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Abstract

Bovine tuberculosis (bTb) remains a major and economically important disease of livestock. Improved ante-mortem
diagnostic tools would help to underpin novel control strategies. The definition of biomarkers correlating with disease
progression could have impact on the rational design of novel diagnostic approaches for bTb. We have used a murine bTb
model to identify promising candidates in the host transcriptome post-infection. RNA from in vitro-stimulated splenocytes
and lung cells from BALB/c mice infected aerogenically with Mycobacterium bovis were probed with high-density
microarrays to identify possible biomarkers of disease. In antigen-stimulated splenocytes we found statistically significant
differential regulation of 1109 genes early (3 days) after infection and 1134 at a later time-point post-infection (14 days). 618
of these genes were modulated at both time points. In lung cells, 282 genes were significantly modulated post-infection.
Amongst the most strongly up-regulated genes were: granzyme A, granzyme B, cxcl9, interleukin-22, and ccr6. The
expression of 14 out of the most up-regulated genes identified in the murine studies was evaluated using in vitro with
antigen-stimulated PBMC from uninfected and naturally infected cattle. We show that the expression of cxcl9, cxcl10,
granzyme A and interleukin-22 was significantly increased in PBMC from infected cattle compared to naı̈ve animals
following PPD stimulation in vitro. Thus, murine transcriptome analysis can be used to predict immunological responses in
cattle allowing the prioritisation of CXCLl9, CXCL10, Granzyme A and IL-22 as potential additional readout systems for the
ante-mortem diagnosis of bovine tuberculosis.
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Introduction

Bovine tuberculosis (bTb), mainly caused by mainly by Mycobac-

terium bovis, remains an economically important disease of livestock

such as cattle [1] and is also a disease of zoonotic importance. Host

biomarkers for bTb are needed urgently in several areas to underpin

disease control strategies. For example, correlates of disease and/or

pathology could improve the sensitivity of immunological ante-

mortem diagnosis which is at present mainly based on tuberculin

skin testing and ancillary blood tests. Furthermore, predictors of

protection and correlates of protective immunity after vaccination

would greatly facilitate vaccine development.

Although IFN-c production has been a useful tool for the blood-

based detection of M. bovis infection in cattle and other species

[2,3,4] as well as for the detection of M. tuberculosis infected

humans, additional biomarkers could improve the accuracy of in

vitro blood tests [5]. For example, it has been shown recently that

simultaneous measurement of antigen-stimulated IL-1b and TNF-

a production enhances IFN-c test sensitivity to diagnose bTb in

cattle [6]. Previously, we have shown in a mouse model of M. bovis

infection that studying cellular immune responses in BCG

vaccinated compared to control animals can guide the study of

corresponding responses found in cattle [7]. Therefore, in the

present study we applied a systematic approach to discover

potential diagnostic biomarkers based on the definition of

biomarkers in a cost-effective murine bTb model followed by

validation of promising markers in cattle.

The paucity of reagents for cattle for the study of immunolog-

ically relevant markers by antibody-based assays such as the

luminex multiplex system applied to human tuberculosis (e.g. [8]),

makes host transcriptome analysis in cattle an attractive

alternative. Therefore, in this study we report our application of

microarray technology in combination with murine M. bovis

infection experiments to select the most strongly up-regulated

genes expressed from the whole transcriptomes of lung and spleen

cells to predict biomarkers of disease in M. bovis infected cattle.

Results

Gene expression profiling of early disease in spleen and
lung from mice infected with M. bovis

In order to identify potential biomarkers of tuberculosis

infection, two groups of 5 BALB/C mice each were infected with

M. bovis. After 3 and 14 days post-infection (p.i.) mice were

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e30626



euthanized and their splenocytes stimulated in vitro for 3 days with

a protein pool of seven defined mycobacterial antigens, termed

M7. Lung cells were collected and stimulated only at the 14 day

p.i. time point. Following stimulation the fold change of gene

expression was established using Whole Mouse Genome Oligo

Microarrays. First, we compared the global transcriptional

response in the spleen of mice infected with M. bovis against

uninfected mice, and genes were considered significant when their

corrected p-values were below 0.05 with more than a 2-fold

change of expression. In antigen-stimulated splenocytes we found

significant modulation of 1109 genes early after infection (day 3

p.i., Table S1) and 1134 at later time-point post-infection (day 14

p.i.) (Table S1). Unsupervised hierarchical cluster was performed

using a centered linkage with a Person centered measure showing

that 618 of these genes were modulated at both time points

(Figure 1). Amongst the genes most strongly up-regulated at both

time points p.i. was granzyme A (gzmA) with 21-fold and 26-fold

changes in expression in infected animals compared to naı̈ve

controls after 3 days and 14 days p.i. respectively (Table 1).

