
knn

Kouzapas, D., and Yoshida, N. (2013) Globally Governed Session
Semantics. In: CONCUR 2013:Concurrency Theory, 24th International
Conference, 27-30 Aug 2013, Buenos Aires, Argentina.

Copyright © 2013 Springer Verlag

http://eprints.gla.ac.uk/101388/

Deposited on: 22 January 2015

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

Globally Governed Session Semantics

Dimitrios Kouzapas and Nobuko Yoshida

Imperial College London

Abstract. This paper proposes a new bisimulation theory based on multiparty
session types where a choreography specification governs the behaviour of ses-
sion typed processes and their observer. The bisimulation is defined with the ob-
server cooperating with the observed process in order to form complete global
session scenarios and usable for proving correctness of optimisations for globally
coordinating threads and processes. The induced bisimulation is strictly more
fine-grained than the standard session bisimulation. The difference between the
governed and standard bisimulations only appears when more than two inter-
leaved multiparty sessions exist. The compositionality of the governed bisimilar-
ity is proved through the soundness and completeness with respect to the gov-
erned reduction-based congruence.

1 Introduction

Modern society increasingly depends on distributed software infrastructures such as
the backend of popular Web portals, global E-science cyberinfrastructure, e-healthcare
and e-governments. An application in these environments is typically organised into
many components which communicate through message passing. Thus an application is
naturally designed as a collection of interaction scenarios, or multiparty sessions, each
following an interaction pattern, or choreographic protocol. The theories of multiparty
session types [11] capture these two natural abstraction units, representing the situation
where two or more multiparty sessions (choreographies) can interleave for a single point
application, with each message clearly identifiable as belonging to a specific session.

This paper introduces a new behavioural theory which can reason about distributed
processes globally controlled by multiple choreographic sessions. Typed behavioural
theory has been one of the central topics of the study of the π-calculus throughout its
history, for example, in order to reason about various encodings into the typed π-calculi
[16, 18]. Our theory treats the mutual effects of multiple choreographic sessions which
are shared among distributed participants as their common knowledges or agreements,
reflecting the origin of choreographic frameworks [5]. These features make our theory
distinct from any type-based bisimulations in the literature and the theory applicable to
real choreographic usecase from a large-scale distributed system. Since our bisimula-
tion is based on the regulation of conversational behaviours of distributed components
by global specifications, we call our bisimulation globally governed bisimulation.

To illustrate the key idea, we first explain the mechanisms of multiparty session
types [11]. Let us consider a simple protocol where participant 1 sends a message of
type bool to participant 2. To develop the code for this protocol, we start by specifying

the global type [11] as G1 = 1→ 2 : 〈bool〉.end where→ signifies the flow of commu-
nication and end denotes protocol termination. With agreement on G1 as a specification
for participant 1 and participant 2, each program can be implemented separately. Then
for type-checking, G1 is projected into local session types: one local session type from
1’s point of view, [2]!〈bool〉 (output to 2 with bool-type), and another from 2’s point
of view, [1]?〈bool〉 (input from 1 with bool-type), against which both processes are
checked to be correct.

Server1 Server2 Client3

s1[1][3]!〈v〉

s2[1][2]!〈w〉

s1[2][3]!〈v〉

Server1 Server2 Client3

s1[1][3]!〈v〉

s2[1][2]!〈w〉

s1[2][3]!〈v〉

Resource Managment Example: (a) before optimisation; (b) after optimisation

Now we explain how our new theory can reason about an optimisation of choreography
interactions (a simplified usecase (UC.R2.13 “Acquire Data From Instrument”) from
[1]). Consider the two global types between three participants (1,2,3):

Ga = 1→ 3 : 〈ser〉.2→ 3 : 〈ser〉.end, Gb = 1→ 2 : 〈sig〉.end
and a scenario in the diagram (a) where Client3 (participant 3) uses two services, the
first from Server1 (participant 1) and Server2 (participant 2), and Server1 sends an in-
ternal signal to Server2. The three parties belonging to these protocols are implemented
as:

P1 = a[1](x).b[1](y).x[3]!〈v〉;y[2]!〈w〉;0 P2 = a[2](x).b[2](y).(y[1]?(z);0 | x[3]!〈v〉;0)
P3 = a[3](x).x[1]?(z);x[2]?(y);0

where session name a establishes the session corresponding to Ga. Client3 (P3) initiates
a session involving three processes as the third participant by a[3](x): Service1 (P1) and
Service2 (P2) participate to the session a[1](x) and a[2](x), respectively. Similarly the
session corresponding to Gb is established between Service1 and Service2.

