hard X-ray images indicate both thermal and non-thermal emission at the coronal source, and its plasma temperature derived from
RHESSI imaging spectroscopy shows an impulsive rise, reaching a maximum at 12-13 MK about 10 seconds prior to the hard X-ray
peak. High red-shifts associated with this bright source indicate downflows of 40-250 km s~! at a broad range of temperatures, in-
terpreted as loop shrinkage and/or outflows along the magnetic field. Outflows from the coronal source towards each ribbon are also
observed by SDO/AIA images at 171, 193, 211, 304, and 1600 A. The electron density of the source obtained from a Fe xiv line pair
is 10""% ¢cm™ which is collisionally thick to electrons with energy up to 45-65 keV, responsible for the source’s non-thermal X-ray
emission.

Conclusions. Given the rich observational evidence, we conclude that the bright coronal source is the location of the main release
of magnetic energy in this flare, with a geometry consistent with component reconnection between crossing, current-carrying loops.
We argue that the energy that can be released via reconnection, based on observational estimates, can plausibly account for the

© ESO 2015

non-thermal energetics of the flare.
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1. Introduction

It is commonly accepted that the energy to power solar flares
comes from the coronal magnetic field. The mechanisms for a
transient release of magnetic energy, through magnetic recon-
nection, have been intensively investigated in both theoretical
(e.g. Sweet 1958; Parker 1963; Petschek 1964; Syrovatskii 1966;
Henoux & Somov 1987; Litvinenko & Somov 1993; Longcope
1996; Priest & Forbes 2000; Aulanier et al. 2006) and observa-
tional (e.g. Demoulin et al. 1993; Yokoyama et al. 2001; Grigis
& Benz 2005; Su et al. 2013; Dudik et al. 2014; van Driel-
Gesztelyi et al. 2014) aspects. The release of magnetic energy
causes plasma heating and particle acceleration, sometimes with
clear evidence of a fast re-organisation of the magnetic struc-
ture (Liu et al. 2012; Simdes et al. 2013; Shen et al. 2014). Most
of the published observational studies regarding detection of the
magnetic reconnection or energy release sites are related to the
standard model for eruptive flares (CSHKP, Carmichael 1964;
Sturrock 1966; Hirayama 1974; Kopp & Pneuman 1976), and
include observation of cusps above the flaring loops and inflows
(Yokoyama et al. 2001; Liu et al. 2013), hot and fast flows above
flaring arcades (Imada et al. 2013), flows due to gradual pre-flare
evaporation and flare eruption (Harra et al. 2005), and slow bi-
directional flows above the loop (Hara et al. 2006). Other works
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show indirect evidence of reconnection (Joshi et al. 2007) and
electron acceleration at X-points (Narukage et al. 2014).

However, CME-less, weaker events are much more common
on the Sun (Yashiro et al. 2006) than large eruptive events, and
might be more relevant to total power output due to solar mag-
netic activity, although the matter is far from settled (Hudson
1991). For these smaller events, the CSHKP standard model is
less applicable, as cusp-like structures and plasmoid ejections
are not observed. Recently Su et al. (2013) reported remarkable
SDO/AIA observations in the non-eruptive flare SOL2011-08-
17, of cool inflowing loops and newly-forming hot outflowing
loops, cited as strong evidence for magnetic reconnection.

Although the overall origin of the flare energy is known and
the effects of the energy release are very well observed (heating,
accelerated particles, plasma eruptions, etc.) the precise location
of the energy release site and its physical properties are largely
unknown and difficult to detect. In this paper we present observa-
tional evidence of both direct heating and acceleration of parti-
cles in a localised coronal source, which we interpret as the main
energy release site for the event SOL2013-11-09T06:38 UT, a
GOES class C2.6 two-ribbon flare.

