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Abstract 

We forecast US inflation using a standard set of macroeconomic predictors and a dynamic 
model selection and averaging methodology that allows the forecasting model to change over 
time. Pseudo out-of-sample forecasts are generated from models identified from a multipath 
general-to-specific algorithm that is applied dynamically using rolling regressions. Our 
results indicate that the inflation forecasts that we obtain employing a short rolling window 
substantially outperform those from a well-established univariate benchmark, and contrary to 
previous evidence, are considerably robust to alternative forecast periods.    
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1.  Introduction 

In a recent comprehensive study, Stock and Watson (2009) find that the success of 

Phillips curve forecasts of inflation is episodic. In line with previous work by Atkeson and 

Ohanian (2001), they show that since the mid-1980s there is little evidence that forecasts 

from a univariate benchmark model can be consistently improved upon.  Nevertheless, they 

also find that there are periods in time, typically close to business cycle turning points (see 

also Stock and Watson, 2010), when  economic fundamentals have useful predictive content 

even post the mid-1980s.  

It is widely recognised that predictive failure is closely related to model instability, 

see e.g.  Clements and Hendry (1998a,b) and Stock and Watson (1996). As Hendry and 

Clements (2003) point out, good forecasts are relying on the assumption that the model is a 

good representation of the economy, the structure of which remains relatively unchanged. 

More recently, Rossi (2012) provides a comprehensive review of issues related to forecasting 

in the presence of structural breaks. She stresses that predictive content instability implies 

that finding predictors that work well in one period is no guarantee of future success, and 

concludes that it is essential to improve methods to select good forecasting models in-sample. 

Our paper’s main contribution is related to this latter point.  Specifically, we apply a 

general-to-specific (GETS) model selection algorithm similar in spirit to Autometrics (see 

Doornik, 2009), using rolling regressions, to select models in-sample that are subsequently 

employed for forecasting. At each rolling sub-sample, the GETS algorithm begins with a 

general model that includes all predictors, and applies model reduction on the basis of 

standard t- and F-tests considering, in principle, the whole model space, i.e. it is multipath in 

nature.1 The combination of the GETS model selection, with rolling regressions, a scheme 

                                                 
1 In single path model reduction algorithms such as the stepwise, model reduction is carried out by deleting one 

variable at a time, the most insignificant one, until all remaining variables are statistically significant, in which 

case the algorithm stops and a terminal model is reached. Our algorithm, searches multiple paths by considering 
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frequently employed when forecasting under structural breaks (see e.g. Pesaran and 

Timmerman, 2007), allows the predictive model to change over time. In other words, at each 

point of time, we take an agnostic view as to which fundamentals have predictive power, use 

the GETS algorithm to identify the fundamentals that are likely to contain useful predictive 

information, and employ these fundamentals to forecast out-of-sample.  This approach allows 

not only the parameters of the forecasting model to change over time but also the actual 

predictors that enter the model to vary, hence allowing for a more severe form of model 

instability.2 

Given the multipath nature of the GETS algorithm, multiple terminal models may be 

reached at any rolling sub-sample. In the case when more than one terminal model is reached, 

we employ two alternative approaches to obtain forecasts:  first, we follow Doornik (2009) 

and use model-fit criteria in order to select a single terminal model; second, we combine 

forecasts from all terminal models, using various averaging methods, to further robustify our 

forecasts to potentially imprecise parameter estimates from individual models.3  

Our approach is similar in spirit to Koop and Korobilis (2012) who implement the 

idea of dynamic model selection and averaging within a Bayesian framework and find that 

inflation forecasting performance can be substantially improved relative to univariate 

approaches. It is also related to Castle et al. (2012) who use a dynamic GETS approach via 

                                                                                                                                                        
alternative model reduction strategies. One of the paths that the GETS algorithm searches corresponds to the 

single stepwise path described above. An alternative path is searched by deleting instead of the most 

insignificant variable, the second, third, etc. most insignificant variable. This search can give rise to multiple 

terminal models. 

2 In the forecasting literature, model instability is typically considered with regards to model parameters and 

accounted for by utilising recursive or rolling estimation procedures.  

3 See Hendry and Clements (2002) for a discussion on how forecast pooling can generally improve forecast 

performance in the presence of model misspecification and structural change. 
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Autometrics to forecast US GDP and document benefits from multipath model selection.4 

Pesaran and Timmermann (1995) also apply a model selection approach based on model fit 

criteria to forecast US stock returns, and find significant variation in the predictive power of 

economic factors over time. Finally, Avramov (2002) finds that Bayesian model averaging 

generates lower forecast errors for US stock returns relative to model selection approaches 

that are based on model fit criteria. 

We evaluate the out-of-sample forecast performance of the dynamic GETS procedure 

for US inflation using the Stock and Watson (2009) dataset.  Stock and Watson (2009) 

examine the performance of 192 different forecasting procedures across 5 alternative 

measures of inflation, using 15 macroeconomic predictors, a long span of data and 6 

alternative sub-samples. We build upon their extensive analysis to provide further insights on 

the ability of economic fundaments to forecast US inflation. Forecast performance is 

evaluated relative to the unobserved components stochastic volatility (UC-SV) model, the 

univariate model that is the most difficult to beat (see Stock and Watson, 2009). The principal 

result from our analysis is that the dynamic GETS methodology, combined with a short 

rolling window and a standard set of macroeconomic predictors of inflation, can substantially 

outperform the UC-SV benchmark across alternative forecast periods.  

   The remainder of the paper is structured as follows. Section 2 describes the dataset. 

Section 3 explains the econometric methodology. Section 4 presents and discusses the 

                                                 
4 Banerjee and Marcellino (2006) also employ an automated model selection procedure using PcGets, 

Autometrics’ predecessor, to forecast US inflation. Nevertheless, when pseudo out-of-sample forecasts are 

considered, the model selection algorithm is used to choose the optimum lag length in single-predictor dynamic 

models rather than to determine the best set of predictors in a multivariate context like in our case. Aron and 

Muellbauer (2012) use Autometrics to forecast US inflation but the model selection algorithm is applied only 

once, for the first estimation sample. They note that applying the model selection recursively would probably 

result in better forecast performance. 
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forecasting results. Section 5 provides evidence from robustness checks, and Section 6 

concludes. 

 

2.  Data 

The dataset is taken from Stock and Watson (2009), has quarterly frequency and 

covers the US over the period 1953.Q1-2008.Q1.5  The data include 5 measures of inflation 

based upon:  the CPI for all items (CPI-all), CPI excluding food and energy (CPI-core), 

personal consumption expenditure deflator (PCE-all), personal consumption expenditure 

deflator excluding food and energy (PCE-core), and the GDP deflator. 15 potential predictors 

of inflation are also included, mainly reflecting activity variables such as unemployment, 

GDP, and industrial production, but also other predictors proposed by economic theory (e.g., 

the term spread, a trade-weighted exchange rate index, etc.).6 In line with the inflation 

variable used in Stock and Watson (2009), we calculate the annual (four-quarter) inflation at 

quarter t: 

4
4100ln( / )t t tP Pπ −=           (1) 

where Pt  is the relevant price index at quarter t. 

