UNIVERSITY
of
GLASGOW

Abraham, David J and Irving, Robert W and Manlove, David F (2003)
The student-project allocation problem. In, Proceedings of ISAAC 2003:
the 14th Annual International Symposium on Algorithms and
Computation, 15-17 December, 2003 Lecture Notes in Computer Science
Vol 2906, pages 474-484, Kyoto, Japan.

http://eprints.gla.ac.uk/archive/00001034/

Glasgow ePrints Service
http://eprints.gla.ac.uk

The Student-Project Allocation Problem

David J. Abraham, Robert W. Irving, and David F. Manlove*

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
Email: {dabraham,rvi,davidm}@dcs.gla.ac.uk. Faz: +44 141 330 4913.

Abstract. We study the Student-Project Allocation problem (SPA), a
generalisation of the classical Hospitals / Residents problem (HR). An
instance of SPA involves a set of students, projects and lecturers. Each
project is offered by a unique lecturer, and both projects and lecturers
have capacity constraints. Students have preferences over projects, whilst
lecturers have preferences over students. We present an optimal linear-
time algorithm for allocating students to projects, subject to these prefer-
ences and capacities. In particular, the algorithm finds a stable matching
of students to projects. Here, the concept of stability generalises the sta-
bility definition in the HR context. The stable matching produced by
our algorithm is simultaneously best-possible for all students. The SPA
problem model that we consider is very general and has applications to
a range of different contexts besides student-project allocation.

1 Introduction

In many university departments, students seek a project in a given field of spe-
ciality as part of the upper level of their degree programme. Usually, a project
can be filled by at most one student, though in some cases a project is suitable
for more than one student to work on simultaneously. To give students something
of a choice, there should be as wide a range of available projects as possible, and
in any case the total number of project places should not be less than the total
number of students. Typically a lecturer will also offer a range of projects, but
does not necessarily expect that all will be taken up.

Each student has preferences over the available projects that he/she finds
acceptable, whilst a lecturer will normally have preferences over the students
that he/she is willing to supervise. There may also be upper bounds on the
number of students that can be assigned to a particular project, and the number
of students that a given lecturer is willing to supervise. In this paper we consider
the problem of allocating students to projects based on these preference lists and
capacity constraints — the so-called Student-Project Allocation problem (SPA).

SPA is an example of a two-sided matching problem [10], a large and very
general class of problems in which the input set of participants can be partitioned
into two disjoint sets A and B (in this case A is the set of students and B is the
set of projects), and we seek to match members of A to members of B, i.e. to
find a subset of A x B, subject to various criteria. These criteria usually involve

* Supported by award NUF-NAL-02 from the Nuffield Foundation, and grant
GR/R84597/01 from the Engineering and Physical Sciences Research Council.

capacity constraints, and/or preference lists, for example.

Both historical evidence (see e.g. [4, pp.3-4], [7]) and economic analysis [10]
indicate that participants involved in two-sided matching problems should not
be allowed to construct an allocation by approaching one another directly in
order to make ad hoc arrangements. Instead, the allocation process should be
automated by means of a centralised matching scheme. Moreover, it has been
convincingly argued [9] that the key property that a matching constructed by
such schemes should satisfy is stability. A formal definition of stability follows,
but informally, a stable matching M guarantees that no two participants who
are not matched together in M would rather be matched to one another than
remain with their assignment in M. Such a pair of participants would form a
private arrangement and would undermine the integrity of the matching.

The National Resident Matching Program (NRMP) [8] in the US is per-
haps the largest and best-known example of a centralised matching scheme. It
has been in operation since 1952, and currently handles the allocation of some
20,000 graduating medical students, or residents, to their first hospital posts,
based on the preferences of residents over available hospital posts, and the pref-
erences of hospital consultants over residents. The NRMP employs at its heart
an efficient algorithm that essentially solves a variant of the classical Hospitals
/ Residents problem (HR) [3,4]. The algorithm finds a stable matching of resi-
dents to hospitals that is resident-optimal, in that each resident obtains the best
hospital that he/she could obtain in any stable matching.