Since from Client3, the internal signal is invisible, we optimise Server2 to a single
thread to avoid an unnecessary thread creation as R2 = a[2](x).b[2](y).y[1]?(z);x[3]!〈v〉;0
in in the diagram (b). Note that both P2 and R2 are typable under Ga and Gb. Obviously,
in the untyped setting, P1 | P2 and P1 | R2 are not bisimilar since in P2, the output action
x[3]!〈v〉 can be observed before the input action y[1]?(z) happens. However, with the
global constraints given by Ga and Gb, a service provided by Server2 is only available
to Client3 after Server1 sends a signal to Server2, i.e. action x[3]!〈v〉 can only happen
after action y[1]?(z) in P2. Hence P1 | P2 and P1 | R2 are not distinguishable by Client3
and the thread optimisation of R2 is correct.

On the other hand, if we change the global type Ga as:
G′a = 2→ 3 : 〈ser〉.1→ 3 : 〈ser〉.end

then R2 can perform both the output to Client3 and the input from Server1 concurrently

2

since G′a states that Client3 can receive the message from Server2 first. Hence P1 | P2
and P1 | R2 are no longer equivalent.

The key point to make this difference possible is to observe the behaviour of pro-
cesses together with the information provided by the global types. The global types can
define additional knowledge about how the observer (the client in the above example)
will collaborate with the observed processes so that different global types (i.e. global
witnesses) can induce the different equivalences.
Contributions. This paper introduces two kinds of typed bisimulations based on mul-
tiparty session types. The first bisimulation is solely based on local (endpoint) types
defined without global information, hence it resembles the standard linearity-based
bisimulation. The second one is a globally governed session bisimilarity which uses
multiparty session types as information for a global witness. We prove that each co-
incides with a corresponding standard contextual equivalence [10] (Theorems 3.1 and
4.1). The governed bisimulation gives more fine-grained equivalences than the locally
typed bisimulation. We identify the condition when the two semantics exactly coincide
(Theorem 4.2). Interestingly our theorem (Theorem 4.3) shows this difference appears
only when processes are running under more than two interleaved global types. This
feature makes the theory applicable to real situations where multiple choreographies
are used in a single, large application. We demonstrate the use of governed bisimu-
lation through the running example, which is applicable to a thread optimisation of a
real usecase from a large scale distributed system [1]. The appendix includes auxiliary
definitions, the full proofs and a full derivation of a usecase from [1].

Acknowledgement. The work has been partially sponsored by the Ocean Observatories Ini-
tiative and EPSRC EP/K011715/1, EP/K034413/1 and EP/G015635/1.

2 Synchronous Multiparty Sessions

This section defines a synchronous version of the multiparty session types. The syntax
and typing follows [4] except we eliminate queues for asynchronous communication.
We chose synchrony since it allows the simplest formulations for demonstrating the
essential concepts of bisimulations. The extension to asynchrony is given in [7].
Syntax Below we define the syntax of the synchronous multiparty session calculus.

P ::= u[p](x).P Request

| u[p](x).P Accept

| c[p]!〈e〉;P Sending

| c[p]?(x);P Receiving

| c[p]⊕ l;P Selection

| c[p]&{li : Pi}i∈I Branching

u ::= x | a Identifier

n ::= s | a Name

e ::= v | x | e and e′ | e = e′ | . . .

| if e then P else Q Conditional

| P | Q Parallel

| 0 Inaction

| (ν n)P Hiding

| µX .P Recursion

| X Variable

c ::= s[p] | x Session

v ::= a | tt | ff | s[p] Value

Expression

Note that expressions includes name matching (n = n). We call p,p′,q, . . . (rang-
ing over the natural numbers) the participants. For the primitives for session initiation,