Amongst the genes significantly modulated only at 14 days p..i.

were histocompatibility 28 (H28), and ubiquitin D, suggesting that

they are associated with early disease progression (data not shown).

In antigen-stimulated lung cells we found 282 genes that were

significantly modulated after 14 days post-infection (see Table S2

for list of genes and Figure 2 for heat-map of this signature of 282

genes). As expected [9], ifn-c was strongly up-regulated (82-fold) in

the lungs of infected animals after 14 days p.i. compared with

naı̈ve mice. Following the same trend were il-22 and cxcl9 with 74-

fold and 22-fold change in their expression, respectively (Tables 1

and S2). Other genes that were differentially expressed in lungs

after M. bovis infection were granzyme B, lymphocyte activation

gene-3, il-17E receptor, and ccr6 (Tables 1 and S2).

Pathway Analysis
Pathway Analysis using IPA was performed on the 282 genes

that were significantly modulated in antigen-stimulated lung cells

after 14 days post-infection. The two most significantly associated

canonical pathways were related to T Helper Cell Differentiation

(2log[p-value] = 9.47E00 and ratio = 1.53E201) and B Cell

Development (2log[p-value] = 7.88E00 and ratio = 1.53E201)

(Figure 3A). The five networks most significantly associated with

these genes were inflammatory response (60 genes, p-va-

lue = 2.83E215), Cell-To-Cell Signalling and Interaction (63

genes, r-value = 2.95E215), Cellular Growth and Proliferation

Figure 1. Spleen gene signature after 3 and 14 days after infection with M. bovis. The global transcriptional response in spleen cells of mice
infected with M. bovis was compared to responses in uninfected mice. Genes were considered significantly modulated when their corrected p-values
were below 0.05 with more than 2-fold change of expression at both time points. After 3 and 14 days post-infection (blue square and red squares,
respectively at the bottom of graph), the mice were euthanized and their splenocytes were stimulated in vitro for 3 days with M7 protein pool (see
Materials and Methods). Black squares: Naı̈ve control mice. Unsupervised hierarchical cluster was performed using a centroid linkage with a Person
centered measure showing that 618 of these genes were modulated at both time points (see table S1 for list of these genes, with genes significantly
modulated at both time points highlighted in bold).
doi:10.1371/journal.pone.0030626.g001
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(77 genes, p-value = 8.2E215) and Hematological System Devel-

opment and Function (76 genes, p-value = 8.2E215) (Figure 3B).

In antigen-stimulated splenocytes at 3 and 14 days p.i. we found

statistically significant modulation of genes associated with the

following dominant canonical pathways contained genes associat-

ed with T cell receptor Signalling (3 days p.i.: 2log[p-

value] = 5.65E+00 and ratio = 1.65E201; 14 days p.i.: 2log[p-

value] = 7.8E00 and ratio = 1.93E201) and iCOS-iCOSL Signal-

ing in T Helper Cells (3 days p.i.: 2log[p-value] = 4.83E00 and

ratio = 1.39E201; 14 days p.i.: 2log[p-value] = 6.84E00 and

ratio = 1.64E201) (Figure 4A). Statistically significant modulation

of genes of the following networks was also observed: Inflamma-

tory Response (3 days p.i.: 175 genes, r-value = 7.51E223; 14

days p.i.: 194 genes, p-value = 4.35E233), Cellular Growth and

Proliferation (3 days p.i.: 278 genes, p-value = 1.73E222; 14 days

p.i. : 289 genes, p-value = 2.51E231), Hematological System

Development and Function (3 days p.i.: 219 genes, p-va-

lue = 7.51E223; 14 day p.i.: 235 genes, p-value = 2.51E231),

Tissue Morphology (3 days p.i. : 130 genes, p-value = 7.51E223;

14 days p.i.: 142 genes, p-value = 1.59E206), and Cell Death (3

days p.i.: 210 genes, p-value = 2.47E219; 14 days p.i.: 227 genes,

p-value = 2.09E228) (Figure 4B).

Interestingly, when the networks and pathways associated with

infection at the 14 days p.i. time point were compared between

lung and spleen, the genes enriched in these pathways showed up-

regulated expression in lung cells. In contrast, the same networks

and pathways in spleen cells were enriched for genes whose

expression was down-regulated. For example; whilst in the lungs

the inflammatory response network is mainly represented by up-

regulated genes, down-regulated genes dominate in the same

network in spleen cells. Similarly, up-regulated genes were

enriched in the T helper cell differentiation canonical pathway

in lungs from infected mice, but in spleens the genes enriched in

the same canonical pathway were predominantly regulated genes

(Figure 5A and B).