 

3.   Methodology 

3.1   Model selection algorithm 

 The methodology is based on a GETS model selection algorithm, which is similar in 

spirit to Autometrics (Doornik, 2009), an automated model selection algorithm embedded in 

                                                 
5 The data were obtained from M. Watson’s website:http://www.princeton.edu/~mwatson/ddisk/bfed_Sept2008.zip. 

6 The full set of predictors is shown in Table A1 in the Appendix, together with the transformations that we 

apply so that the variables are stationary. 
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the OxMetrics econometrics software.7 The starting point of the model selection process is 

the definition of a general unrestricted model (GUM), which  should be formulated on the 

basis of theory, encompass competing models and provide sufficient information on the 

process that is being modelled (see Hendry and Krolzig, 2005; Doornik, 2009). Model 

reduction is carried out by removing statistically insignificant variables, and a terminal model 

is reached when all variables are statistically significant at a pre-specified level.  

[FIGURE 1 HERE] 

 The algorithm considers, in principle, the whole model space, thus it is multipath in 

nature. In order to demonstrate how the algorithm works, consider for example that the GUM 

includes four explanatory variables (A, B, C and D) as shown in Figure 1. If all four variables 

are statistically significant the search terminates and the GUM is the terminal model. If, on 

the other hand, the GUM includes statistically insignificant variables, these are deleted one at 

a time based on their individual significance. If, for example, only variable A is insignificant, 

the GUM is reduced to BCD, which itself becomes the basis for another search. If all 

variables in the GUM are statistically insignificant, the algorithm removes each of them, one 

at the time, reaching four models: BCD, ACD, ABD and ABC. The reduction process is 

repeated at each of these four nodes.8 If at each node all variables are insignificant, the 

algorithm will visit all 16 (=24) unique models represented by the solid dots in Figure 1.9        

                                                 
7 Following PcGets (Hendry and Krolzig, 2001), Autometrics is the second generation automatic model 

selection algorithm in OxMetrics. 

8 For instance, if all three variables are insignificant at node BCD, the algorithm will consider three two-variable 

models: CD, BD and BC. If statistically insignificant variables are included in these two-variable models the 

search will continue. If, on the other hand, all variables at node ACD are significant, then ACD is a terminal 

model and no other variable combinations are searched in this branch.    

9 There are 15 unique models with at least one variable and one empty model omitted from Figure 1. Hollow 

dots represent duplicated models and can be ignored. 
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The variable combinations implied by the solid dots also reflect all possible terminal models 

the algorithm could reach.10  

This multipath search offers two advantages over single path model selection 

procedures. First, given the multipath nature, it avoids the risk of getting trapped in the wrong 

search path (Doornik, 2009). In principle, this risk is higher the greater the intercorrelation of 

the explanatory variables. Second, it generates alternative valid reductions of the general 

model, and hence is more informative as to which models or variables have predictive power. 

This rich set of information can be utilised by means of model averaging to potentially 

improve forecast performance compared to single models.            

In our setup, the GUM is given by the following equation and to avoid over-fitting, 

the 1% level of significance is utilised for model reduction: 

4 4
4 4 4t t t t ttrend vπ µ απ γ+ + += + + + +βX               (2) 

where μ is the constant; 4
4tπ +  is the four-quarters ahead annual inflation; tX  is a vector that 

contains the 15 potential predictors of inflation; and trendt is a linear trend. 11, 12  

With 17 independent variables in the GUM shown in Equation (2), there are up to (≈) 

131,000 unique models, which make the search process computationally intensive. We adopt 

two strategies to move through the nodes efficiently. First, following Doornik (2009), we 
                                                 
10 Note that it is difficult to assess the number of terminal models the algorithm is more likely to produce on the 

basis of the number of significant variables in the initial model. If just one variable is statistically significant, for 

instance, variable A, the algorithm could search all paths except the ones starting from BCD. In turn, the 

algorithm could identify several terminal models, if some of the insignificant variables turn significant as the 

model reduction progresses. But it could also lead to zero terminal models if A, the significant variable in the 

initial model, turns insignificant, and none of the other variables becomes significant at different stages of model 

reduction. 

11 The t-statistics are computed using Newey and West (1987) heteroskedasticity and autocorrelation consistent 

(HAC) standard errors based on a lag truncation of 3. 
12 Note that the constant is always included in the model(s). 



 8 

consider deleting more than one variable at a time based on individual and joint significance 

levels. At each node, highly insignificant variables are grouped together, tested for joint 

significance and removed if they fail the test. There is obviously a trade-off between 

computational speed and the possibility of skipping unique terminal models. For the group 

deletion strategy, we define highly insignificant variables as those having t-statistics less than 

0.5 (in absolute value), and the joint significance test is performed at the 1% level of 

significance.  

The second strategy is based on the sign of the coefficients. We impose theory-

consistent sign restrictions on the model space: if a variable is statistically significant but 

exhibits the ‘wrong’ sign, then it is deleted. Effectively, the sign restrictions impose priors on 

the model space to speed up the search process but also to improve the selection test power 

and ensure that the terminal model conforms to economic theory, at least in terms of 

coefficient signs (Hendry and Krolzig, 2005).13 The group and sign deletion strategies are 

considered before the individual significance criterion, which is ignored if one or more 

variables are removed as a result of the aforementioned strategies.  

The general-to-specific algorithm is applied dynamically (DGETS) across rolling 

windows of 20, 40 and 60 quarters always starting from the GUM shown in Equation (2). A 

smaller rolling window is expected to provide greater forecast gains when there are big and 

recurrent breaks (Pesaran and Timmermann, 2007). 