3

u[p](x).P initiates a new session through an identifier u (which represents a shared in-
teraction point) with the other multiple participants, each of shape u[p](x).Qq where
1 ≤ q ≤ p− 1. The (bound) variable x is the channel used to do the communications.
Session communications (communications that take place inside an established ses-
sion) are performed using the next two pairs: the sending and receiving of a value and
the selection and branching (where the former chooses one of the branches offered
by the latter). Process c[p]!〈e〉;P sends a value to p; accordingly, process c[p]?(x);P
denotes the intention of receiving a value from the participant p. The same holds for
selection/branching. Process 0 is the inactive process. Other processes are standard.
We say that a process is closed if it does not contain free variables. fn(P)/bn(P) and
fv(P)/bv(P) denote a set of free/bound names and free/bound variables, respectively.
We use the standard structure rules (denoted by ≡) including µX .P≡ P{µX .P/X}.
Operational semantics Operational semantics of the calculus are defined below.

a[1](x).P1 |Πi={2,..,n}a[i](x).Pi −→ (ν s)(P1{s[1]/x} |Πi={2,..,n}Pi{s[i]/x}) [Link]

s[p][q]!〈e〉;P | s[q][p]?(x);Q −→ P | Q{v/x} (e ↓ v) [Comm]

s[p][q]⊕ lk;P | s[q][p]&{li : Pi}i∈I −→ P | Pk (k ∈ I) [Label]

if e then P else Q−→ P (e ↓ tt) if e then P else Q−→ Q (e ↓ ff) [If]

P−→ P′

(ν n)P−→ (ν n)P′
[Res]

P−→ P′

P | Q−→ P′ | Q
[Par]

P≡ P′ −→ Q′ ≡ Q
P−→ Q

[Str]

Rule [Link] defines synchronous session initiation. All session roles must be present
to synchronously reduce each role p on a fresh session name s[p]. Rule [Comm] is for
sending a value to the corresponding receiving process where e ↓ v means expression
e evaluates to value v. The interaction between selection and branching is defined via
rule [Label]. Other rules are standard. We write→→ for (−→∪≡)∗.
Global types, ranged over by G,G′, . . . describe the whole conversation scenario of a

multiparty session as a type signature. Its grammar is given below.
Global G ::= p→ q : 〈U〉.G′ exchange

| p→ q : {li : Gi}i∈I branching
| µt.G recursion
| t variable
| end end

Exchange U ::= S | T
Sort S ::= bool | 〈G〉

Local T ::= [p]!〈U〉;T send
| [p]?(U);T receive
| [p]⊕{li : Ti}i∈I selection
| [p]&{li : Ti}i∈I branching
| µt.T recursion
| t variable
| end end

The global type p→ q : 〈U〉.G′ says that participant p sends a message of type U
to the participant q and then interactions described in G′ take place. Exchange types
U,U ′, ... consist of sorts types S,S′, . . . for values (either base types or global types),
and local session types T,T ′, . . . for channels (defined in the next paragraph). Type
p→ q : {li : Gi}i∈I says participant p sends one of the labels li to q. If l j is sent, in-
teractions described in G j take place. In both cases we assume p 6= q. Type µt.G is a
recursive type, assuming type variables (t, t′, . . .) are guarded in the standard way, i.e.,
type variables only appear under some prefix. We take an equi-recursive view of recur-
sive types, not distinguishing between µt.G and its unfolding G{µt.G/t}.We assume
that G in the grammar of sorts has no free type variables. Type end represents the ter-
mination of the session.

4

Local types correspond to the communication actions, representing sessions from the
view-points of single participants. The send type [p]!〈U〉;T expresses the sending to
p of a value of type U , followed by the communications of T . The selection type
[p]⊕{li : Ti}i∈I represents the transmission to p of a label li chosen in the set {li | i ∈ I}
followed by the communications described by Ti. The receive and branching are dual.
Other types are the same as global types.

The relation between global and local types is formalised by the standard projection
function [11]. For example, (p′→ q : 〈U〉.G)dp is defined as: [q]!〈U〉;(Gdp) if p = p′,
[p′]?(U);(Gdp) if p = q and Gdp otherwise. Then the projection set of s : G is defined
as proj(s : G) = {s[p] : Gdp | p ∈ roles(G)} where roles(G) denotes the set of the
roles appearing in G.
Typing system The typing judgements for expressions and processes are of the shapes:

Γ ` e : S and Γ ` P.∆

where Γ is the standard environment which associates variables to sort types, shared
names to global types and process variables to session environments; and ∆ is the
session environment which associates channels to session types. Formally we define:
Γ ::= /0 | Γ ·u : S | Γ ·X : ∆ and ∆ ::= /0 | ∆ · c : T , assuming we can write
Γ · u : S if u 6∈ dom(Γ). We extend this to a concatenation for typing environments as
∆ ·∆ ′ = ∆ ∪∆ ′. Typing ∆ is coherent with respect to session s (notation co(∆(s))) if
for all s[p] : Tp,s[q] : Tq ∈ ∆ , Tp and Tq are dual each other (it is given by exchanging
! by ? and ⊕ by & [9]). A typing ∆ is coherent (notation co(∆)) if it is coherent with
respect to all s in its domain. The typing judgement Γ ` P.∆ is coherent if co(∆).