There are many other examples of centralised matching schemes, both in
educational and vocational contexts. Many university departments in particular
seek to automate the allocation of students to projects. However, as we discuss
in greater detail later, an optimal linear-time algorithm for this setting cannot
be obtained by simply reducing an instance of SPA to an instance of HR. Thus,
a specialised algorithm is required for the SPA problem.

In this paper we present a linear-time algorithm for finding a stable matching,
given an instance of SPA. This algorithm is student-oriented, in that it finds a
student-optimal stable matching. In this matching, each student obtains the
best project that he/she could obtain in any stable matching. Our algorithm
is applicable for any context that fits into the SPA model, for example where
applicants seek posts at large organisations, each split into several departments.

The remainder of this paper is structured as follows. In Section 2, a formal
definition of the SPA problem is given. Then, in Section 3, the algorithm for SPA
is presented, together with correctness proofs and an analysis of its complexity.
Finally, Section 4 contains some conclusions and open problems.

2 Definition of the Student-Project Allocation Problem

An instance of the Student-Project Allocation problem (SPA) may be defined as
follows. Let S = {s1, 82, ..., 8n} be a set of students, let P = {p1,pa,...,pm} be
a set of projects, and let L = {l1,l2,...,l,} be a set of lecturers. Each student
s; supplies a preference list, ranking a subset of P in strict order. If project p;
appears on s;’s preference list, we say that s; finds p; acceptable. Denote by A;

Student preferences Lecturer preferences

S1:p1 pr l1:87 S84 S1 S3 S2 S5 Sg l1 offers p1, p2, p3
S2:P1 P2 P3 P4 P5 Pe lo: 83 S2 Se S7 Ss l2 offers p4, ps, pe
$3:p2 P1 P4 l3:81 s7 I3 offers pr, ps

S4 1 P2

S5 :1P1 P2 P3 P4

S6 1 P2 P3 P4 D5 D6 Project capacities: c1 =2, ¢; =1 (2 <17 < 8)

S7 D5 P3 P8 Lecturer capacities: di = 3, d2 =2, d3 = 2

Fig. 1. An instance of the Student-Project Allocation problem.

the set of projects that s; finds acceptable.

Each lecturer lj, offers a non-empty set of projects Py, where P;, Py, ..., P,
partitions P. Let By, = {s; € S : PN A; # 0} (i.e. By, is the set of students who
find acceptable a project offered by [}). Lecturer [;, supplies a preference list,
denoted by Ly, ranking By, in strict order. For any p; € Py, we denote by £},
the projected preference list of l, for p; — this is obtained from £ by deleting
those students who do not find p; acceptable. In this way, the ranking of Lfﬂ is
inherited from L. Also, I, has a capacity constraint dj, indicating the maximum
number of students that he/she is willing to supervise. Similarly, each project
p; carries a capacity constraint c;, indicating the maximum number of students
that could be assigned to p,;. We assume that maz{c; : p; € Py} < d.

An example SPA instance is shown in Figure 1. Here the set of students is S =
{s1, 82,..., 87}, the set of projects is P = {p1,pa, ..., ps} and the set of lecturers
is L = {l1,12,13}. Lecturers offer projects as indicated, and the preference lists
and capacity constaints are also shown. As an example, the projected preference
list of I; for p; comprises s1, S3, S2, S5, ranked in that order.

An assignment M is a subset of S x P such that:

1. (si,pj) € M implies that p; € A, (i.e. s; finds p; acceptable).
2. For each student s; € S, [{(si,p;) € M :p; € P} <1

If (s;,pj) € M, we say that s; is assigned to pj, and p; is assigned s;. Hence
Condition 2 states that each student is assigned to at most one project in M.
For notational convenience, if s; is assigned in M to p;, we may also say that s;
is assigned to li, and I is assigned s;, where p; € Pj.