 

3.2   Forecasting 

                                                 
13 Theory-based restrictions have been used in studies of stock market predictability and have been shown to 

improve forecast performance (see e.g. Campbell and Thomson, 2008). The sign restrictions that we impose are 

shown in Table A1 in the Appendix. In line with economic intuition and theory they indicate a positive response 

of inflation to higher real economic activity, lower unemployment, higher long-term interest rates (relative to 

short-term rates), and exchange rate depreciation.   
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Pseudo out-of-sample forecasts are generated from the terminal model(s) that were 

identified using the automated model selection approach described in Section 3.1. Given the 

multipath nature of the algorithm, multiple terminal models may be reached at any rolling 

sub-sample.14 In the case when more than one terminal model is reached, two methods are 

employed to obtain forecasts. First, following Doornik (2009), DGMS (dynamic GETS 

model selection) forecasts are produced by the terminal model that minimises either the 

Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC). Second, 

DGMA (dynamic GETS model averaging) forecasts are generated by averaging forecasts 

from all terminal models. We use 5 alternative model averaging approaches: mean; trimmed 

mean (where the largest and smallest forecasts are excluded before calculating the mean 

forecast); median; weighted averaging based on BIC and AIC weights.15 

Finally, we generate forecasts from a simple single-path stepwise model selection 

algorithm in order to compare its performance against the multipath approach. The stepwise 

algorithm reduces a general model by sequentially removing one variable at a time, the most 

insignificant one, until all remaining variables are statistically significant at a pre-specified 

level. The stepwise regression is also applied dynamically across each rolling sub-sample.  

The DGETS and stepwise forecasting performance is compared to the UC-SV 

univariate benchmark model of Stock and Watson (2007), which is shown to typically 

outperform other statistical or fundamentals-based models in Stock and Watson (2009, 

                                                 
14 For a summary of the number of terminal models reached and number of variables selected, see Table A2 in 

the Appendix. 

15 Following Garratt et al. (2003), approximate Bayesian model averaging involves the use of a weighted 

average of the forecasts, with weights defined by BIC and AIC. In an inflation forecasting exercise, Kapetanios 

et al. (2008) find that model averaging using BIC and AIC weights can be a powerful alternative to Bayesian 

model averaging and to factor models.  
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2010).16 Finally, forecast accuracy is evaluated over the period 1968 Q1 to 2007 Q1 using the 

root mean squared forecast error (RMSE).  

 

4.   Forecasting results 

Tables 1.1 to 1.5 summarise the pseudo out-of-sample forecasting performance of 

each forecasting procedure (DGMS, DGMA and stepwise) for five inflation series. RMSEs of 

4-quarters ahead inflation forecasts, relative to the UC-SV benchmark, are reported for the 

five forecast periods that have been used by Stock and Watson (2009).17 A value of less than 

1 indicates that the DGETS method generates RMSEs that are lower relative to the 

benchmark. The most important message arising from our analysis is that DGETS-based 

forecast methods, combined with the use of a short rolling window and a standard set of 

macroeconomic predictors of inflation, outperform the benchmark univariate model. This 

finding is largely robust to the choice of inflation variable and forecasting period, and is in 

ample contrast with Stock and Watson (2009) who find only episodic success for 

fundamentals-based inflation forecasts. More specifically, the results can be summarised as 

follows: 

First, there is evidence that the forecasting performance of models that include 

relevant economic variables as predictors of inflation, relative to the univariate UC-SV 

benchmark, depends on the length of the rolling window. Specifically, the shorter the window 

the larger the forecast accuracy of DGMS and DGMA. This pattern is consistent across 

forecasting periods and inflation measures. The deterioration of the forecast accuracy of these 

models when the estimation window lengthens indicates that there are significant regime 

                                                 
16 The RMSEs of the UC-SV model for the five inflation series are taken directly from Tables 3.1 to 3.5 of 

Stock and Watson (2009).  

17 Stock and Watson (2009) also report results for an earlier sub-sample (1960-1967). Due to lack of data for the 

economic fundamentals, these refer only to univariate models. 
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changes that can be better captured by a shorter window.18 In particular, using a rolling 

window of 20 quarters, DGMS and DGMA produce RMSEs that are almost invariably lower 

relative to the UC-SV model. Typically, it is easier to outperform the UC-SV model in the 

first two sub-samples (1968-1976 and 1977-1984), consistent with the results of Stock and 

Watson (2009). However, there are significant improvements in forecast accuracy associated 

with the DGETS methods even post mid-1980s. The notable exceptions involve CPI-all and 

PCE-all between 1993-2000.19 The forecast performance of the DGMS and DGMA is more 

mixed when the rolling window is set to 40 quarters with the relative RMSEs being typically 

below 1 during the second (1977-1984) and last forecast period (2001-2007). Finally, when 

using a 60 quarters rolling window, the DGETS  approaches only occasionally outperform 

the benchmark model, and often generate RMSEs that are considerably greater than those of 

UC-SV model.20 

                                                 
18 See Pesaran and Timmerman (2007), among others, for theoretical work on the determination of the optimal 

observation window, which suggests that in the presence of structural change the optimal length of the window 

is weakly decreasing in the magnitude of the break.   

19 Stock and Watson (2009) also find that there are time periods, such as the mid-1990s, that the univariate 

forecast cannot be improved upon using fundamentals-based models. They point out that when the 

unemployment rate is close to the NAIRU, forecasts from Phillips curve models do not outperform the UC-SV.  

20 In their experiments, Stock and Watson (2009) use two moving window schemes, namely recursive and 

rolling of 40-quarters window size. Given the sensitivity of forecasting performance to the size of the rolling 

window documented in this paper, we repeat several of the Stock and Watson (2009) experiments using 

alternative window sizes.  In particular, we generate forecasts from single-predictor models for each of the 15 

macroeconomic factors using autoregressive distributed lag models (as described in their paper), and a simple 

model averaging by taking a simple mean of all single-predictor forecasts. The main message that arises from 

this exercise is that Stock and Watson’s results do not seem to depend on the size of the rolling window. In other 

words, the relative success of the DGETS methods relative to the Stock and Watson fundamental-based models 

cannot be attributed to differences between the moving window schemes employed by the two papers. The 

results from this exercise are not reported here to save space but are available upon request. 
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[TABLES 1.1-1.5 HERE] 

Second, DGMA forecasts tend to improve upon DGMS forecasts when the rolling 

window is set to 20 quarters. However, the relative improvement from model averaging 

decreases as the size of the rolling window increases, and disappears when the window 

increases to 60 quarters. This is shown more clearly in Table 2. For each inflation variable, 

and using the full forecasting sample, we calculate the RMSE of the DGMS forecasts relative 

to the DGMA-mean. At 20 quarters rolling window the improvement in forecast accuracy 

from model averaging is typically around 10%, while at 60 quarters, forecasts based on 

model averaging underperform the DGMS forecasts. Thus, model averaging is beneficial, 

relative to DGMS, only when the rolling window is relatively short. The forecast gains from 

pooling forecasts from multiple models has been extensively documented in the literature 

(see e.g. Hendry and Clements, 2002), but to our knowledge, the extent to which these gains 

depend on the rolling window has not been reported. Our results are novel in that respect. A 

smaller estimation window is likely to generate greater forecast error variance than a larger 

window if in both situations the model is well-specified. But a larger window will give rise to 

biased forecasts if the data generating process is subject to recurrent structural breaks. A 

potential explanation for our results is that model averaging might lead to greater forecast 

gains when applied on inefficient forecasts rather than forecasts generated from biased, 

subject to structural breaks, models.   