The typing rules are essentially identical to the communication typing system for
programs in [4] (since we do not require queues). The rest of the paper can be read
without knowing the typing system.
Type soundness Next we define the reduction semantics for local types. Since session
environments represent the forthcoming communications, by reducing processes ses-
sion environments can change. This can be formalised as in [4, 11] by introducing the
notion of reduction of session environments, whose rules are:

1. {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} −→ {s[p] : T · s[q] : T ′}.
2. {s[p] : [q]⊕{li : Ti}i∈I · s[q] : [p]&{l j : T ′j} j∈J} −→ {s[p] : Tk · s[q] : T ′k} I ⊆ J,k ∈ I.
3. ∆ ∪∆ ′ −→ ∆ ∪∆ ′′ if ∆ ′ −→ ∆ ′′.

We write→→=−→∗. Note that ∆ →→ ∆ ′ is non-deterministic (i.e. not always confluent)
by the second rule. Then the typing system satisfies the subject reduction theorem [4]:
if Γ ` P.∆ is coherent and P→→ P′ then Γ ` P′ .∆ ′ is coherent with ∆ →→ ∆ ′.

3 Synchronous Multiparty Session Semantics

This section presents the standard typed behavioural theory for the synchronous multi-
party sessions.
Labels We use the following labels (`,`′, ...):

` ::= a[A](s) | a[A](s) | s[p][q]!〈v〉 | s[p][q]!(a)
| s[p][q]!(s′[p′]) | s[p][q]?〈v〉 | s[p][q]⊕ l | s[p][q]&l | τ

5

〈Req〉 a[p](x).P
a[{p}](s)−→ P{s[p]/x} 〈Acc〉 a[p](x).P

a[{p}](s)−→ P{s[p]/x}

〈Send〉 s[p][q]!〈e〉;P
s[p][q]!〈v〉−→ P (e ↓ v) 〈Rcv〉 s[p][q]?(x);P

s[p][q]?〈v〉−→ P{v/x}

〈Sel〉 s[p][q]⊕ l;P
s[p][q]⊕l−→ P 〈Bra〉 s[p][q]&{li : Pi}i∈I

s[p][q]&lk−→ Pk

〈Tau〉 P `−→ P′ Q `′−→ Q′ `� `′

P | Q τ−→ (ν bn(`)∩bn(`′))(P′ | Q′)
〈Par〉P

`−→ P′ bn(`)∩fn(Q) = /0

P | Q `−→ P′ | Q

〈Res〉P
`−→ P′ n /∈ fn(`)

(ν n)P `−→ (ν n)P′
〈OpenS〉 P

s[p][q]!〈s′[p′]〉−→ P′

(ν s′)P
s[p][q]!(s′[p′])−→ P′

〈OpenN〉 P
s[p][q]!〈a〉−→ P′

(ν a)P
s[p][q]!(a)−→ P′

〈Alpha〉P≡α P′ P′ `−→ Q′

P `−→ Q
〈AcPar〉

P1
a[A](s)−→ P′1 P2

a[A′](s)−→ P′2 A∩A′ = /0

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈ReqPar〉
P1

a[A](s)−→ P′1 P2
a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ not complete w.r.t max(A′)

P1 | P2
a[A∪A′](s)−→ P′1 | P′2

〈TauS〉
P1

a[A](s)−→ P′1 P2
a[A′](s)−→ P′2 A∩A′ = /0, A∪A′ complete w.r.t max(A′)

P1 | P2
τ−→ (ν s)(P′1 | P′2)

We omit the synmetric case of 〈Par〉 and conditionals.