For any student s; € S, if s; is assigned in M to some project p;, we let
M (s;) denote pj; otherwise we say that s; is unmatched in M. For any project
p; € P, we denote by M(p,) the set of students assigned to p,; in M. Project
p; is under-subscribed, full or over-subscribed according as |M (p;)| is less than,
equal to, or greater than c;, respectively. Similarly, for any lecturer I, € L, we
denote by M (l) the set of students assigned to Il in M. Lecturer I is under-
subscribed, full or over-subscribed according as |M (Ix)| is less than, equal to, or
greater than dj respectively.

A matching M is an assignment such that:

3. For each project p; € P, |{(s;,p;) € M :s; € S}| < ¢;.
4. For each lecturer Iy, € L, |{(si,pj) € M : s, € SApj € B} < di.

Hence Condition 3 stipulates that p; is assigned at most c; students in M, whilst
Condition 4 requires that [j is assigned at most dj students in M.

A blocking pair relative to a matching M is a (student,project) pair (s;,p;) €
(S x P)\M such that:

1. p; € A; (i.e. s; finds p; acceptable).
2. Either s; is unmatched in M, or s; prefers p; to M (s;).
3. Either
(a) p; is under-subscribed and [}, is under-subscribed, or
(b) p; is under-subscribed, I is full, and either I, prefers s; to the worst
student s’ in M(lg) or s; = ¢, or
(c) pj is full and [, prefers s; to the worst student in M (p;),
where I, is the lecturer who offers p;.

A matching is stable if it admits no blocking pair. We now give some intuition
for the definition of a blocking pair. Suppose that (s;,p;) forms a blocking pair
with respect to matching M, and let I, be the lecturer who offers p;.

In general we assume that s; prefers to be matched to an acceptable project
rather than to remain unmatched. Hence Condition 2 indicates the means by
which a student could improve relative to M. Suppose now that this condition
is satisfied. To explain Condition 3(a), matching M cannot be stable if each of
project p; and lecturer Ij, has a free place to take on s; (or to let s; change projects
offered by [;;). We now consider Condition 3(b). If p; is under-subscribed, I is
full, and s; was not already matched in M to a project offered by [i, then I
cannot take on s; without first rejecting at least one student. Lecturer [, would
only agree to this switch if he/she prefers s; to the worst student assigned to I
in M. In this case, project p; has room for s;. Alternatively, if s; was already
matched in M to a project offered by [, then the total number of students
assigned to [; remains the same, and [; agrees to the switch since p; has room
for s;. Finally, we consider Condition 3(c). If p; is full, then I} cannot take on
s; without first rejecting at least one student assigned to p;. Lecturer [, would
only agree to this switch if he/she prefers s; to the worst student assigned to
p; in M. Notice that if s; was already matched in M to a project offered by [,
then the number of students assigned to I would decrease by 1 after the switch.
However we argue that this is the “correct” definition of a blocking pair in this
case, also having the side-effects of avoiding issues of strategy and maintaining
useful structural properties. For a full discussion of this point, we refer the reader
to Section 4.1 of [1].

We remark that HR is a special case of SPA in which m = ¢, ¢; = d; and
P; = {p;j} (1 < j < m). Essentially the projects and lecturers are indistin-
guishable in this case. In the HR setting, lecturers / projects are referred to as
hospitals, and students are referred to as residents. Linear-time algorithms are
known for finding a stable matching, given an instance of HR. The resident-
oriented algorithm [4, Section 1.6.3] finds a resident-optimal stable matching. In
this stable matching, each matched resident is assigned to the best hospital that
he/she could obtain in any stable matching, whilst each unmatched resident is
unmatched in every stable matching. On the other hand, the hospital-oriented

algorithm [4, Section 1.6.2] finds a hospital-optimal stable matching. In this sta-
ble matching, each full hospital is assigned the best set of residents that it could
obtain in any stable matching, whilst each under-subscribed hospital is assigned
the same set of residents in every stable matching.