 [TABLE 2 HERE] 

Third, BIC- and AIC-based DGMS approaches generate similar levels of forecast 

accuracy. BIC penalises models for the inclusion of irrelevant regressors more severely than 

AIC, however, the choice of the over-fitting penalty does not affect the out-of-sample 

performance of the DGETS methods. Fourth, there is not a particular model averaging 

approach that shows a systematic or substantial improvement over an alternative averaging 

method. Fifth, the simple stepwise model selection procedure does not exhibit much success. 
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It generally generates RMSEs that are somewhat lower than those of the UC-SV model prior 

to the mid-1980s but thereafter the stepwise approach tends to underperform the benchmark 

model. Interestingly, unlike the multipath DGETS approaches, the stepwise model selection 

method does not seem to consistently or substantially improve upon the UC-SV benchmark 

even when a short rolling window is used. On the contrary, the 20 quarters rolling window 

generates almost always inferior forecasts relative to 40 or 60 quarters window.  

Finally, Figure 2 shows the inclusion frequency in the terminal models identified by 

the DGETS method for each of the 15 macroeconomic predictors. The plots refer to CPI-all 

with 20 quarters rolling window and indicate significant time variation in the forecasting 

model, with respect to the variables that enter it and the frequency of inclusion. Interestingly, 

the predictive information contained in the macroeconomic variables appears to be the lowest 

in mid to late 1990s, the period when the UC-SV forecasts are most difficult to beat, as 

discussed earlier.  

A very prominent predictor, at least in terms of terminal model frequency inclusion, is 

the Chicago Fed National Activity Index (CFNAI). CFNAI is published by Federal Reserve 

Bank of Chicago, calculated as the principal component of 85 monthly indicators of 

economic activity, and its forecasting power has been demonstrated by Stock and Watson 

(1999) and Hansen (2006). Housing starts and capacity utilisation are two other proxies of 

economic activity that have good forecasting power, whereas GDP and industrial production 

only occasionally enter the terminal models. Strikingly, unemployment rate also shows very 

poor predictive power. It enters at least one terminal model only around 1970, 1985-1992 and 

2005-2007. In general, this is consistent with previous studies that found significant 

instability in the Phillips curve relationship (see, e.g. Stock and Watson, 1996). Finally, the 

exchange rate and Treasury Bond–Treasury Bill spread appear much less important that the 

economic activity variables. Nonetheless, the exchange rate seems to have predictive content 



 14 

in early 1980s and late 1990s, two periods of protracted dollar appreciation, and the spread in 

the more recent years (2000-2007).  

[FIGURE 2 HERE] 

 5.   Robustness checks 

This section investigates the sensitivity of the DGETS forecast performance across a 

variety of checks. In particular, we (i) remove the sign restrictions from the search space; (ii) 

vary the model reduction significance level from 1% to 0.5% and 5%; (iii) vary the group 

deletion t-statistic threshold absolute value from 0.5 to 0.7 and 0.3; (iv) consider a GUM 

specification that does not include a deterministic trend.21 The results from these robustness 

checks, for the full sample, are reported in Table 3.22 RMSEs relative to the benchmark 

forecasts, which are based upon DGETS models that use the settings discussed in Section 3.1, 

are shown; values greater than one indicate that the alternative settings deliver less accurate 

forecasts than the benchmark.  

The most striking result that emerges is that the performance of the DGETS 

approaches deteriorates significantly when we remove the theory-based sign restrictions from 

the search space. This is most notable in the case of the DGMS forecasts where accuracy falls 

by 40% or more. The only exception is CPI-core where the impact of the sign restrictions is 

relatively small. The DGMA forecast accuracy is also adversely affected by the removal of 

the sign restrictions, but to a smaller extent as compared to DGMS. Thus, model averaging 

appears to be even more important when the sign restrictions are dropped, most likely 

                                                 
21 We have also experimented with two additional simple forecasting models, the first involving the CFNAI 

Index, and the second one the first principal component (PC) of the 15 predictor variables. The results are 

available upon request and indicate that CFNAI- and PC-based forecasts only occasionally outperform those 

from the UC-SV model.    

22 Given the success of the 20 quarters rolling window size reported in the previous section, and to conserve 

space, we report results only for this window size.   
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reflecting greater forecast variance in individual model forecasts. All in all, these results 

imply that theory-based sign restrictions provide improvements in model selection power, 

which is translated into significantly improved forecast performance. 

The performance of the DGETS model selection approaches is only marginally 

affected by changes in other settings. In general, the forecast accuracy drops mildly when we 

increase the model reduction significance level to 5% but remains unaffected when we 

decrease it to 0.5%. Altering the group deletion t-statistic threshold does not affect the results. 

Finally, excluding the trend from the GUM lowers forecast performance for two inflation 

measures and improves it for another two but in any case the changes in forecast accuracy are 

relatively small.     

[TABLE 3 HERE] 

 6.   Conclusions 

In this paper we use a standard set of macroeconomic predictors and a dynamic model 

selection and averaging econometric methodology that allows the forecasting model of 

inflation to change over time. Identifying the specification of the forecasting models using a 

multipath DGETS model selection algorithm, pseudo out-of-sample forecasts are generated 

and their performance is compared with a well-established univariate benchmark, the UC-SV 

model of Stock and Watson (2009). Our results, across several inflation variables and 

forecasting periods, reveal that DGETS-based methods in association with a short rolling 

window lead to significant improvements in forecast performance. 
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Table 1.1           
Root mean squared errors for 4-quarters ahead inflation forecasting models by sub-period, 
relative to the UC-SV model: CPI-all 