Fig. 1. Labelled transition system for processes

A role set A is a set of multiparty session types roles. Labels a[A](s) and a[A](s) define
the accept and request of a fresh session s by roles in set A respectively. Actions on
session channels are denoted with labels s[p][q]!〈v〉 and s[p][q]?〈v〉 for output and input
of value v from p to q on session s. Bound output values can be shared channels or
session roles (delegation). s[p][q]⊕ l and s[p][q]&l define the selection and branching
respectively. Label τ is the standard hidden transition.

Dual label definition is used to define the parallel rule in the label transition system:
s[p][q]!〈v〉 � s[q][p]?〈v〉 s[p][q]!(v) � s[q][p]?〈v〉 s[p][q]⊕ l � s[q][p]&l

Dual labels are input and output (resp. selection and branching) on the same session
channel and on complementary roles. For example, in s[p][q]!〈v〉 and s[q][p]?〈v〉, role
p sends to q and role q receives from p. Another important definition for the session
initiation is the notion of the complete role set. We say the role set A is complete with
respect to n if n = max(A) and A = {1,2, . . . ,n}. The complete role set means that all
global protocol participants are present in the set. For example, {1,3,4} is not complete,
but {1,2,3,4} is. We use fn(`) and bn(`) to denote a set of free and bound names in `
and set n(`) = bn(`)∪fn(`).
Labelled transition system for processes Figure 1 gives the untyped labelled tran-
sition system. Rules 〈Req〉 and 〈Acc〉 define the accept and request actions for a fresh
session s on role {p}. Rules 〈Send〉 and 〈Rcv〉 give the send and receive respectively for
value v from role p to role q in session s. Rules 〈Sel〉 and 〈Bra〉 define selecting and
branching labels.

6

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→ (Γ ,∆ · {s[i] : Gdi}i∈A)

Γ (a) = 〈G〉,s fresh implies (Γ ,∆)
a[A](s)−→ (Γ ,∆ · {s[i] : Gdi}i∈A)

Γ ` v : U,s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!〈v〉−→ (Γ ,∆ · s[p] : T)

s[q] /∈ dom(∆),a 6∈ dom(Γ) implies (Γ ,∆ · s[p] : [q]!〈U〉;T)
s[p][q]!(a)−→ (Γ ·a : U,∆ · s[p] : T)

Γ ` v : U,s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]?(U);T)
s[p][q]?〈v〉−→ (Γ ,∆ · s[p] : T)

a 6∈ dom(Γ),s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]?(U);T)
s[p][q]?〈a〉−→ (Γ ·a : U,∆ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ ,∆ · s′[p′] : T ′ · s[p] : [q]!〈T ′〉;T)
s[p][q]!〈s′[p′]〉−→ (Γ ,∆ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]!〈T ′〉;T)
s[p][q]!(s′[p′])−→ (Γ ,∆ · s[p] : T · {s′[pi] : Ti})

s[q],s′[p′] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]?(T ′);T)
s[p][q]?〈s′[p′]〉−→ (Γ ,∆ · s′[p′] : T ′ · s[p] : T)

s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]⊕{li : Ti}i∈I)
s[p][q]⊕lk−→ (Γ ,∆ · s[p] : Tk)

s[q] /∈ dom(∆) implies (Γ ,∆ · s[p] : [q]&{li : Ti}i∈I)
s[p][q]&lk−→ (Γ ,∆ · s[p] : Tk)

∆ −→ ∆ ′ or ∆ = ∆ ′ implies (Γ ,∆)
τ−→ (Γ ,∆ ′)

Fig. 2. Labelled Transition Relation for Environments

The last three rules are for collecting and synchronising the multiparty participants
together. Rule 〈AccPar〉 accumulates the accept participants and records them into role
set A. Rule 〈ReqPar〉 accumulates the accept participants and the request participant
into role set A. Note that the request action role set always includes the maximum role
number among the participants. Finally, rule 〈TauS〉 checks that a role set is complete,
thus a new session can be created under the τ-action (synchronisation). Other rules are
standard. See Example 3.1. We write =⇒ for the reflexive and transitive closure of−→,
`

=⇒ for the transitions =⇒ `−→=⇒ and
ˆ̀

=⇒ for `
=⇒ if ` 6= τ otherwise =⇒.

Typed labelled transition relation We define the typed LTS on the basis of the untyped
one. This is realised by introducing the definition of an environment labelled transition
system, defined in Figure 2. (Γ ,∆)

`−→ (Γ ′,∆ ′) means that an environment (Γ ,∆)
allows an action to take place, and the resulting environment is (Γ ′,∆ ′).