Validation of differential gene expression in natural
infected cattle by qPCR

Our principal translational objective was the identification of

biomarkers with potential application for blood-based ante-

mortem diagnosis of bTb in cattle. Based on our previous results

[10,11], we hypothesized that results obtained in our mouse

model could guide the selection of such markers for cattle. Thus,

we evaluated the expression of a selection of genes most strongly

up-regulated in the mouse experiments described above (Table 1)

in cattle using PBMC from uninfected and cattle naturally

infected with M. bovis. Apart from genes expressed in the lung of

infected mice (14 days p.i.), we also selected genes from the

murine spleen that were up-regulated both early and late after

infection (3 and 14 days p.i.). IL17A was included as positive

control as it had been shown previously to be associated with

infected cattle [10,12,13]. RNA was prepared from PBMC

cultures stimulated with PPD-B and the expression of these genes

evaluated by qRT-PCR. The results are shown in Table 1. Five

Table 1. Expression of the most up-regulated genes found in the murine model in cattle using PBMC from uninfected (bTb-free,
n = 9) and naturally with M. bovis infected cows (bTb, n = 11).

Mouse data Bovine PBMC data

Gene Name Gene bTb Free bTb r-value

Symbol Lung
Mean ± SEM
of Log(FC)

Mean ± SEM
of Log(FC)

14 days p.i.

Interferon gamma IFN-c 82.54 0.06860.30 2.12260.19 ,0.0001*

Interlukin-22 IL-22 74.15 0.12560.32 2.21560.20 0.0002*

Chemokine (C-X- motif) ligand 9 Cxcl9 23.8 0.14960.24 2.49260.26 ,0.0001*

Interleukin-17Aa IL-17A NA 0.50960.33 1.7360.13 0.0052

Chemokine (C-X- motif) ligand 10 Cxcl10 22.13 0.07960.19 1.62660.28 0.0004*

Lymphocyte-activation gene 3 Lag3 12.11 0.43660.31 0.22860.18 0.582

Signal transducer and activator of transcription 1 Stat1 3.15 0.23460.11 0.46660.17 0.3746

Granzyme B GzmB 5.84 20.16760.19 20.24260.09 0.7249

Interferon regulatory factor Irf4 4.25 0.27560.21 0.20060.13 0.7664

Interferon gamma inducible protein 47 Ifi47 4.14 0.00860.02 0.08960.17 0.7964

Interleukin-17 receptor E receptor IL-17RE 3.99 0.56760.36 20.28560.32 0.1638

Spleen

3 days p.i. 14 days p.i.

Granzyme A GzmA 21.27 26.58 20.23260.35 1.24560.23 0.0029*

Acetylgalactosamin transferase 3 Galnt3 19.21 13.34 20.16760.19 20.24260.09 0.7249

Adenosine deaminase Ada 18.42 12.09 20.64160.12 20.66960.26 0.9366

Killer cell lectin-like receptor subfamily K member 1 Klrk1 5.02 4.81 1.20660.59 20.05860.39 0.1141

The data are represented as mean (6 SEM) fold changes in expression after stimulation of PBMC with bovine PPD-B. Significance level for comparison of results in bTb-
free and infected animals: p -value#0.0033 (*).
aUsed as positive control.
NA, not applicable.
doi:10.1371/journal.pone.0030626.t001
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of the 14 genes selected based on the murine transcriptome

analyses described above were found to be also significantly up-

regulated in bovine PBMC from infected animals compared to

naı̈ve controls. The most highly modulated genes were those

encoding IFN-c, IL22, CXCL9, CXCL10, and GzmA (Table 1).

The other 9 genes studied were not significantly modulated in

bovine PBMC from infected animals (Table 1). The gene

encoding for IL17A was also expressed stronger in bTb infected

cattle compared to TB-free cows, although its expression was not

quite statistically significant (P = 0.0052, Table 1).

When we compared the expression of the genes encoding IFN-

c, IL22, CXCL9, CXCL10, GzmA, and IL17A, we did not find

correlations between their expression the disease severity

described by the pathology scores [14] assigned after post mortem

examinations of the infected cattle (data not shown). However,

this study was not designed primarily to correlate expression

levels with disease severity and we therefore acknowledge that its

statistical power was not sufficient to avoid type 2 errors. Larger

animal numbers, including experimentally infected cattle need to

be tested to validate this hypothesis in greater details.

In a final set of experiments we determined the phenotype of the

bovine T cell subset(s) that transcribed the genes for IL22, IL17A

and GzmA. IFN-c in this system is exclusively produced by CD4+

T cells (Vordermeier, unpublished data) and was used as control.

Highly enriched CD4+, CD8+ and TCRcd+ (cd+) T cell subset

populations were isolated by FACS sorting and co-cultured in the

presence of CD14+ monocytes were as APC and PPD-B. The

expression of these genes was determined 24 hours later by qRT-

PCR. The results (Fig. 6) demonstrated that ifn-c and il22 were

expressed by bovine CD4+ T cells. However, whilst il17A was also

predominantly expressed by CD4+ cells; CD8+ and cd+ T cells also

expressed some il17A albeit an order of magnitude less. Granzyme

A expression could be detected in both CD4+ and CD8+ T cell

subsets (Figure 6).