It is worth drawing attention to a special case of HR (and hence of SPA).
This is the classical Stable Marriage problem with Incomplete lists (SMI), where
¢; =1 (1<j<m)]3], 4, Section 1.4.2]. In this setting, residents are referred
to as men and hospitals are referred to as women. There exists a reduction from
HR to SMI using the method of ‘cloning’ hospitals. That is, replace each hospital
hj, of capacity c;, with ¢; women, denoted by h}, h?, e h;’ The preference list
of h? is identical to the preference list of h;. Any occurrence of h; in a resident’s
preference list should be replaced by h}, h?, ceey h;’ in that order. Hence in the-
ory, the Gale / Shapley algorithm for SMI [4, Section 1.4.2] could be used to
solve an HR instance. However in practice direct algorithms are applied to HR
instances [4, Section 1.6], because the cloning technique increases the number of
hospitals (women) in a given HR instance by a potentially significant factor of
C/m, where C' = 371~ 1" ¢;.

On the other hand there is no straightforward reduction involving cloning
from an instance of SPA to an instance of HR, due to the projects and lecturers
being distinct entities, each having capacity constraints. Even if such a reduction
were possible, again it would typically increase the number of lecturers (hospi-
tals) by a significant factor. This justifies the approach of this paper, in which
we consider a direct algorithm for SPA.

The running time of our algorithm is O(L), where L is the total length of
the input preference lists, and hence is linear in the size of the problem instance.
This algorithm is optimal, since the Stable Marriage problem (SM) — the special
case of SMI in which m = n and each student finds every project acceptable —
is a special case of SPA. A lower bound of 2(L) is known for SM [6], and hence
this also applies to SPA.

3 The algorithm for SPA

3.1 Overview

The algorithm for finding a student-optimal stable matching involves a sequence
of apply operations (i.e. students apply to projects). An apply operation is sim-
ilar to a proposal in the context of the Gale / Shapley algorithm for SM [3].
These operations lead to provisional assignments between students, projects and
lecturers; such assignments can subsequently be broken during the algorithm’s
execution. Also, throughout the execution, entries are possibly deleted from the
preference lists of students, and from the projected preference lists of lecturers.
We use the abbreviation delete the pair (s;,p;) to denote the operation of delet-
ing p; from the preference list of s;, and deleting s; from Ei, where [is the
lecturer who offers p;.

Initially all students are free, and all projects and lecturers are totally unsub-
scribed. As long as there is some student s; who is free and who has a non-empty

assign each student to be free;
assign each project and lecturer to be totally unsubscribed;
while (some student s; is free) and (s; has a non-empty list) {
p; = first project on s;’s list;
li, = lecturer who offers p;;
/* s; applies to p; */

provisionally assign s; to pj; /* and to I */
if (p; is over-subscribed) { _
sy = worst student assigned to p;; /* according to L] */

break provisional assignment between s, and pj;

}

else if (I is over-subscribed) {
sr = worst student assigned to lx;
p: = project assigned s;;
break provisional assignment between s, and py;

}
if (p; is full) {
s, = worst student assigned to p;; /* according to L] */
for (each successor s¢ of s, on Ei)
delete the pair (s¢, p;);

}
if (I is full) {
sr = worst student assigned to lx;
for (each successor s¢ of s, on Ly)
for (each project p, € P, N Ay)
delete the pair (s¢, pu);

Fig. 2. Algorithm SPA-student for finding a student-optimal stable matching

list, s; applies to the first project p; on his/her list. We let I, be the lecturer
who offers p;. Immediately, s; becomes provisionally assigned to p; (and to Ij).

If p; is over-subscribed, then [;, rejects the worst student s, assigned to p;.
The pair (s,,p;) will be deleted by the subsequent conditional that tests for p;
being full. Similarly, if I, is over-subscribed, then [;, rejects his/her worst assigned
student s,. The pair (s,,p;) will be deleted by either of the two subsequent
conditionals, where p; was the project formerly assigned to s,.