Forecast Period 1968.Q1–
1976.Q4 

1977.Q1–
1984.Q4 

1985.Q1–
1992.Q4 

1993.Q1–
2000.Q4 

2001.Q1–
2007.Q1 

Number of observations 36 32 32 32 25 
DGMS_BIC_R20 0.71 0.61 0.87 1.19 0.93 
DGMS_AIC_R20 0.72 0.63 0.88 1.19 0.88 
DGMA_MEAN_R20 0.68 0.57 0.75 1.06 0.75 
DGMA_TMEAN_R20 0.68 0.57 0.75 1.06 0.75 
DGMA_MEDIAN_R20 0.68 0.58 0.75 1.07 0.75 
DGMA_MEANBIC_R20 0.67 0.57 0.76 1.07 0.76 
DGMA_MEANAIC_R20 0.68 0.57 0.76 1.08 0.76 
DGMS_BIC_R40 1.18 0.59 1.02 1.29 0.78 
DGMS_AIC_R40 1.19 0.58 1.02 1.21 0.78 
DGMA_MEAN_R40 1.02 0.64 0.99 1.20 0.74 
DGMA_TMEAN_R40 1.05 0.63 0.97 1.19 0.76 
DGMA_MEDIAN_R40 1.06 0.63 0.99 1.20 0.76 
DGMA_MEANBIC_R40 1.02 0.63 0.98 1.21 0.75 
DGMS_MEANAIC_R40 1.02 0.63 0.99 1.20 0.74 
DGMS_BIC_R60 1.07 0.76 1.16 1.36 0.98 
DGMS_AIC_R60 1.05 0.76 1.16 1.36 0.97 
DGMA_MEAN_R60 1.09 0.85 1.15 1.28 1.00 
DGMA_TMEAN_R60 1.10 0.85 1.14 1.32 1.00 
DGMA_MEDIAN_R60 1.08 0.86 1.14 1.32 1.01 
DGMA_MEANBIC_R60 1.09 0.84 1.14 1.28 1.00 
DGMA_MEANAIC_R60 1.09 0.84 1.14 1.28 1.00 
STEPWISE_R20 0.95 0.96 1.70 1.35 1.43 
STEPWISE_R40 1.07 0.57 1.21 1.22 0.77 
STEPWISE_R60 1.11 0.65 1.13 1.65 1.00 
 
Note: This table reports root mean squared forecast errors (RMSEs) relative to the RMSEs of the unobserved 
components-stochastic volatility model (UC-SV), over the indicated sample period. The latter is taken from 
Table 3.1 in Stock and Watson (2009). Bold indicates a relative RMSE of less than 1. Blanks indicate 
insufficient data to compute forecasts over the indicated sample period. DGMS_BIC (AIC): forecasts based 
on the BIC (AIC) minimising terminal model identified through the dynamic general-to-specific (DGETS) 
algorithm. DGMA: forecasts based on averaging forecasts from terminal models identified through the 
DGETS algorithm. 5 alternative model averaging approaches are used: mean (DGMA_MEAN); trimmed 
mean (DGMA_TMEAN); median (DGMA_MEDIAN); and weighted averaging based on BIC 
(DGMA_MEANBIC) and AIC (DGMA_MEANAIC) weights. STEPWISE: forecasts based on model 
identified through dynamic single-path stepwise model selection. _R20, _R40, and _R60: indicate rolling 
estimation with a window size of 20, 40, and 60 quarters, respectively. 
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Table 1.2           
Root mean squared errors for 4-quarters ahead inflation forecasting models by sub-period, 
relative to the UC-SV model: CPI-core 

Forecast Period 1968.Q1–
1976.Q4 

1977.Q1–
1984.Q4 

1985.Q1–
1992.Q4 

1993.Q1–
2000.Q4 

2001.Q1–
2007.Q1 

Number of observations 36 32 32 32 25 
DGMS_BIC_R20 0.85 0.51 1.01 0.95 0.81 
DGMS_AIC_R20 0.85 0.57 1.04 0.91 0.75 
DGMA_MEAN_R20 0.76 0.55 0.86 0.89 0.67 
DGMA_TMEAN_R20 0.77 0.56 0.87 0.90 0.66 
DGMA_MEDIAN_R20 0.78 0.58 0.89 0.89 0.67 
DGMA_MEANBIC_R20 0.77 0.53 0.90 0.86 0.65 
DGMA_MEANAIC_R20 0.77 0.53 0.90 0.87 0.65 
DGMS_BIC_R40 0.98 0.61 1.73 1.34 0.86 
DGMS_AIC_R40 0.98 0.60 1.87 1.36 0.90 
DGMA_MEAN_R40 1.01 0.61 1.79 1.66 0.63 
DGMA_TMEAN_R40 1.01 0.62 1.77 1.67 0.67 
DGMA_MEDIAN_R40 1.01 0.64 1.75 1.66 0.68 
DGMA_MEANBIC_R40 1.01 0.62 1.74 1.62 0.65 
DGMS_MEANAIC_R40 1.01 0.62 1.73 1.61 0.65 
DGMS_BIC_R60  0.91 2.37 1.40 0.94 
DGMS_AIC_R60  0.86 2.37 1.48 0.94 
DGMA_MEAN_R60  0.82 2.19 1.54 0.93 
DGMA_TMEAN_R60  0.84 2.09 1.51 0.94 
DGMA_MEDIAN_R60  0.83 2.09 1.47 0.94 
DGMA_MEANBIC_R60  0.82 2.17 1.48 0.93 
DGMA_MEANAIC_R60  0.82 2.17 1.48 0.93 
STEPWISE_R20 1.07 0.65 1.45 2.51 1.04 
STEPWISE_R40 0.74 0.57 1.52 1.45 0.76 
STEPWISE_R60  0.65 1.83 1.26 0.92 
 
Note: This table reports root mean squared forecast errors (RMSEs) relative to the RMSEs of the 
unobserved components-stochastic volatility model (UC-SV), over the indicated sample period. The latter is 
taken from Table 3.2 in Stock and Watson (2009). Bold indicates a relative RMSE of less than 1. Blanks 
indicate insufficient data to compute forecasts over the indicated sample period. DGMS_BIC (AIC): 
forecasts based on the BIC (AIC) minimising terminal model identified through the dynamic general-to-
specific (DGETS) algorithm. DGMA: forecasts based on averaging forecasts from terminal models 
identified through the DGETS algorithm. 5 alternative model averaging approaches are used: mean 
(DGMA_MEAN); trimmed mean (DGMA_TMEAN); median (DGMA_MEDIAN); and weighted averaging 
based on BIC (DGMA_MEANBIC) and AIC (DGMA_MEANAIC) weights. STEPWISE: forecasts based 
on model identified through dynamic single-path stepwise model selection. _R20, _R40, and _R60: indicate 
rolling estimation with a window size of 20, 40, and 60 quarters, respectively. 
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Table 1.3           
Root mean squared errors for 4-quarters ahead inflation forecasting models by sub-period, 
relative to the UC-SV model: PCE-all 