2. Observations and data analysis

The flare SOL2013-11-09T06:38 UT, a GOES class C2.6 on AR
11890, located at S11WO03 near the disk centre, was observed
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simultaneously by several space-based instruments: Reuven
Ramaty High Energy Solar Spectroscopic Imager (RHESSI,
Lin et al. 2002), Atmospheric Imaging Assembly (AIA, Lemen
et al. 2012) on board of the Solar Dynamics Observatory (SDO)
and Hinode/Extreme ultraviolet Imaging Spectrometer (EIS,
Culhane et al. 2007). There is a gradual rise in the extreme ul-
traviolet (EUV), soft X-ray (SXR) and hard X-ray (HXR) emis-
sions starting about 06:24 UT, and the non-thermal HXRs peak
at 06:25:46 UT. At all wavelengths imaged the flare has two
short ribbons and a compact source between them, which - as
we will argue - we identify as a coronal source. We show in the
following sections that this coronal source is characterised by
impulsive time evolution, sudden plasma heating reaching 12—
13 MK, high electron density, and fast red-shifts measured by
Doppler shifts of Fe xi and Fe xx1v emission lines.

2.1. Characterisation of the coronal source

The SDO/AIA provides images at filter wavelengths of 94, 131,
171, 193, 211, 304, 335, 1600, and 1700 A every 12 seconds
for the EUV filters and 24 seconds for the UV filters, with a
pixel size of 0.6 arcseconds. We use it to characterise the spa-
tial evolution of the sources and flows in the event. The flare
has two bright ribbons about 50 arcseconds apart, on opposite
sides of the magnetic polarity inversion line. During the impul-
sive phase a remarkably bright and compact central source ap-
pears, located halfway between the ribbons: the same impulsive-
phase morphology is observed in all nine EUV/UV SDO/AIA
channels. Figure 1a shows the SDO/AIA image at 94 A near
the peak of the impulsive phase, overlaid with 1600 A con-
tours at the level 690 DN s~! pixel™!, where we identify the
east and west ribbons and this central source. Initial inspection
suggested that the central source was a third footpoint, however
using SDO/Helioseismic and Magnetic Imager (HMI, Scherrer
et al. 2012) magnetograms, we verified that the photospheric
magnetic field directly at the source location is very weak (=
13 + 10 G) and featureless, looking rather like supergranular
cell-centre field (Figure 1d). It was not clear how a third chro-
mospheric footpoint could be magnetically connected by the ob-
served EUV loops to both of the other ribbons. In fact the post-
flare loops do not connect at the location of the central source,
as shown by SDO/AIA images after the main impulsive phase,
as shown in Fig. 2, where hot loops connecting the ribbon re-
gions are seen, without any connection to the region where the
bright source was (as shown by the 1600 A contours at the
time of the peak). Moreover, its filamentary shape seen in EUV
and UV, as shown 131 A at 06:25:20 UT in the panel inside
Figure la (see also Fig. 4), suggests a section of thin loops con-
necting the two ribbons. Superposed contours in a colour-coded
time sequence of SDO/AIA 211 A images in Figure 1b show
bi-directional flows away from the source. These flows are also
observed at SDO/AIA filters 171, 193, 304, 1600, and 1700 A.
Later on we also show strong red-shifts in both high and low-
temperature lines, much faster than are normally seen in red-
shifted footpoint emission (e.g. Milligan & Dennis 2009). We
also point out the presence of dark filaments connecting the rib-
bon regions prior to the flare, as seen in SDO/AIA 171 ( Fig. 4),
193, 211, and 304 ;\, indicating that the already cool and dense
coronal region is heated during the flare (e.g. Chifor et al. 2006),
explaining both the EUV/UV emission and the high density in-
ferred from Hinode/EIS density diagnostic (Sect. 3.2). Taken all
together, these observations lead us to identify the central source
as coronal rather than chromospheric. We obtained lightcurves

of the coronal source taking the sum of the pixel values inside
the box shown in Figure 1a, for each AIA channel. As shown in
Figure 3a, it had impulsive EUV/UV emission, in all AIA filters
(we show 94, 131, and 1600 A), with a stronger peak reaching
a maximum at around 06:25:50 UT and a second one, peaking
around 06:27:30 UT, then fading after about 06:30 UT , as can
be seen in Fig. 2.