The intuition for this definition is that observables on session channels occur when
the corresponding endpoint is not present in the linear typing environment ∆ , and the
type of an action’s object respects the environment (Γ ,∆). In the case when new names
are created or received, the environment (Γ ,∆) is extended.

The first rule says that reception of a message via a is possible when a’s type 〈G〉 is
recorded into Γ and the resulting session environment records projected types from G
({s[i] : Gdi}i∈A). The second rule is for the send of a message via a and it is dual to the
first rule. The next four rules are free value output, bound name output, free value input
and name input. Rest of rules are free session output, bound session output, and session
input as well as selection and branching rules. The bound session output records a set
of session types s′[pi] at opened session s′. The final rule (`= τ) follows the reduction
rules for linear session environment defined in § 2 (∆ = ∆ ′ is the case for the reduction
at hidden sessions). Note that if ∆ already contains destination (s[q]), the environment
cannot perform the visible action, but only the final τ-action.

7

The typed LTS requires that a process can perform an untyped action ` and that its
typing environment (Γ ,∆) can match the action `.

Definition 3.1 (Typed transition). Typed transition relation is defined as Γ1 ` P1 .

∆1
`−→ Γ2 ` P2 .∆2 if (1) P1

`−→ P2 and (2) (Γ1,∆1)
`−→ (Γ2,∆2) with Γi ` Pi .∆i.

Synchronous multiparty behavioural theory We first define a relation R as typed
relation if it relates two closed, coherent typed terms Γ ` P1 .∆1 R Γ ` P2 .∆2. We
often write Γ ` P1 .∆1 R P2 .∆2.

Next we define the barb [2]: we write Γ `P.∆ ↓s[p][q] if P≡ (ν ãs̃)(s[p][q]!〈v〉;R |Q)
with s /∈ s̃ and s[q] /∈ dom(∆); and Γ ` P.∆ ↓a if P≡ (ν ãs̃)(a[n](s).R | Q) with a /∈ ã.
Then we write m for either a or s[p][q]. We define Γ ` P .∆ ⇓m if there exists Q such
that P→→ Q and Γ ` Q.∆ ′ ↓m.

We write ∆1
 ∆2 if there exists ∆ such that ∆1→→ ∆ and ∆2→→ ∆ . We now define
the contextual congruence based on the barb and [10].

Definition 3.2 (Reduction congruence). A typed relation R is reduction congruence
if it satisfies the following conditions for each Γ ` P1 .∆1 R P2 .∆2 with ∆1
 ∆2.

1. Γ ` P1 .∆1 ⇓m iff Γ ` P2 .∆2 ⇓m
2. Whenever Γ ` P1 .∆1 R P2 .∆2 holds, P1→→ P′1 implies P2→→ P′2 such that Γ `

P′1 .∆ ′1 R P′2 .∆ ′2 holds with ∆ ′1
 ∆ ′2.
3. For all closed context C, such that Γ `C[P′1].∆ ′1 and Γ `C[P′2].∆ ′2 where ∆ ′1
∆ ′2,

Γ `C[P1].∆ ′1 R Γ `C[P2].∆ ′2.

The union of all reduction congruence relations is denoted as ∼=s.

Definition 3.3 (Synchronous multiparty session bisimulation). A typed relation R
over closed processes is a (weak) synchronous multiparty session bisimulation or often
a synchronous bisimulation if, whenever Γ ` P1 .∆1 R P2 .∆2, it holds:

1. Γ ` P1 .∆1
`−→ Γ ′ ` P′1 .∆ ′1 implies Γ ` P2 .∆2

ˆ̀
=⇒ Γ ′ ` P′2 .∆ ′2 such that Γ ′ `

P′1 .∆ ′1 R P′2 .∆ ′2.
2. The symmetric case.

The maximum bisimulation exists which we call synchronous bisimilarity, denoted by
≈s. We sometimes leave environments implicit, writing e.g. P ≈s Q. We also write ≈
for untyped synchronous bisimilarity which is defined by the untyped LTS in Figure 1
but without the environment LTS in Figure 2.

Theorem 3.1 (Soundness and completeness). ∼=s = ≈s.