Figure 2. Pulmonary gene signature after 14 days after infection with M. bovis. The global transcriptional response in the lung of mice
infected with M. bovis was compared the response of uninfected mice. Genes were considered significant when their correct p-value were below 0.05
with more than 2-fold change of expression. After 14 days post-infection the mice were euthanized and their lung cells were stimulated in vitro for 3
days with M7 protein pool (see Materials and Methods). Unsupervised hierarchical cluster was performed using a centroid linkage with a Person
centered measure showing that 282 of these genes were modulated (see table S2 for list of these genes).
doi:10.1371/journal.pone.0030626.g002
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Discussion

BTb remains an economically import disease of livestock species

and improved diagnostic tests would benefit the implementation of

control strategies. Transcriptomics approaches have been used to

identify gene expression profiles to define biomarkers of TB in

mice, primates and humans in different infection conditions.

Several recent publications have reviewed these studies [15,16].

Likewise, studies in cattle, aiming to determine gene expression

profiling, have been reviewed by Waters et. al. [17] focusing on ex

vivo studies and macrophage infection. Yet, the interaction between

host and M. bovis, which result in bTb, remains poorly

characterized in cattle. The definition of such biomarkers induced

after infection could have impact on the rational design of novel

diagnostic approaches. We have used the advantages of the

murine model (cheap, relatively short experimental periods,

availability of reagents, detailed genome annotation) to study the

host transcriptome after M. bovis infection. As we hypothesised our

analysis has lead to the validation in cattle of a number of

biomarkers found in the murine system which include the genes

encoding IL22, IL17A and Gzm A. PPD-B was used to stimulate

bovine PBMC because it is the standard antigen used to diagnose

bTb in livestock. In contrast, a protein cocktail (M7) was used to

stimulate mouse lymphocytes because PPD-B is a poor antigen to

stimulate murine responses despite the presence of these proteins

in PPD-B (Hogarth et al., unpublished observation). The reasons

underlying this discrepancy in antigenic activity between the two

species are not clear at present. Furthermore, the objective was to

define bovine biomarkers applicable to routine ante-mortem blood

based bTb diagnosis in cattle. Therefore, we targeted our analysis

to peripheral blood as the only practical sample that can be

collected readily from cattle in the field.

Interestingly, we could not validate in cattle the over-expression

of all genes that we prioritised based on the mouse experiments.

This could be due to the fact that we studied peripheral blood

responses in cattle, whilst the mouse studies concentrated on

Figure 3. Functional networks (A) and canonical pathways (B) most significantly modulated in lung cells 14 days after M. bovis
infection. Visualization of the trend and significance in the regulation of each network and pathway. Dark blue: all genes represented in a network.
Light blue: genes that were up-regulated in a network. Cyan: gene those were down-regulated in a network. Fisher’s exact test threshold value of
p#0.05.
doi:10.1371/journal.pone.0030626.g003
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tissues (lung and spleen). In addition, the infection status is likely

different between the two species populations studied: Murine

responses were assessed relatively early after infection, whilst the

time of infection in the cattle studied cannot be defined as these

animals were naturally infected and are likely composed of a very

heterogeneous group. It is therefore possible that not all responses

found at the tissue sites of infection are reflected in the blood.

However, our results demonstrated the value of the mouse system

to guide the study of gene expression in cattle.

Our data also suggested that the networks and pathways

associated both in lungs and spleen with infection at the 14 days

p.i. time point showed up-regulated expression in the lung whilst

the same networks and pathways in spleen cells were enriched for

genes whose expression was down-regulated. This could be

explained by sequestration of particular cell populations into the

lungs as principal site of infection as we previously proposed [18].

As our principal objective was to define bovine biomarkers useful

for the ante-mortem diagnosis of bTb in cattle, we concentrated

on the validation of potential markers that were strongly up-

regulated in spleen and lung cells to allow the assessment of the

widest selection of markers possible. In addition to their over-

expression in mice, we also selected genes for validation in the

bovine system on those whose products would have the potential

to be detected by antibody-based assay systems such as ELISA.

This lead therefore to the prioritisation of markers such as

chemokines and cytokines.