3. Evidence for the energy release site

3.1. A compact, moving source of heating and particle
acceleration

RHESSI imaging at non-thermal energies reveal three main
sources shown in Fig. 1c at 23-27 keV, integrated for the en-
tire main impulsive phase (~ 300 seconds), closely associated
with both ribbons and the coronal source. At the peak of the im-
pulsive phase however, the coronal source emission dominates
at all energy ranges as shown by the 4.1-4.9 keV (red contours)
and 12.8-15.0 keV (blue) in Fig. 1c. At the HXR peak, the west
ribbon source is too faint to be detected by RHESSI owing to its
low dynamic range. The high temperature of the plasma at the
coronal source suggested by the impulsive emission at 94 and
131 A is further confirmed by RHESSI imaging spectroscopic
analysis. We constructed RHESSI CLEAN (Hurford et al. 2002)
images at ten logarithmically-spaced energy bands between 3.0
and 15.0 keV throughout the impulsive phase, using front detec-
tors 3 to 8. We employed OSPEX (Schwartz et al. 2002) to fit
the spectra of the spatially unresolved spectra and of the coro-
nal source source separately, giving basic imaging spectroscopy.
The HXR spectra were fitted with a isothermal plus thick-target
model. The plasma temperature 7 and emission measure EM
from the spectral fits are shown in Figure 3b,c (in red) along with
the values obtained from spatially unresolved spectroscopy. The
most remarkable feature is the temperature that peaks at ~13 MK
around 06:25:40 UT (also seen in the spatially unresolved data),
about 10 seconds before the HXR peak (vertical dashed-lines in
Figure 3).

Inspecting the HXR spectra we note that photons above 10
keV are mostly associated with non-thermal emission. A series
of 12-15 keV images constructed using overlapping time inter-
vals of 64 seconds, centred 10 seconds apart, allows us to fol-
low the time evolution of the source positions using images with
high count statistics. The centroid of the coronal HXR source
and 94 A EUV source are tracked and the centroid X posi-
tions are plotted in Figure 3d. The source barely moves in the
Y direction, both in HXR and EUV, consistent with being sit-
uated along the loops extending in the east—west direction seen
in Figure 1a. We note that the HXR and EUV centroids are not
in exactly the same location, possibly because of uncertainties
in the AIA pointing!, slight differences in aligment of differ-
ent instruments (here, SDO/AIA and RHESSI) and centroid de-
termination at both HXR and EUV images. Nevertheless, they
show clear, and very similar, displacements in the X direction:
both HXR and EUV centroids shift to the east, then back to the
west, spanning about = 8 arcseconds. This clear displacement
of both thermal and non-thermal centroids, plus the small sizes
of the EUV bright patches observed in the images (of a few arc-
seconds), suggests that the energy is released successively at dif-
ferent locations along the magnetic field, however still around a
somewhat small region of around 10 arcseconds. This perhaps

! See section 6.1 of Guide
www.lmsal.com/sdodocs

to SDO Data Analysis at
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Fig.1. a) SDO/AIA 94 A image (in inverted colours) overlaid with 1600 A contours at 690 DN s~ pixel™! near the peak of the impulsive
phase, showing the east and west flaring ribbons and the bright coronal source between them, indicated by the arrow. The inner frame shows the
filamentary shape of the coronal source at 131 A (at 06:25:20 UT); b) SDO/AIA 211 A colour-coded contours time sequence of bi-directional
flows away from the coronal source; ¢) SDO/AIA 171 A image (in inverted colours) overlaid with RHESSI images at 4.1-4.9 keV (red) and
12.8-15.0 keV (blue) near the peak of the impulsive phase (integrated for 20 seconds), with contours at 50, 70 and 90 % of the maximum of
each image, and at 23-27 keV (white, levels 50, 60, 70, 80, 90 % of the image maximum) integrated for ~ 300 seconds, covering the entire
main impulsive phase (time intervals indicated in the frame). d) SDO/HMI line-of-sight (LOS) magnetogram (saturated at £500 G) overlaid with
1600 A contours as in a), the yellow line shows the magnetic polarity inversion line. Times of each image are indicaetd in each frame.

indicates elementary regions of energy release, and thus heating
and acceleration (Liu & Fletcher 2009; Liu et al. 2010).