Forecast Period 1968.Q1–
1976.Q4 

1977.Q1–
1984.Q4 

1985.Q1–
1992.Q4 

1993.Q1–
2000.Q4 

2001.Q1–
2007.Q1 

Number of observations 36 32 32 32 25 
DGMS_BIC_R20 0.63 0.92 0.90 1.00 0.99 
DGMS_AIC_R20 0.63 0.91 0.90 1.03 0.99 
DGMA_MEAN_R20 0.67 0.75 0.73 0.99 0.77 
DGMA_TMEAN_R20 0.64 0.78 0.74 1.00 0.78 
DGMA_MEDIAN_R20 0.66 0.86 0.76 1.01 0.80 
DGMA_MEANBIC_R20 0.65 0.75 0.78 1.00 0.79 
DGMA_MEANAIC_R20 0.66 0.75 0.78 1.00 0.79 
DGMS_BIC_R40  0.90 1.39 1.18 0.90 
DGMS_AIC_R40  0.85 1.36 1.18 0.90 
DGMA_MEAN_R40  0.86 1.21 1.20 0.78 
DGMA_TMEAN_R40  0.87 1.18 1.17 0.77 
DGMA_MEDIAN_R40  0.87 1.16 1.18 0.77 
DGMA_MEANBIC_R40  0.86 1.22 1.18 0.79 
DGMS_MEANAIC_R40  0.86 1.22 1.18 0.79 
DGMS_BIC_R60  1.16 1.69 1.08 1.11 
DGMS_AIC_R60  1.16 1.69 1.10 1.09 
DGMA_MEAN_R60  1.27 1.75 1.09 1.22 
DGMA_TMEAN_R60  1.28 1.76 1.07 1.23 
DGMA_MEDIAN_R60  1.28 1.79 1.10 1.23 
DGMA_MEANBIC_R60  1.26 1.74 1.08 1.21 
DGMA_MEANAIC_R60  1.26 1.74 1.08 1.21 
STEPWISE_R20 0.91 0.91 1.97 1.71 1.52 
STEPWISE_R40  0.93 1.35 1.08 0.78 
STEPWISE_R60  0.97 1.16 1.24 1.25 
 
Note: This table reports root mean squared forecast errors (RMSEs) relative to the RMSEs of the unobserved 
components-stochastic volatility model (UC-SV), over the indicated sample period. The latter is taken from 
Table 3.3 in Stock and Watson (2009). Bold indicates a relative RMSE of less than 1. Blanks indicate 
insufficient data to compute forecasts over the indicated sample period. DGMS_BIC (AIC): forecasts based 
on the BIC (AIC) minimising terminal model identified through the dynamic general-to-specific (DGETS) 
algorithm. DGMA: forecasts based on averaging forecasts from terminal models identified through the 
DGETS algorithm. 5 alternative model averaging approaches are used: mean (DGMA_MEAN); trimmed 
mean (DGMA_TMEAN); median (DGMA_MEDIAN); and weighted averaging based on BIC 
(DGMA_MEANBIC) and AIC (DGMA_MEANAIC) weights. STEPWISE: forecasts based on model 
identified through dynamic single-path stepwise model selection. _R20, _R40, and _R60: indicate rolling 
estimation with a window size of 20, 40, and 60 quarters, respectively. 
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Table 1.4           
Root mean squared errors for 4-quarters ahead inflation forecasting models by sub-period, 
relative to the UC-SV model: PCE-core 

Forecast Period 1968.Q1–
1976.Q4 

1977.Q1–
1984.Q4 

1985.Q1–
1992.Q4 

1993.Q1–
2000.Q4 

2001.Q1–
2007.Q1 

Number of observations 36 32 32 32 25 
DGMS_BIC_R20 0.81 0.94 0.85 0.95 0.94 
DGMS_AIC_R20 0.82 0.94 0.84 0.92 0.94 
DGMA_MEAN_R20 0.80 0.83 0.78 0.85 0.81 
DGMA_TMEAN_R20 0.82 0.83 0.77 0.86 0.84 
DGMA_MEDIAN_R20 0.84 0.84 0.77 0.86 0.84 
DGMA_MEANBIC_R20 0.81 0.83 0.82 0.83 0.82 
DGMA_MEANAIC_R20 0.81 0.83 0.82 0.83 0.82 
DGMS_BIC_R40  1.05 1.22 1.35 1.06 
DGMS_AIC_R40  1.07 1.16 1.37 1.06 
DGMA_MEAN_R40  0.96 1.17 1.53 1.03 
DGMA_TMEAN_R40  0.97 1.14 1.54 1.05 
DGMA_MEDIAN_R40  0.97 1.13 1.54 1.03 
DGMA_MEANBIC_R40  0.95 1.14 1.50 1.04 
DGMS_MEANAIC_R40  0.94 1.14 1.49 1.04 
DGMS_BIC_R60  1.02 1.23 0.99 1.54 
DGMS_AIC_R60  1.01 1.24 1.04 1.54 
DGMA_MEAN_R60  1.15 1.55 1.13 1.60 
DGMA_TMEAN_R60  1.18 1.50 1.11 1.57 
DGMA_MEDIAN_R60  1.17 1.42 1.11 1.56 
DGMA_MEANBIC_R60  1.13 1.45 1.10 1.55 
DGMA_MEANAIC_R60  1.13 1.44 1.09 1.55 
STEPWISE_R20 0.94 1.16 1.93 2.24 2.01 
STEPWISE_R40  0.91 0.89 1.00 1.04 
STEPWISE_R60  0.77 0.91 1.04 1.31 
 
Note: This table reports root mean squared forecast errors (RMSEs) relative to the RMSEs of the 
unobserved components-stochastic volatility model (UC-SV), over the indicated sample period. The latter is 
taken from Table 3.4 in Stock and Watson (2009). Bold indicates a relative RMSE of less than 1. Blanks 
indicate insufficient data to compute forecasts over the indicated sample period. DGMS_BIC (AIC): 
forecasts based on the BIC (AIC) minimising terminal model identified through the dynamic general-to-
specific (DGETS) algorithm. DGMA: forecasts based on averaging forecasts from terminal models 
identified through the DGETS algorithm. 5 alternative model averaging approaches are used: mean 
(DGMA_MEAN); trimmed mean (DGMA_TMEAN); median (DGMA_MEDIAN); and weighted averaging 
based on BIC (DGMA_MEANBIC) and AIC (DGMA_MEANAIC) weights. STEPWISE: forecasts based 
on model identified through dynamic single-path stepwise model selection. _R20, _R40, and _R60: indicate 
rolling estimation with a window size of 20, 40, and 60 quarters, respectively. 
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Table 1.5           
Root mean squared errors for 4-quarters ahead inflation forecasting models by sub-period, 
relative to the UC-SV model: GDP deflator 