Figure 4. Functional networks (A) and canonical pathways (B) most significantly modulated in spleen cells 3 and 14 days after
M. bovis infection. Visualization of the trend and significance in the regulation of each network and pathway are shown. Specific networks and
pathways after 3 (dark blue bars) or 14 days p.i. (light blue bars) are indicated. Fisher’s exact test threshold value of p#0.05.
doi:10.1371/journal.pone.0030626.g004
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IL-22 belongs to the IL-10 cytokine family and is produced by

NK cells, mast cells, and T cells, especially Th17 and Th22 cells. It

is involved in the antimicrobial defence of mucosal surfaces

including in the airway by promoting innate immunity to bacterial

infection. IL-22 has been shown to induce genes encoding

antimicrobial proteins, b-defensins, S100 calcium binding proteins

and to up-regulate the expression of chemokine (ccl1, cxcl5 and

cxcl9) and cytokine genes (il-6 and g-csf). Furthermore, the

functional consequences of IL-22/IL22R signalling can be

potentiated by IL-17A/F and TNF-a in order to promote the

expression of many of the genes encoding molecules involved in

host defence in the lung [19]. The specific role of IL-22 in M.

tuberculosis infection remains undefined, although it has been

reported that IL-22 did not have a significant role in host

protection and granuloma formation in mice [20,21]. In contrast,

the production of IL-22 by human NK cells or addition of

recombinant IL-22 to infected macrophages enhanced phagoly-

sosomal fusion and reduces growth of M. tuberculosis [22]. In

addition, CD4+ T effector cells bearing membrane-bound IL-22

(IL22+ CD4+ T cells) significantly reduced intracellular M.

tuberculosis replication in macrophages isolated from rhesus

macaques [23]. Whether IL-22 contributes to control TB at the

site of infection is unknown. Nevertheless, active TB is associated

with lower frequencies of IL17+ and IL22+ CD4+ T cells in

peripheral blood [24]. In contrast, we have also demonstrated

elevated expression of IL22 in lymph nodes from infected cattle

(Aranday-Cortes et al., unpublished).

The role of IL17A in human tuberculosis has been described

(reviewed in [25,26]. Although IL-17 might not play an equally

important role in protection against mycobacterial infections as

IFN-c [27], recent studies have shown that IL-17 mediates an

inflammatory response through granulopoiesis and consequent

neutrophil accumulation. This may be required for protective

immunity in the early stage of infection but could also become

detrimental if its production remains high during later stages of

disease [28]. In addition, IL-17 is reported to play an essential role

Figure 5. Induction of the inflammatory response network in lung (A) and spleen (B) cells at 14 days p.i. Dark blue: all genes enriched in
this network. Light blue: genes that were up-regulated in this network. Cyan: gene those were down-regulated in this network.
doi:10.1371/journal.pone.0030626.g005

Figure 6. Phenotypic analysis of bovine T cell subsets that
expressed the genes encoding for IL22, IL17a and GzmA. Highly
purified CD4+, CD8+, and CD82/TCRd+ T cell populations were isolated
by FACS sorting and the mRNA expression of these genes was
determined after stimulation with PPD-B. Results are presented as mean
fold increase compared to media control values 6 SEM.
doi:10.1371/journal.pone.0030626.g006
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in the formation of granulomas in mice infected with BCG [29]

and reduced Th17 CD4 T cell numbers are associated with PPD-

induced impaired cytokine response in patients with HIV [30]. IL-

17 producing cd T cells were increased in patients with active

pulmonary tuberculosis [31]. Interestingly, we have recently

described a role for IL17A in the protective immune responses

against bTb in cattle after BCG and BCG/viral subunit prime-

boost experiments both in cattle [10] and mice [11]. In cattle its

expression was up-regulated in protected animals after vaccination

but before challenge and can therefore be defined as predictor of

protection [10]. In this study we now also define it as a marker of

disease progression in cattle and mice. Our data therefore are in

agreement with an earlier report by Blanco et al. [13] who

reported that il-17 expression was positively associated with

pathology in cattle. Thus, our observations also support the notion

that IL-17A is involved both in immune processes leading to

protection or immunopathology of tuberculosis.

Granzyme A is the most abundant of the cytotoxic granules

released by cytotoxic T cells (CTL) and NK cells. It can induce cell

death independently of caspase activation [32,33] and T cells can

reduce intracellular growth of M. tuberculosis by perforin and Fas/

Fas ligand independent mechanism even in IFN-c and TNF-a
deficient mouse models [34,35]. One hypothesis which explains

these observations, is that Th17/Th22 T cells may play a role in

the pulmonary inflammatory response post-infection, by helping to

elicit a pathogenic inflammatory response involving the activation

of CTL. A similar relationship between TH17 cells and CD8+

CTL has been described in tumour immunology [36].

Whilst it is acknowledged that IL-17A and IL-22 are produced

not only by CD4+ T cells, but also by CD8+ and cd T cells (as well

as NK, NKT and non-T cells, which were not evaluated in this

study) [37,38,39,40,41], our data demonstrated that both

cytokines were predominantly expressed by CD4+ T cells with a

minor il-17A response also attributable to cd T cells. It is therefore

tempting to speculate that the responding bovine CD4+ T cells

belong to Th17 and/or Th22 subsets comparable to those

described in other species [42,43]. Granzyme A was expressed

equally in CD4+ and CD8+ which is suggestive of the induction of

CTL of both T cell subsets following bTb infection of cattle.