3.2. EUV Spectroscopy

For the entire flare duration Hinode/EIS was running the
HH_Flare+AR_180x152 sequence, rastering the region in Figure
1 from west to east nine times, each scan lasting 318 seconds.
The study used the 2" slit with a exposure time of 9 seconds,
stepping 6” between slit positions. The coronal source is clearly
visible in the raster beginning at 06:23:34, as the spectrometer
slit crossed the source at 06:26:02 and 06:26:13, 30 seconds after
the non-thermal 12-25 keV HXR peak. The EUV spectra show
complex, broadened profiles with a sharp intensity rise in all ob-
served lines, of formation temperatures between log T.x = 5.4
and log Ty = 7.2, in agreement with the enhancement in all
AIA channels. No cooler temperature response was available in
this raster set.

A density diagnostic was carried out using a Fexiv line
pair (log Tmax = 6.3) at 264.78 A and 27420 A and gives
logn, = 11.50 + 0.82 at the coronal source during the impulsive
phase. The lower density foreground corona was removed from
the diagnostic by subtracting the pre-flare spectra before calcu-
lating the diagnostic ratio. Furthermore, the density was obtained
from an average of only the flare enhanced region (approx. 5”x
6’") and some pixel locations have higher densities within the
region. For comparison, we found that the pre-flare density is
logn, = 9.26 + 0.75. The apparent density enhancement of the
region can be explained by an already dense region being heated
to Fexiv temperatures during the impulsive phase. As pointed
out in Sect. 2.1 dark, filamentary loops connecting the ribbon re-
gions prior to the flare are observed in SDO/AIA 171 and 304
A indicating cool and dense material in the low coronal region.
The filament and its evolution can be seen in 171 A, shown in
Fig. 4.

Significant Doppler shifts were visible in the wide
192 A spectral window which included the strong lines of Fe xu
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b) 131A
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a) 94A
06:38:01

h) 1600A
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f) 304A
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37Q% &

Fig. 2. SDO/AIA images after the main impulsive phase, overlaid with 1600 A contours (690 DN s~! pixel™!, with different colours in each panel

for better contrast) at the peak of the impulsive phase 06:25:52 UT.

Fig. 4. Time sequence of SDO/AIA 171 A images showing the pre-flare filament, the evolution of the ribbons and coronal source during the flare.

(log Thax = 6.2) at 192.394 A and Fe xxiv (log Thax = 7.2) at
192.0285 A. The EIS wavelength scale was calibrated using the
standard SolarSoft routines to correct for drifts due to tempera-
ture changes from the orbital motion of the spacecraft, and for
the slit tilt relative to the CCD. A rest wavelength for the Fe xn
line was obtained from a quiet region of a pre-flare raster which
was used to measure relative Doppler velocities. Here we find a
value of 192.391 A, which is a deviation of 3 mA blue-ward of
the standard CHIANTI value. Unfortunately the Fe xx1v line has
no similar pre-flare signal to use as a zero-velocity reference so
we use the same deviation measured for Fe x11, assuming that it is

systematic between lines. Nevertheless, the effect is small, of the
order of 5 km s™!, when compared to the measured velocities.