Example 3.1 (Synchronous multiparty bisimulation). We use the running example from
§ 1. First we explain the session initialisation from Figure 1. By 〈Acc〉 and 〈Req〉,

P1
a[{1}](s1)−→ P′1 = b[1](y).s1[1][3]!〈v〉;y[2]!〈w〉;0

P2
a[{2}](s1)−→ P′2 = b[2](y).(y[1]?(z);0 | s1[2][3]!〈v〉;0) P3

a[{3}](s1)−→ P′3 = s1[3][1]?(z);s1[3][2]?(y);0

8

with

Γ ` P′1 . s1[1] : [3]!〈U〉;end, Γ ` P′2 . s1[2] : [3]!〈U〉;end, Γ ` P′3 . s1[3] : [1]?(U); [2]?(U);end

By 〈AccPar〉, we have P1 | P2
a[{1,2}](s1)−→ P′1 | P′2. We have another possible initialisation:

P1 | P3
a[{1,3}](s1)−→ P′1 | P′3. From both of them, if we compose another process, the set

{1,2,3} becomes complete so that by synchronisation 〈TauS〉, Γ ` P1 | P2 | P3 . /0 τ−→
Γ ` (ν s1)(P′1 | P′2 | P′3). /0. Further we have:

Γ ` P′1 | P′2 .∆0
τ−→

Γ ` (ν s2)(s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(z);0 | s1[2][3]!〈v〉;0) = Q1 .∆0

with ∆0 = s1[1] : [3]!〈U〉;end · s1[2] : [3]!〈U〉;end. Then

Γ ` Q1 | P′3 .∆0 · s1[3] : [1]?(U); [2]?(U);end≈s 0. s1[1] : end · s1[2] : end · s1[3] : end

since (Γ ,∆) 6 `−→ for any ` 6= τ with ∆ = ∆0 · s1[3] : [1]?(U); [2]?(U);end (by the condi-

tion of Line 3 in Figure 2). However by the untyped LTS, Q1 |P′3 6≈ 0 since Q1 |P′3
s1[1][3]!〈v〉−→ .

4 Globally Governed Behavioural Theory

We introduce the semantics for globally governed behavioural theory. In the previous
section, the local typing (∆) constrains the untyped LTS to give rise to a local typed
LTS. In a multiparty distributed environment, communications follow the global proto-
col, which controls both an observed process and its observer. The local typing is not
sufficient to maintain the consistency of transitions of a process with respect to a global
protocol. In this section we refine the environment LTS with a global environment E to
give a more fine-grained control over the LTS of the processes.
Global environments and configurations We define a global environment (E,E ′, ...)
as a mapping from session names to global types.

E ::= E · s : G | /0

The projection definition is extended to include E as proj(E) =
⋃

s:G∈E proj(s : G).
We define a labelled reduction relation over global environments which corresponds

to ∆ −→ ∆ ′ defined in § 2. We use the labels λ ∈ {s : p→ q : U,s : p→ q : l} to annotate
reductions over global environments. We define out(λ) and inp(λ) as out(s : p→ q :
U) = out(s : p→ q : l) = p and as inp(s : p→ q : U) = inp(s : p→ q : l) = q and p∈ `
if p ∈ out(`)∪ inp(`). We often omit the label λ by writing −→ for λ−→ and −→∗

for (λ−→)∗. The first rule is the axiom for the input and output interaction between two
parties; the second rule is for the choice; the third and forth rules formulate the case that
the action λ can be performed under p→ q if p and q are not related to the participants
in λ ; and the fifth rule is a congruent rule.

{s : p→ q : 〈U〉.G} s:p→q:U−→ {s : G} {s : p→ q : {li : Gi}i∈I}
s:p→q:lk−→ {s : Gk}

9

{s : G} λ−→ {s : G′} p,q /∈ λ

{s : p→ q : 〈U〉.G} λ−→ {s : p→ q : 〈U〉.G′}

{s : Gi}
λ−→ {s : G′i} i ∈ I, p,q /∈ λ

{s : p→ q : {li : Gi}i∈I}
λ−→ {s : p→ q : {li : G′i}i∈I}

E λ−→ E ′

E ·E0
λ−→ E ′ ·E0

As a simple example of the above LTS, consider s : p→ q : 〈U1〉.p′→ q′ : {l1 : end, l2 :
p′→ q′ : 〈U2〉.end}. Since p,q,p′,q′ are pairwise distinct, we can apply the second and

third rules to obtain: s : p→ q : 〈U1〉.p′→ q′ : {l1 : end, l2 : p′→ q′ : 〈U2〉.end}
s:p′→q′:l1−→

s : p→ q : 〈U1〉.end
Next we introduce the governance judgement which controls the behaviour of pro-

cesses by the global environment.