Regardless of whether any rejections occurred as a result of the two situations
described in the previous paragraph, we have two further (possibly non-disjoint)
cases in which deletions may occur. If p; is full, we let s, be the worst student
assigned to p; (according to E?C) and delete the pair (s;,p;) for each successor
s of s, on Li. Similarly if I, is full, we let s, be the worst student assigned to
Ik, and delete the pair (s¢,p,) for each successor s; of s, on Ly, and for each
project p, offered by [that s; finds acceptable.

The algorithm is described in pseudocode form in Figure 2 as Algorithm
SPA-student. We will prove that, once the main loop terminates, the assigned
pairs constitute a student-optimal stable matching.

3.2 Correctness of Algorithm SPA-student

We firstly remark that Algorithm SPA-student terminates with a matching. The
correctness of the algorithm, together with the optimality property of the con-
structed matching, may be established by the following sequence of lemmas.

Lemma 1. No pair deleted during an execution of Algorithm SPA-student can
block the constructed matching.

Proof. Let E be an arbitrary execution of the algorithm in which some pair
(si,p;) is deleted. Suppose for a contradiction that (s;,p;) blocks M, the match-
ing generated by E. Now, (s;,p;) is deleted in E because either (i) p; becomes
full, or (ii) Ix becomes full, where I is the lecturer offering p;. In Case (i), it
turns out that (s;,p;) fails (a), (b) and (c) of Condition 3 of a blocking pair, a
contradiction. The details for each of these sub-cases are omitted here for space
reasons, but may be found in [1]. Case (ii) is easier: (s;, p;) cannot block M, since
once full, a lecturer never becomes under-subscribed, and is only ever assigned
more preferable students. ad

Lemma 2. Algorithm SPA-student generates a stable matching.

Proof. Let M be the matching generated by an arbitrary execution E of the
algorithm, and let (s;,p;) be any pair blocking M. We will show that (s;,p;)
must be deleted in E, thereby contradicting Lemma 1. For, suppose not. Then
s; must be matched to some project M (s;) # pj, for otherwise s; is free with a
non-empty preference list (containing p;), thereby contradicting the fact that the
algorithm terminates. Now, when s; applies to M (s;), M(s;) is the first project
on his/her list. Hence, (s;,p;) must be deleted, since for (s;,p;) to block M, s;
must prefer p; to M(s;). O

Lemma 3. No stable pair (i.e. (student,project) pair belonging to some stable
matching) is deleted during an execution of Algorithm SPA-student.

Proof. Suppose for a contradiction that (s;,p;) is the first stable pair deleted
during an arbitrary execution F of the algorithm. Let M be the matching im-
mediately after the deletion in F, and let M’ be any stable matching containing
(si,pj). Now, (s;,p;) is deleted in E because either (i) p; becomes full, or (ii) Ix
becomes full, where [, is the lecturer offering p;. We consider each case in turn.

(i) Suppose (s;,p;) is deleted because p; becomes full during E. Immediately

after the deletion, p; is full, and I prefers all students in M(p;) to s;.
Now, s; € M'(p;)\M (p;), and since p; is full in M, there must be some s €
M(p;)\M'(p;). We will show that (s, p;) forms a blocking pair, contradicting
the stability of M’.
Firstly, since (s;,p;) is the first stable pair deleted in E, s prefers p; to any
of his/her stable partners (except possibly for p; itself). Additionally, since
(si,p;j) € M’ and j, prefers s to s;, it follows that lj prefers s to both the
worst student in M'(p;) and M’(l). Clearly then, for any combination of [,
and p; being full or under-subscribed, (s,p;) satisfies all the conditions to
block M’.