Figures 5a-c show multiple-component fitting for these lines
at three slit positions across the source which are both fitted
with two components; one corresponding to a stationary or
slightly red-shifted component (referred to as Left in Figure 5),
and a second highly red-shifted component (Right). A blend of
Fe x1 192.021 lies in the Fe xx1v profile which will be significant
in hot and dense regions. The standard EIS line Fe x1 188.213,
nominally used to estimate such blends, was not observed in this
raster. In order to remove the Fe x1 contribution we first created
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peaks; e) Representation of pre- and post-reconnection field lines; f) Time-slice diagram along the slit in (a) and estimates of the retraction speed

of the post-reconnected field.

a synthetic spectrum from the CHIANTI v7.1.3 atomic database
(Dere et al. 1997; Landi et al. 2013) using the default CHIANTI
ionisation equilibrium, a density of 10" cm™3. We also assume a
differential emission measure (DEM) obtained by Graham et al.
(2013) for flare footpoints - i.e. hot, dense and compact sources,
cooling by conduction (see Section 4.1) - which we expect to
be very similar, at least in terms of DEM shape, to the DEM of
this coronal source. Obtaining DEMs of the coronal source and

ribbons will be the subject of a future study. With these assump-
tions the intensity ratio of Fexr 192.021 to Fexm 192.394 was
predicted to be 0.31. The two Fe x1 192.021 components were es-
timated from each of the fitted Fe xi1 components, assuming that
the widths and relative centroid shifts were equal to the Fe xu
parameters, and are plotted in black dash dotted lines on Figure
S.
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Fig. 5. Fitted EIS spectra at three positions (and times) across the coro-
nal source, as indicated in Figure 6a. The specific intensity is shown
in the solid black line, with the associated data uncertainty, and the
dotted black line shows the total fit to the data. Two fitted Gaussian
components for Fe xxiv are shown in green, for Fe xm in red, and the
estimated blend of Fex1 in black (dash-dotted line). A vertical dash-
dotted line marks the rest wavelength for the Fexxiv 192.028 A and
Fexu 192.394 A lines, and Doppler velocities relative to these wave-
lengths for each fitted component are also shown.

Figure 6a,b shows Hinode/EIS velocity maps of the Right
components for Fe xim and Fe xx1v in the 192 A window, reveal-
ing strong and fast red-shifts at the coronal source. The flare is
located close to solar disk centre, so the measured red-shifts cor-
respond to a downward bulk motion of 40-250 km s~! towards
the solar surface. This speed is higher than than the downflow
speeds of a few tens of km s~! observed in footpoints by EIS (e.g.
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Milligan & Dennis 2009; Watanabe et al. 2010). The red-shifts
could be caused by loop shrinkage and/or line-of-sight projec-
tion of plasma flowing along the magnetic loops towards the rib-
bons. The plasma flows observed by AIA (Figure 1b) qualita-
tively reinforces the latter case. No strong red-shifts from other
parts of the loops connecting the ribbons are observed, as would
be expected in either of these cases, but the raster slit may simply
have missed them. By verifying the position of EIS slit over AIA
images, we see that the slit moves to the east before the onset of
the westward plasma outflows.

Supporting these observations of fast downflows are several
other highly red-shifted emission lines with formation temper-
atures ranging between log T = 5.4 — 6.8. Spectral profiles are
shown in Figure 7 for the same 3 slit position as in Figures 5.
Immediately apparent are the red-shifts observed in the Fe xm
195.120 A line (second row). Downflow velocities are again ev-
ident between 100-220 km/s and the relative intensities of the
two Gaussian components correspond with those in the Fe xu
192.394 A line. The cooler O v 248.480 A transition region line
atlog T = 5.4 also displays a red-shifted profile. The low instru-
mental effective area at this wavelength make fitting uncertain,
however the profile is clearly shifted red-ward of the rest wave-
length. Likewise, the Fe xiv line (third row) has dominant emis-
sion in its red wing. In Fe xvi 262.980 A a second component
is distinct and can be reliably fitted, again showing red-shifts of
of 160-180 km/s. Nowhere in the coronal source do we see any
evidence of blue-shifted emission as would be expected from an
evaporating footpoint (see e.g. Milligan & Dennis 2009).