Forecast Period 1968.Q1–
1976.Q4 

1977.Q1–
1984.Q4 

1985.Q1–
1992.Q4 

1993.Q1–
2000.Q4 

2001.Q1–
2007.Q1 

Number of observations 36 32 32 32 25 
DGMS_BIC_R20 0.59 0.95 0.81 0.82 0.88 
DGMS_AIC_R20 0.59 1.01 0.79 0.82 0.85 
DGMA_MEAN_R20 0.61 0.89 0.75 0.78 0.74 
DGMA_TMEAN_R20 0.62 0.93 0.76 0.79 0.75 
DGMA_MEDIAN_R20 0.62 0.93 0.80 0.79 0.75 
DGMA_MEANBIC_R20 0.58 0.89 0.77 0.79 0.72 
DGMA_MEANAIC_R20 0.58 0.89 0.77 0.79 0.72 
DGMS_BIC_R40 0.99 0.96 1.34 1.32 0.99 
DGMS_AIC_R40 0.98 0.97 1.39 1.32 0.99 
DGMA_MEAN_R40 0.96 0.92 1.18 1.29 0.77 
DGMA_TMEAN_R40 0.99 0.93 1.20 1.26 0.77 
DGMA_MEDIAN_R40 0.99 0.93 1.22 1.26 0.79 
DGMA_MEANBIC_R40 0.96 0.92 1.20 1.29 0.76 
DGMS_MEANAIC_R40 0.96 0.92 1.20 1.28 0.76 
DGMS_BIC_R60 0.97 1.15 0.92 1.23 0.86 
DGMS_AIC_R60 0.97 1.04 0.90 1.23 0.87 
DGMA_MEAN_R60 1.01 1.05 1.26 1.13 0.99 
DGMA_TMEAN_R60 1.04 1.05 1.18 1.12 0.99 
DGMA_MEDIAN_R60 1.04 1.05 1.15 1.11 1.01 
DGMA_MEANBIC_R60 1.00 1.04 1.17 1.12 0.98 
DGMA_MEANAIC_R60 1.00 1.04 1.16 1.12 0.98 
STEPWISE_R20 0.55 1.11 1.77 1.17 1.22 
STEPWISE_R40 0.90 0.89 1.24 1.30 1.14 
STEPWISE_R60 0.99 0.82 1.27 1.24 1.05 
 
Note: This table reports root mean squared forecast errors (RMSEs) relative to the RMSEs of the 
unobserved components-stochastic volatility model (UC-SV), over the indicated sample period. The latter is 
taken from Table 3.5 in Stock and Watson (2009). Bold indicates a relative RMSE of less than 1. Blanks 
indicate insufficient data to compute forecasts over the indicated sample period. DGMS_BIC (AIC): 
forecasts based on the BIC (AIC) minimising terminal model identified through the dynamic general-to-
specific (DGETS) algorithm. DGMA: forecasts based on averaging forecasts from terminal models 
identified through the DGETS algorithm. 5 alternative model averaging approaches are used: mean 
(DGMA_MEAN); trimmed mean (DGMA_TMEAN); median (DGMA_MEDIAN); and weighted averaging 
based on BIC (DGMA_MEANBIC) and AIC (DGMA_MEANAIC) weights. STEPWISE: forecasts based 
on model identified through dynamic single-path stepwise model selection. _R20, _R40, and _R60: indicate 
rolling estimation with a window size of 20, 40, and 60 quarters, respectively. 
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Table 2  
Root mean squared errors for 4-quarters ahead inflation forecasting models, full sample, 
DGMA_MEAN relative to DGMS 
 CPI- all CPI- core PCE-all PCE-core GDP deflator 
DGMS_BIC_R20 0.91 0.90 0.88 0.92 0.97 
DGMS_AIC_R20 0.90 0.87 0.88 0.92 0.94 
DGMS_BIC_R40 0.93 1.02 0.89 0.95 0.95 
DGMS_AIC_R40 0.93 1.01 0.92 0.95 0.95 
DGMS_BIC_R60 1.04 0.97 1.05 1.13 1.02 
DGMS_AIC_R60 1.04 0.99 1.05 1.12 1.05 
 
Note: This table reports root mean squared forecast errors (RMSEs) from model averaging relative to the 
RMSEs from non-model averaging. Bold indicates a relative RMSE of less than 1. DGMS_BIC (AIC): forecasts 
based on the BIC (AIC) minimising terminal model identified through the dynamic general-to-specific 
(DGETS) algorithm. DGMA_MEAN: forecasts based on the mean of forecasts from terminal models identified 
through the DGETS algorithm. _R20, _R40, and _R60: indicate rolling estimation with a window size of 20, 40, 
and 60 quarters, respectively. 
 
 
 
 



 25 

 

Table 3 
Root mean squared errors for 4-quarters ahead inflation forecasting models, full sample, 
relative to benchmark DGMS and DGMA 
  CPI- all CPI- core PCE-all PCE-core GDP deflator 
No Sign Restrictions      
DGMS_BIC_R20 1.50 1.08 1.42 1.40 1.46 
DGMS_AIC_R20 1.57 1.03 1.55 1.72 1.45 
DGMA_MEAN_R20 1.33 0.97 1.19 1.11 1.04 
DGMA_TMEAN_R20 1.33 0.96 1.20 1.09 1.01 
DGMA_MEDIAN_R20 1.33 0.96 1.15 1.07 1.00 
DGMA_MEANBIC_R20 1.34 1.00 1.20 1.14 1.08 
DGMA_MEANAIC_R20 1.34 1.02 1.21 1.17 1.10 
Model reduction sign. level = 0.5%    
DGMS_BIC_R20 1.00 1.00 0.99 1.00 1.00 
DGMS_AIC_R20 1.00 1.00 1.00 1.00 1.00 
DGMA_MEAN_R20 1.02 1.01 1.03 0.99 1.00 
DGMA_TMEAN_R20 1.02 1.01 1.04 1.00 1.00 
DGMA_MEDIAN_R20 1.01 0.99 1.04 1.01 1.00 
DGMA_MEANBIC_R20 1.01 1.01 1.01 0.99 1.00 
DGMA_MEANAIC_R20 1.01 1.01 1.01 0.99 1.00 
Model reduction sign. level = 5%      
DGMS_BIC_R20 1.04 0.99 1.04 0.99 1.10 
DGMS_AIC_R20 1.04 0.99 1.05 1.02 1.09 
DGMA_MEAN_R20 1.05 0.94 1.12 1.02 1.10 
DGMA_TMEAN_R20 1.06 0.94 1.13 1.02 1.07 
DGMA_MEDIAN_R20 1.06 0.92 1.11 1.02 1.06 
DGMA_MEANBIC_R20 1.06 0.97 1.11 1.01 1.10 
DGMA_MEANAIC_R20 1.06 0.97 1.11 1.01 1.10 
Group deletion abs. t-value = 0.7      
DGMS_BIC_R20 1.00 1.00 1.00 1.00 1.00 
DGMS_AIC_R20 1.00 1.00 1.00 1.00 1.00 
DGMA_MEAN_R20 1.01 1.01 1.00 1.00 0.99 
DGMA_TMEAN_R20 1.01 1.01 1.00 1.00 0.99 
DGMA_MEDIAN_R20 1.01 1.01 0.99 1.01 1.00 
DGMA_MEANBIC_R20 1.00 1.00 1.00 1.00 1.00 
DGMA_MEANAIC_R20 1.00 1.00 1.00 1.00 1.00 
Group deletion abs. t-value = 0.3      
DGMS_BIC_R20 1.00 1.00 1.00 1.00 1.00 
DGMS_AIC_R20 1.00 1.00 1.00 1.00 1.00 
DGMA_MEAN_R20 1.00 1.00 1.00 0.99 1.00 
DGMA_TMEAN_R20 1.01 1.00 1.00 1.00 1.00 
DGMA_MEDIAN_R20 1.00 1.00 1.00 1.01 1.00 
DGMA_MEANBIC_R20 1.00 1.00 1.00 0.99 1.00 
DGMA_MEANAIC_R20 1.00 1.00 1.00 0.99 1.00 
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Table 3 Continued 
  CPI- all CPI- core PCE-all PCE-core GDP deflator 
No Trend      
DGMS_BIC_R20 1.02 0.97 1.01 1.00 1.04 
DGMS_AIC_R20 1.00 0.97 1.01 0.99 1.00 
DGMA_MEAN_R20 1.04 1.03 1.06 0.97 0.95 
DGMA_TMEAN_R20 1.05 1.02 1.08 0.98 0.93 
DGMA_MEDIAN_R20 1.05 1.00 1.04 0.98 0.90 
DGMA_MEANBIC_R20 1.04 1.03 1.04 0.97 0.97 
DGMA_MEANAIC_R20 1.03 1.03 1.04 0.97 0.97 
 