Comparison between spleen samples obtained at 3 and 14 days

p.i. and lungs samples at 14 days p.i. demonstrated that 32 genes

were significantly modulated in all three sets of samples (Tables S1

and S2, genes highlighted with asterisk). Interestingly, only 4/32

genes were up-regulated (ubiquitin, lymphocyte antigen 6

complex, fmrd4 and ccr5). CCR5 is a chemokine receptor that

binds CCL3, CCL4 and CCL5. The interaction between CCR5

and CCL5 may play an early protective role in limiting M.

tuberculosis growth by recruiting T-cells, NK and macrophages to

the lungs [44]. Further, reduction in number and frequency of

Th1/Th17 CCR5+ T cells was associated with reduced IFN-c and

IL-2 PPD responses in HIV-infected patients [30]. In contrast,

severe TB in juvenile rhesus monkeys was associated with the up-

regulation of ccr5 (as well as il-22 and other inflammatory

cytokines and receptors) [45]. Thus, its precise role in tuberculosis

is therefore unclear to-date.

Chemokines such as CXCL10 have been used as additional

read-outs for blood-based IFN-c release assays of human

tuberculosis [46,47]. Its application increased overall test sensitiv-

ity compared to IFN-c alone [48]. Measuring cxcl9 and cxcl10

expression by qRT-PCR has also been reported as potential

platform to increase diagnostic sensitivity in human tuberculosis

[49]. It is therefore interesting that we could show up-regulation of

both of these genes also in murine lung cells and in bovine PBMC.

Further validation of our results in cattle will determine whether

these, or the other genes validated in cattle such as il-22 or their

protein products, will increase the accuracy of blood-based

diagnostic tests for bTb when applied alongside IFN-c release

assays. However, the biomarkers identified in our study have so far

been prioritised only based on their increased gene expression

levels. Confirmation of their increased production at the protein

level will be needed to turn them into valid diagnostic tests for

bTb. Development of such antibody-based detection systems is

now part of the process of translating our findings into practical

such as ELISA-based, diagnostic tests for bTb.

In conclusions, we have shown that biomarkers defined in the

murine system can be used to guide the analysis of biomarkers of

disease in cattle. Further, we have prioritised a number of

cytokines and chemokines as potential additional diagnostic

markers for the blood based ante-mortem diagnosis of bTb to

improve traditional IFN-c release assays.

Materials and Methods

Ethics
This study and all procedures were approved by the Animal

Health and Veterinary Laboratories Agency (AHVLA) Animal

Use Ethics Committee (UK Home Office PCD 70/6905) and

performed under appropriate personal and project licences within

the conditions of the Animals (Scientific Procedures) Act 1986. All

animals were housed in appropriate biological containment

facilities at the AHVLA.

Animals
Mice. Female BALB/C mice were obtained from SPF

facilities at Charles River Laboratories, Margate, UK.

Cattle. Heparinized blood samples were obtained from 11

naturally infected single intradermal comparative tuberculin test

(SICTT)-positive reactors from herds know to have bTb. Infection

was confirmed by the presence of visible pathology at post-mortem

and the culture of M. bovis from tissues from these animals

according to previously described procedures [14]. Uninfected

controls: Heparinized blood sample were obtain from 9 SICTT-

negative animals from bTb-free herds. They were also negative in

the standard Bovigam IFN-c release assay (Prionics, Switzerland).

Antigens
Cattle. Purified protein derivative from M. bovis (PPD-B,

Prionics, Switzerland) was used in culture at 10 mg/ml for

stimulating bovine Peripheral blood mononuclear cells (PBMC).

Staphylococcal enterotoxin B (SEB, Sigma-Aldrich, UK) was used

as a positive control at 1 mg/ml.

Mice. Antigen cell culture stimulations in mice were

performed using an equal pool of seven secreted, immunogenic

recombinant mycobacterial proteins (Rv1886c, Rv3019c, Rv3763,

Rv3804c, [Lionex GmbH, Germany] Rv0251, Rv0287 and

Rv0288 [Proteix s.r.o., Czech Republic]) common to M. bovis

and BCG, referred here as M7 protein cocktail. We have

previously shown that M7 induced strong and representative T

cell responses in both vaccinated and infected mice [18]. Each

protein was used at final concentration of 2 mg/ml in 3-day

culture. Concanavalin A (Sigma-Aldrich) was used as a positive

control at 5 mg/ml for murine cells.

Mycobacterial challenge
Mycobacterium bovis isolate AF2122/97 was grown to mid log

phase in Middlebrook 7H9 broth supplemented with 4.16 g/L

pyruvic acid, 10% (v/v) oleic acid, albumin, dextrose, and catalase

(OADC) and 0.05% (v/v) Tween 80, subsequently stored at
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280uC, was used for all virulent challenges. Two groups of 5 mice

each were challenged with approx 600 CFU via the intranasal

route [50]. At days 3 and 14 post challenge five mice per group

were euthanized and spleens and lungs harvested aseptically.