4. Discussion
4.1. Thermal properties of the coronal source

The coronal source is impulsively heated, reaching 12-13 MK
(from HXR data), up to 16 MK (Fe xxiv emission line) and
cools fast. The temperature peak is reached about 10 seconds
before the HXR peak which indicates that the plasma cooling
rate exceeds the heating rate before the peak particle accelera-
tion. We can estimate the cooling time 7 of the source as the
thermal energy Ey, divided by the conductive (L.) and radia-
tive (L,) loss rates. RHESSI imaging spectroscopic analysis of
the coronal source at the temperature peak (06:25:41 UT) gives
EM =4.5+1.4x10*cm™> and T = 13+ 1 MK. The thermal en-
ergy content Ey, = 3k, T(EM x V)!/2 = 1.6 ~ 3.5 x 10* erg, and
the volume of the coronal source is estimated as V = La(D/2)?,
where the length L ~ 9 ~ 18 arcsec and cross-section diameter
D ~ 6 arcseconds were measured from AIA 94 A images. The
conductive energy loss rate is

or AT
Lo =T ——A = T°*—A, (1)
Os As

where kg = 10%rg s™'em™'K=7/2 is the Spitzer conductive co-
efficient, As = L/2 is half the length of the coronal source,
A = n(D/2)? is the cross-section area of the source, and AT = 3
MK, assuming that the loop temperature outside the coronal
source is 10 MK. The radiative loss rate can be estimated by
(Rosner et al. 1978)

L, =10""7EM 17273, (10% < T < 10’K). 2)

We found that L. > L,, thus the cooling time is 7 = Ey, /(L. +
L) = Ew/L. ~ 14 ~ 38 s, consistent with the time be-
tween the temperature peak and the HXR peak. Interpolating
the CHIANTI 7.1 table for the radiative losses (for a density

of logn = 10 and coronal abundances) for the given EM and T
gives similar results as Eq. 2. The heating rate in this phase must
be lower than the total cooling rate of L, + L. ~ 4 ~ 8 x 10?°
erg s~!, and the energy input (heating) rate to the thermal plasma
must occur before the maximum of particle acceleration.

4.2. Non-thermal properties of the coronal source

The coronal HXR source is compact and intense, dominating
the footpoint emission (Figure 1c). An obvious interpretation
is of a localised acceleration site, and a high local density, so
that a large fraction of the electrons are completely stopped in
the region (Wheatland & Melrose 1995). The electron density
measured by EIS is logn, ~ 11.50 cm™3, and L is 9-18 arc-
seconds. This gives a column depth in the coronal source of
2.1 — 4.1 x 10*cm™2. From the relationship between stopping
column depth Ng,, = n.L and energy Ej of an electron that is
collisionally stopped over column N (Emslie 1978; Tandberg-
Hanssen & Emslie 2009)

_r
6me* In A

where u is the electron pitch-angle cosine, e is the electron
charge, and In A =~ 20 is the Coulomb logarithm. We then ob-
tain the energy of an electron that is completely stopped in the
coronal source:

Nyop = Eg ~ 10" u(Eo[keV1)?, 3)

n.L )5

et 4
Ho107 @

EylkeV] ~ (
For 4 = 1 (a beam) the minimum Kkinetic energy that electrons
need to leave the regionis Ey = 45 ~ 65 keV. If u < 1 higher en-
ergy electrons will be stopped in the corona - for example, for a
semi-isotropic distribution, the average pitch-angle cosine is 0.5,
and Ey = 65 ~ 90 keV. Electrons with energies lower than E,
will be stopped completely within the coronal source, heating the
plasma. Particle trapping due to magnetic field convergence be-
tween corona and chromosphere will further enhance the coronal
source intensity, as will any non-collisional pitch-angle scatter-
ing in the region, which enhances the trapping of electrons in-
side the coronal loops (e.g. Simdes & Kontar 2013; Kontar et al.
2014). Overall the picture is consistent with the coronal HXR
source being caused by a brief burst of non-thermal particle ac-
celeration in a dense coronal accelerator, with the electrons then
stopping predominantly within that region.