Note: This table reports root mean squared forecast errors (RMSEs) relative to the RMSEs of the benchmark 
DGMA and DGMS models. The benchmark models utilise 20-quarters rolling window, sign restrictions, model 
reduction significance level of 1%, and group variable deletion t-statistic absolute value of 0.5. Bold indicates a 
relative RMSE of less than 1. No Sign Restrictions: indicates that no sign restrictions are imposed on the search 
space; Model reduction sign. level: is the significance level used for model reduction; Group deletion abs. t-
value: is the t-statistic absolute value threshold used for the group deletion strategy; No Trend: indicates that 
there is no deterministic trend in the GUM specification. DGMS_BIC (AIC): forecasts based on the BIC (AIC) 
minimising terminal model identified through the dynamic general-to-specific (DGETS) algorithm. DGMA: 
forecasts based on averaging forecasts from terminal models identified through the DGETS algorithm. 5 
alternative model averaging approaches are used: mean (DGMA_MEAN); trimmed mean (DGMA_TMEAN); 
median (DGMA_MEDIAN); and weighted averaging based on BIC (DGMA_MEANBIC) and AIC 
(DGMA_MEANAIC) weights. _R20 indicate rolling estimation with a window size of 20 quarters. 
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Figure 1: Multipath model space 
 
 

 

 

 
  
  
 
 
 
 
 
 
 
 
Note: This figure has been reproduced from Doornik (2009). It shows all unique models starting from a general 
unrestricted model (GUM) with variables ABCD. 
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Figure 2: Predictors’ frequency of inclusion in terminal models 
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Figure 2 Continued: Predictors’ frequency of inclusion in terminal models 
 

 
 

Note: This figure plots the inclusion frequency (vertical axis) over time (horizontal axis) for each of the 15 
predictors in the terminal models identified by the DGETS method with a rolling window of 20 quarters using 
the CPI-all inflation. A value of 1 for the inclusion frequency implies that the predictor enters all terminal 
models.
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Appendix 

 
Table A1: Inflation predictors and sign restrictions 
 

 
Note: In the final column we show the sign that we use for the sign restriction model reduction strategy. The 
exchange rate index is defined so that an increase is indicating an appreciation of the dollar. The source of the 
data is M. Watson’s website: http://www.princeton.edu/~mwatson/ddisk/bfed_Sept2008.zip  

Variable Name Definition Transformation Sign Restriction 
UNRATE Civilian Unemployment Rate First difference - 
GDPC96 Real Gross Domestic Product Log first difference + 
INDPRO Industrial Production Index Log first difference + 

PAYEMS Total Nonfarm Payrolls: All 
Employees 

Log first difference + 

UR-5WK Unemployment Rate for Unemployed 
< 5 weeks 

First difference - 

TB_SP 1 Year Treasury Bond Rate minus 3 
Months Treasury Bill Rate 

First difference + 

PERMIT New Private Housing Units 
Authorized by Building Permit 

Log + 

AHETPI Average Hourly Earnings: Total 
Private Industries 

Log first difference + 

AHETPIR Real Average Hourly Earnings: Total 
Private Industries 

Log first difference + 

LS Labor Share Log first difference + 
TCU Capacity Utilization: Total Industry Level + 
CFNAI Chicago Fed National Activity Index Level + 
CPI_M Cleveland Fed Median CPI Inflation Level + 
CPI_TM Cleveland Fed Trimmed Mean CPI 

Inflation 
Level + 

TWEXMMTH Trade Weighted Exchange Rate 
Index: Major Currencies 

Log first difference - 
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Table A2: Terminal model summary 
 

  CPI-all CPI-core PCE-all PCE-core GDP deflator 

Number of 
Terminal 
Models  

Frequency 

Average 
Number of 
Variables 
Selected 

Frequency 

Average 
Number of 
Variables 
Selected 

Frequency 

Average 
Number of 
Variables 
Selected 

Frequency 

Average 
Number of 
Variables 
Selected 

Frequency 

Average 
Number of 
Variables 
Selected 

1 38 0.8 17 0.6 6 1.0 7 0.7 38 0.3 
2 29 1.4 15 1.3 14 1.7 16 1.2 27 0.9 
3 24 2.0 11 1.5 12 2.0 18 1.9 26 2.1 
4 20 3.7 21 2.6 24 2.5 24 2.5 15 2.7 
5 17 3.9 18 3.7 16 3.7 17 3.6 23 3.0 
6 14 4.4 12 4.2 14 3.9 11 4.0 13 4.0 
7 15 4.7 10 4.7 12 4.7 13 4.5 13 4.4 
8 7 5.4 11 5.1 5 5.4 16 4.3 11 5.1 
9 7 5.3 10 4.7 13 6.1 14 4.4 5 5.2 

10 7 6.4 7 5.9 12 5.4 11 5.4 4 6.0 
>10 29 7.8 40 7.0 38 7.8 19 6.2 34 6.7 

 
Note: This table reports the frequency at which the DGETS algorithm finds 1, 2, 3, etc. terminal models together with the average number of variables identified as being 
statistically significant. Note that the same variable can be found to be significant in more than one terminal model. Average number of variables selected refers only to the 15 
predictors, not counting lagged inflation and the trend term.    
 
 
 