(ii) Suppose that (s;,p;) is deleted because I, becomes full during E. Immedi-
ately after the deletion, lj is full, and I prefers all students in M (I) to s;.
We consider two cases: |M’(p;)| > |M(p;)| and |M'(p;)| < |M(p;)|.
Suppose firstly |M'(p;)| > |M(p;)|. Since I is full in M, and (s;,p;) ¢ M,
there must be some project p € Py\{p;} such that |M’'(p)| < |[M(p)|. We
remark that p is therefore under-subscribed in M’. Now, let s be any student
in M(p)\M’'(p). Since (s;,p;) is the first stable pair deleted, s prefers p to
any of his/her stable partners (except possibly for p itself). Also, l; prefers
s to s;, and hence to the worst student in M’(l). So, in either case that I,
is full or under-subscribed, (s,p) blocks M’.

Now suppose |M'(p;)| < |M(p;)|. Then there is some s # s; € M (p;)\M'(p;).
Now, p; is under-subscribed in M, for otherwise (s;,p;) is deleted because p;
becomes full, contradicting the assumption that deletion occurs because [y
becomes full. Therefore, p; is under-subscribed in M’. As above, s prefers p;
to any of his/her stable partners (except possibly for p; itself), since (s;,p;)
is the first stable pair deleted. Also, Iy, prefers s to s;, and hence to the worst
pair in M’(l). So, in either case that l; is full or under-subscribed, (s,p;)
blocks M’. O

The following theorem collects together Lemmas 1-3.

Theorem 1. For a given instance of SPA, any execution of Algorithm SPA-
student constructs the student-optimal stable matching.

Proof. Let M be a matching generated by an arbitrary execution E of the al-
gorithm. In M, each student is assigned to the first project on his/her reduced
preference list, if any. By Lemma 2, M is stable, and so each of these (student,
project) pairs is stable. Also, by Lemma 3, no stable pair is deleted during E. It
follows then that in M, each student is assigned to the best project that he/she
can obtain in any stable matching. a

For example, in the SPA instance given by Figure 1, the student-optimal
stable matching is {(s1,p1), (s2,D5), (83,D4), (84, D2), (s7,p3)}-

We now state a result similar to the ‘Rural Hospitals Theorem’ for HR [4,
Theorem 1.6.3]. In particular, the following theorem indicates that, in no other
stable matching could we match a different set of students than that matched by
Algorithm SPA-student. The proof is omitted here for space reasons, but may
be found in [1].

Theorem 2. For a given SPA instance:

(i) each lecturer has the same number of students in all stable matchings;
(ii) exactly the same students are unmatched in all stable matchings;
(iii) a project offered by an under-subscribed lecturer has the same number of
students in all stable matchings.

However it turns out that an under-subscribed lecturer need not obtain the
same set of students in all stable matchings, and in addition, a project offered
by a full lecturer need not obtain the same number of students in all stable
matchings. Example SPA instances illustrating these remarks are given in [1].

3.3 Analysis of Algorithm SPA-student

The algorithm’s time complexity depends on how efliciently we can execute ‘ap-
ply’ operations and deletions, each of which occur at most once for any (student,
project) pair. It turns out that both operations can be implemented to run in
constant time, giving an overall time complexity of ©(L), where L is the total
length of all the preference lists. We briefly outline the non-trivial aspects of
such an implementation.

For each student s;, build an array, ranks,, where ranks, (p;) is the index
of project p; in s;’s preference list. Represent s;’s preference list by embedding
doubly linked lists in an array, preferences,. For each project p; € A;, prefer-
ences, (ranks,(p;)) stores the list node containing p;. This node contains two
next pointers (and two previous pointers) — one to the next project in s;’s list
(after deletions, this project may not located at the next array position), and
another pointer to the next project p’ in s;’s list, where p’ and p; are both offered
by the same lecturer. Construct this list by traversing through s;’s preference
list, using a temporary array to record the last project in the list offered by
each lecturer. Use virtual initialisation (described in [2, p.149]) for these arrays,
since the overall @(ng) initialisation cost may be super-linear in L. Clearly, using
these data structures, we can find and delete a project from a given student in
constant time, as well as efficiently delete all projects offered by a given lecturer.