4.3. Flows in the coronal source

Fast plasma flows detected by spectroscopic observations have
been reported as direct evidence of reconnection flows (Wang
et al. 2007; Hara et al. 2011). Recently, Brosius (2012) reported
observations of a sudden rise of the emission of the Fe XIX line,
formed at 8 MK, without enhancements of line emission from
ions formed at lower temperatures. In addition, significant non-
thermal broadening of the Fe x1x line was attributed to reconnec-
tion outflow or turbulence, and led Brosius (2012) to the conclu-
sion of direct coronal heating. A pressure gradient created by
heating may additionally drive a flow. In the event studied here,
flows are detected by EIS spectroscopy and by AIA imaging in
the 171, 193, 211 (shown in Figure 1b) and 1600 A filters. Using
1600 A images, we estimated the flow speed from the coronal
source towards the west ribbon by verifying the brightness evo-
lution along the arrow in Figure 6¢. The resulting time-position
diagram is shown in Figure 6d where two flows can be identified
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Fig. 7. Fitted EIS spectra across the coronal source, as for the same positions in Figures Sa-c, at various temperatures. The vertical dashed-dotted
line marks the rest wavelength determined from the quiet background. Rest wavelength of each ion, formation temperature and velocity of the

red-shifted components are indicated in each panel.

with their estimated speeds: v =149 km s~land v, =76 km s~!.
The onset of both flows seem to be well associated with the
HXR peaks (Figure 6f). Before the AIA outflows are observed,
when the EIS slit first catches the coronal source at 06:26:02,

the left components of Fe xu and Fe xxiv are at rest (—5 + 4 and
15 + 6 km s~!) while the right components have v = 200 ~ 250

km s~! (see Figure 5a). At the subsequent slit positions, still over

the coronal source, at 06:26:13 and 06:26:24, both Fe lines are

stronger by a factor of ~ 2 and show left red-shift velocities of
v ~ 40 km s~!, at the time when of the AIA flow is first visi-
ble. For Fe xu, the right component gets weaker and slower (see

Figure 5b,c). Assuming that the plasma velocity is composed of
the EIS left line-of-sight velocity, vgrs = 40 km s™!, and AIA
plane-projected velocity vaja = 149 km s™!, a simple triangular
geometry yields vaow = (Vg + Vaja)' /> ~ 155 km s~

4.4. Interpretation of flows as pressure-driven

The high pressure in the coronal source may drive plasma out-
flows along the field. Assuming that the observed flows are field-
aligned, the mean angle between the magnetic field at the coro-

nal source and the line of sight would be 8 = atan(vaia/vers) =
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75°. Such pressure-driven flows would have speed approxi-
mately equal to the ion sound speed,

1/2
¢ = (@) , 5)

m;

where for ionised hydrogen Z = 1, y = 5/3, and m; is the proton
mass. Taking the temperature of formation of the Fe xm line as
T = 1.3 MK, we find ¢, = 132 km s™! and for Fe xxiv (formed
at T = 15.8 MK), ¢; = 467 km s~'. Within the uncertainties,
viow = ¢s for T = 1.3 MK indicating that the observed AIA
flows and EIS (left) red-shifts could be driven by the pressure
gradient between the hot, compact coronal source, and its im-
mediate surroundings.

4.5. Interpretation in terms of component magnetic
reconnection

The loop geometry observed in this event cannot be explained
by the CHSKP model, but may fit better with the scenario inves-
tigated by Melrose (1997, 2004) of reconnection between cross-
ing, current-carrying loops, in which current and magnetic flux
are exchanged between loops. This is usually described in terms
of quadrupolar reconnection (Hardy et al. 1998; Aschwanden
et al. 1999). The black lines sketched in Fig. 6e represent pre-
and post-flare field lines in this configuration, which are consis-
tent with the magnetic polarities of the footpoints, and also the
role of the coronal source as a possible location of local plasma
energisation. Since they cross at an angle, the reconnection is
between the anti-parallel components of the field (we ignore
for now any internal twist in the reconnecting pre-flare loops),
with an outflow speed reduced compared to the Alfvén speed va
(Chae 1999), i.e. Voutiow = va sin(8/2) = Bsin(6/2)/(4xm,n,)""?
where 6 is the angle between the crossing field. Chae (1999) also
gives an expression for the maximum energy AE that can be re-
leased in the process as the loops shorten,