Cell isolation
Spleen and lung cells were prepared by as described previously

[18] and suspended at 56106/ml spleen cells and 56105/ml lung

cells. After stimulation, cells were washed (3006 g, 5 min at room

temperature) and supernatants removed. One ml of Trizol

(Invitrogen, Paisley, UK) was then added and the cell lysates

were stored at 280uC.

Bovine PBMC. PBMC were isolated from heparinized blood

by Histopaque-1077 (Sigma-Aldrich) gradient centrifugation. Cells

were resuspended at 16106/ml in tissue culture medium (RPMI

1640 [Sigma-Aldrich] supplemented with 10% fetal calf serum

[Sigma-Aldrich], nonessential amino acids [Sigma-Aldrich],

100 U/ml penicillin and 100 mg/ml streptomycin sulfate) and

incubated overnight with PPD-B or SEB in 24-well tissue culture

plates (Life Technologies, UK). The following day, plates were

centrifuged (3006 g, 5 min at room temperature) and the

supernatant was removed. One ml of Trizol was then added

and the cell lysates were stored at 280uC.

RNA extraction from bovine PBMC
Total RNA was extracted from PBMCs using TRIzol according

to the protocol recommended by the manufacturer. Turbo DNA-

free (Ambion, Huntingdon, UK) was used to remove genomic

DNA contamination. The purity and concentration of RNA were

evaluated by NanoDrop 1000 (Thermo Scientific, Horsham, UK).

RNA with a ratio of A260/A280 $1.7 was used for the RT-qPCR

validation study.

Cell Sorting
Cell sorting was performed using a Beckman Coulter MoFlo

Astrios instrument. Bovine PBMCs were stained and sorted

according to expression of the bovine T-cell surface markers CD4,

CD8 and cd TCR. The anti-bovine CD8 antibody (clone CC63)

was supplied directly conjugated to Fluorescein isothiocyanate

(AbD-Serotec, Kidlington, UK), whilst the anti-bovine CD4

antibody (clone CC8, AbD-Serotec) was custom conjugated to

R-Phycoerythrin (Invitrogen). The anti-TcR-d antibody (clone

GB21A, VMRD, Pullman, WA) was used in the primary staining

reaction as an unconjugated antibody and then labelled in a

secondary staining reaction using an isotype specific anti-mouse

IgG2b antibody directly conjugated to Alexa Fluor 633 (Invitro-

gen). Staining reactions were performed at 4uC for 15 minutes.

CD14-positive cells were isolated using magnetic beads (Miltenyi

Biotech, Bisley, UK) as described previously [51] and used as

antigen-presenting cells. The purities of the sorted T cell

populations were .99.% for CD4+CD82 cells; .96% for TcR-

d+ CD82 cells and .99.0% for TcR-d2 CD8+ cells. In the assays,

16106 sorted T cell populations were incubated for 24 h with

16105 APC in 24-well plates in the presence of PPD-B and RNA

processed as described above.

Murine RNA preparation and microarray hybridization
Spleen and lung cells were collected into Trizol and stored at

280uC until further processing. RNA was isolated from spleen

and lung cells derived from control and infected mice using

standard RNA extraction protocols (Miltenyi Biotech). The quality

of RNA samples was assessed using the Agilent 2100 Bioanalyzer

platform (Agilent Technologies, UK). All RNA samples revealed

acceptable RNA Integrity Number (RIN) values of between 7.4

and 9.6. For the linear T7-based amplification step, 0.06 mg–

0.5 mg of each total RNA samples was used as starting material.

To produce Cy3-labeled cDNA, RNA samples were amplified and

labeled using the Agilent Low RNA Input Linear Amp Kit

(Agilent Technologies) following the manufacturer’s protocol.

Yields of cRNA and the dye-incorporation rate were measured

in a ND-1000 Spectrophotometer (Thermo Scientific). In general,

control samples were labeled with Cy3 and experimental samples

were labeled with Cy5. The hybridization procedure was

performed according to the Agilent 60-mer oligo microarray

processing protocol using the Agilent Gene Expression Hybrid-

ization Kit. Briefly, 825 ng Cy3- and Cy5-labeled fragmented

cDNA in hybridization buffer was hybridized overnight (17 hours,

65uC) to Agilent Whole Mouse Genome Oligo Microarrays

4x44K using Agilent’s recommended hybridization chamber and

oven. Finally, microarrays were washed once with 66SSPE buffer

(3.6 M NaCl, 0.2 M NaH2PO4, 0.02 M EDTA pH 7.4) contaning

0.005% N-lauroylsarcosine for 1 min at room termperature

followed by a second wash with preheated 0.066 SSPE buffer

(37uC) containing 0.005% N-lauroylsarcosine for 1 min. The last

washing step was performed with acetonitrile for 30 seconds.