Represent each lecturer I;,’s preference list £; by an array preference;, , with
an additional pointer, last;, . Initially, last;, stores the index of the last position in
preference;, . However, once [, is full, make last;, equivalent to l;’s worst assigned
student through the following method. Perform a backwards linear traversal
through preference;, , starting at last;,, and continuing until {;’s worst assigned
student is encountered (each student stores a pointer to their assigned project,
or a special null value if unassigned). All but the last student on this traversal
must be deleted, and so the cost of the traversal may be attributed to the cost
of the deletions in the student preference lists.

For each project p; offered by i, construct a preference array correspond-
ing to Ei. These project preference arrays are used in much the same way as
the lecturer preference array, with one exception. When a lecturer [, becomes
over-subscribed, the algorithm frees [;’s worst assigned student s; and breaks
the assignment of s; to some project p;. If p; was full, then it is now under-
subscribed, and last,; is no longer equivalent to p;’s worst assigned student.
Rather than update last,, immediately, which could be expensive, wait until
p; is full again. The update then involves the same backwards linear traversal
described above for [i, although we must be careful not to delete pairs already
deleted in one of [j’s traversals. Since we only visit a student at most twice dur-
ing these backwards traversals, once for the lecturer and once for the project,
the asymptotic running time remains linear.

The implementation issues discussed above lead to the following conclusion.

Theorem 3. Algorithm SPA-student may be implemented to use (L) time and
space, where L is the total length of the preference lists in a given SPA instance.

4 Conclusions and open problems

In this paper we have presented a student-oriented algorithm for a SPA instance.
This produces the student-optimal stable matching, in which each student ob-
tains the best project that he/she could obtain in any stable matching. We
remark that we have also formulated a lecturer-oriented counterpart, which we
omit for space reasons. This second algorithm produces the lecturer-optimal sta-
ble matching, in which each lecturer obtains the best set of students that he/she
could obtain in any stable matching.
A number of interesting open problems remain. These include:

— The SPA model may be extended to the case where lecturers have preferences
over (student,project) pairs. However in this setting it is an open problem to
formulate an acceptable stability definition that avoids issues of strategy. For
example, a student could deliberately shorten his/her preference list in order
to obtain a better project, rather than submitting his/her true preferences.
These strategic issues are described in more detail in [1].

— If we allow ties in the preference lists of students and lecturers, different sta-
bility definitions are possible. These can be obtained by extending stability
definitions that have been applied to the Hospitals / Residents problem with
Ties [5]. It remains open to construct algorithms for SPA where preference
lists contain ties, under each of these stability criteria.

References

1. D.J. Abraham, R.W. Irving, and D.F. Manlove. The Student-Project Allocation
Problem. Technical Report TR-2003-141 of the Computing Science Department of
Glasgow University, 2003.

G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, 1996.

3. D. Gale and L.S. Shapley. College admissions and the stability of marriage. Amer-
ican Mathematical Monthly, 69:9-15, 1962.

4. D. Gusfield and R.W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, 1989.

5. R.W. Irving, D.F. Manlove, and S. Scott. Strong stability in the Hospitals/Residents
problem. In Proceedings of STACS 2003: the 20th International Symposium on
Theoretical Aspects of Computer Science, volume 2607 of Lecture Notes in Computer
Science, pages 439—450. Springer-Verlag, 2003.

6. C. Ng and D.S. Hirschberg. Lower bounds for the stable marriage problem and its
variants. SIAM Journal on Computing, 19:71-77, 1990.

7. National Resident Matching Program. About the NRMP. Web document available
at http://www.nrmp.org/about_nrmp/how.html.

8. National Resident Matching Program. Why the Match? Web document available
at http://www.nrmp.org/whythematch.pdf.

9. A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991-1016, 1984.
10. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis, volume 18 of Econometric Society Monographs. Cambridge

University Press, 1990.

N

	Cover sheet 1034.pdf
	http://eprints.gla.ac.uk/archive/00001034/