2

0\ B
AE =2[1 —cos = |LA—, 6
( cos 2) o 6)

for pre-reconnection loop length L and cross-sectional area A.
The value of B can be deduced from the plasma flow. A 2D pla-
nar interpretation of the geometry in Figure 6e would mean that
Voutiow Would be oriented along the cut direction shown. Time-
slices of intensity along the cut in Fig. 6e are plotted in Figure
6f, and the spreading of the two ridges corresponds to a speed
of ~ 14km s™". However, with the electron number density of
~3.2x 10" em™ from the EIS diagnostics, and an angle 30° be-
tween the dashed lines in the 2D geometry, we obtain B ~ 14 G,
which is a rather small value. This implies that the geometry
is not 2D. Instead we take the measured EIS speed of around
200 km s~! tentatively associated with loop retraction, as a guide
to the outflow speed, but we only have a lower limit to 6, as the
dashed lines in Fig. 6e would represent the field in projection.
Using these values give B > 200G, more in line with expec-
tation, as photospheric magnetic fields up to 1000 G associ-
ated with the position of the ribbons are observed by SDO/HMI.
Using L ~ 90 arcseconds, the maximum energy release is
>7.0x 1014 ergs. A nominal value of A, relative to the diam-
eter of reconnecting loop strands of one arcsecond, would give
AE ~ 2.9 x 107 ergs per pair of strands. From RHESSI imaging
spectroscopic analysis, we found the total non-thermal energy
of the electrons in the coronal source Epon_thermal = 3.5 X 107
erg, integrating the impulsive phase (06:23:34 to 06:28:42 UT),

which yields an energy rate of ~ 10%” erg s~!. This would re-

quire the reconnection of about one pair of strands every three
seconds on average, or about 120 strands through the main im-
pulsive phase, corresponding to a bundle of strands around 11"
thick, about twice the estimated width of the coronal source. The
spreading motion seen in Figure 6f does still require an expla-
nation; perhaps this is associated with the spreading of the re-
connection site across a surface between two sheets of crossed
magnetic field.

5. Conclusions

We present clear observational evidence of the direct energy
release and heating and possibly acceleration site during a
non-eruptive two-ribbon flare. Combined RHESSI, Hinode/EIS,
and SDO/AIA observational data reveal a coronal source, lo-
cated roughly between the flaring ribbons, being heated impul-
sively. The coronal source shows fast downward plasma flows
at 40-250 km/s at two different temperatures, measured through
Doppler shifts of emission lines Fe xit (log 7 = 6.2) and Fe xx1v
(log T =7.2) by Hinode/EIS. RHESSI imaging spectroscopy re-
veals that the coronal source is suddenly heated, reaching a tem-
perature peak of 12—-13 MK about 10 seconds before the main
HXR peak. Its fast cooling time is consistent with conductive
losses, and implies that heating at the site reaches a peak before
the peak of particle acceleration. Moreover, RHESSI HXR imag-
ing shows that the coronal source dominates the footpoint emis-
sion at the peak of the impulsive phase. This is consistent with
a scenario where plasma is first heated, and then electrons are
accelerated in a turbulent and dense coronal source, with newly
accelerated electrons are collisionally stopped before leaving the
region. The energy deposited further heats the plasma, which
then flows from the region at speeds around the sound speed
towards each ribbon. These flows are observed as red-shifted
emission lines by EIS and plasma motions by AIA images. This
event does not show any eruptions and it is not associated with
a CME. It may be explained by componend magnetic reconnec-
tion between current-carrying loops. In such a geometry, the en-
ergy that can be released seems to plausibly account for the flare
energetics observed.
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