Normalization, filtering procedures and data analysis
Fluorescence signals of the hybridized Agilent Microarrays were

detected using Agilent’s Microarray Scanner System. Agilent’s

Feature Software (FES) was used to read out and process

microarray image files. The software determines feature intensities

(including background subtraction), rejects outliers and calculates

statistical confidences. For determination of differential gene

expression FES derived output data files were further analyzed

using GeneSpring GX 11.5 (Agilent Technologies). After baseline

transformation to mean of control samples (spleen and lung from

uninfected mice), we decided to focus on those genes that reliably

change their expression, then we filtered the microarrays following

three conditions: 1) Filter by value. Genes that do not have

normalized signal intensity values of more than 20.5 and 0.5 were

disregarded. 2) Filter by flags. All the genes with flags values present

in at least 100% of the values in any 1 out of the 3 conditions were

considered. 3) Filter by percentile. All the genes with raw signal

intensity values between 25 and 100 in any 1 out of the 3

conditions were also considered. Finally, all the genes in

coincidence between filtering by flags group and filtering by

percentile group were kept for statistical analysis.

After filtering, parametric analysis of variance was applied to

compare mean expression levels in each analysis. Data were

considered significant when the Benjamini Hochberg false

discovery rate (FDR) for the comparison under analysis was

,0.05, and the significance level was ,0.05. In order to focus on

highly regulated genes, we also restricted the majority of the

analysis to genes with changes in expression levels of at least 2.0-

fold change (FC) in all the conditions. All data set can be

downloaded from Gene Expression Omnibus public data base at

www.ncbi.nml.nih.gov/geo/ with the GEO accession number

GSE33058.

Lists of genes resulting from these analyses were submitted to

Ingenuity Pathway Analysis (IPA; IngenuityH Systems, USA,

www.ingenuity.com). In order to identify the most significant

functional networks (biological functions and diseases) and

canonical pathways related to each comparison, the analysis was

performed using the following strategy: A core analysis was

performed with all the genes with r#0.05 and fold change $2 for

each comparison; then for the same comparisons a core analysis

was performed only considering those genes that showed p#0.05
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and were at least 2 fold up-regulated. Further and independently a

last core analysis was performed for those genes with p#0.05 that

were at least 2-fold down-regulated. Finally, these analyses were

compared. Fisher’s exact test with a threshold value of p#0.05 was

used in all the analyses. The rationale behind this strategy is to

visualize the trend and significance in the regulation for each

network and pathway. Thus, we show three columns for each

comparison: one showing all the genes related to a specific network

and pathway, followed by two extra columns showing how the

networks and pathways are enriched by up- or down-regulated

genes.

Reverse transcriptase and quantitative Real-time PCR
validation

cDNA from PBMCs was synthesized from total RNA samples

using random primers and reverse transcription with SuperScript

III Vilo reverse transcriptase following the manufacturers protocol

(Applied Biosystem, Paisley, UK). cDNA from cell sorting was

synthesized using mMACS One-step cDNA Kit (Miltenyi Biotec)

following manufacturers instructions. Transcripts were quantified

by qPCR with Fast SYBR Green master mix (Applied Biosystem)

following manufactures conditions. qPCR analysis was performed

using the ABI 7500 Fast Real Time PCR System (Applied

Biosystem) in triplicate from media control, PPD-B and SEB-

stimulated PBMCs cDNA. The fold increase was calculated by

comparison with the expression of endogenous controls genes

SDHA and G3PDH using the 22DDct calculation [52].

Statistical analysis
Responses between cattle naturally infected with M. bovis and

naı̈ve controls were analysed by Student’s t-test on log transformed

data using Prism (Graph Pad, USA). To control for type I errors

due to multiple comparison, the Bonferroni’s correction for

multiple tests was applied and the significance level set at

p,0.003.

Supporting Information

Table S1 Significant modulation of spleen cell genes
early after 3 days p.i. (1109) and at later time-point of 14
days p.i. (1134). Genes in bold (618) were modulated at both

time points. Ns = no significant expression at this time point. The

genes marked with (*) result common after comparison between

spleen samples after 3 and 14 days p.i. and lungs samples after 14

days p.i. with M. bovis showed expression of (32).

(XLS)

Table S2 Significant modulation of spleen cell genes
early after 3 days p.i. (1109) and at later time-point of 14
days p.i. (1134). Genes in bold (618) were modulated at both

time points. Ns = no significant expression at this time point. The

genes marked with (*) result common after comparison between

spleen samples after 3 and 14 days p.i. and lungs samples after 14

days p.i. with M. bovis showed expression of (32).

(XLS)
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