Definition 4.1 (Governance judgement). Let Γ ` P.∆ be coherent. We write E,Γ `
P.∆ if ∃E ′ ·E −→∗ E ′ and ∆ ⊆ proj(E ′).

The global environment E records the knowledge of both the environment (∆) of the
observed process P and the environment of its observer. The side conditions ensure that
E is coherent with ∆ : there exist E ′ reduced from E whose projection should cover the
environment of P (since E should include the observer’s information together with the
observed process information recorded into ∆).

Next we define the LTS for well-formed environment configurations.

Definition 4.2 (Environment configuration). We write (E,Γ ,∆) if ∃E ′ · E −→∗ E ′

and ∆ ⊆ proj(E ′).

Figure 3 defines a LTS over environment configurations that refines the LTS over envi-
ronments (i.e (Γ ,∆)

`−→ (Γ ′,∆ ′)) in § 3.
Each rule requires a corresponding environment transition (Figure 2 in § 3) and

a corresponding labelled global environment transition in order to control a transition
following the global protocol. [Acc] is the rule for accepting a session initialisation so
that it creates a new mapping s : G which matches Γ in a governed environment E. [Req]
is the rule for requesting a new session and it is dual to [Acc].

The next seven rules are the transition relations on session channels and we assume
the condition proj(E1)⊇ ∆ to ensure the base action of the environment matches one
in a global environment. [Out] is a rule for the output where the type of the value and
the action of (Γ ,∆) meets those in E. [In] is a rule for the input and dual to [Out].
[ResN] is a scope opening rule for a name so that the environment can perform the
corresponding type 〈G〉 of a. [ResS] is a scope opening rule for a session channel which
creates a set of mappings for the opened session channel s′ corresponding to the LTS
of the environment. [Sel] and [Bra] are the rules for selection and branching, which is
similar to [Out] and [In]. In [Tau] rule, we refined the reduction relation on ∆ in § 2 as:

1. {s[p] : [q]!〈U〉;T · s[q] : [p]?(U);T ′} s:p→q:U−→ {s[p] : T · s[q] : T ′}.
2. {s[p] : [q]⊕{li : Ti}i∈I ·s[q] : [p]&{l j : T ′j} j∈J}

s:p→q:lk−→ {s[p] : Tk ·s[q] : T ′k} I⊆ J,k∈ I.

3. ∆ ∪∆ ′
λ−→ ∆ ∪∆ ′′ if ∆ ′

λ−→ ∆ ′′.

10

[Acc]Γ ` a : 〈G〉 (Γ ,∆1)
a[A](s)−→ (Γ ,∆2)

(E,Γ ,∆1)
a[A](s)−→ (E · s : G,Γ ,∆2)

[Req]Γ ` a : 〈G〉 (Γ ,∆1)
a[A](s)−→ (Γ ,∆2)

(E,Γ ,∆1)
a[A](s)−→ (E · s : G,Γ ,∆2)

[Out]Γ ` v : U (Γ ,∆1)
s[p][q]!〈v〉−→ (Γ ,∆2) E1

s:p→q:U−→ E2

(E1,Γ ,∆1)
s[p][q]!〈v〉−→ (E2,Γ ,∆2)

[In] (Γ ,∆1)
s[p][q]?〈v〉−→ (Γ · v : U,∆2) E1

s:q→p:U−→ E2

(E1,Γ ,∆1)
s[p][q]?〈v〉−→ (E2,Γ · v : U,∆2)

[ResN]

(Γ ,∆1)
s[p][q]!(a)−→ (Γ ·a : 〈G〉,∆2)

E1
s:q→p:〈G〉−→ E2

(E1,Γ ,∆1)
s[p][q]!(a)−→ (E2,Γ ·a : 〈G〉,∆2)

[ResS]

(Γ ,∆1)
s[p][q]!(s′[p′])−→ (Γ ,∆2 · {s′[pi] : Ti})

E1
s:q→p:T−→ E2 · ∀i.Gdpi = Ti

(E1,Γ ,∆1)
s[p][q]!(s′[p′])−→ (E2 · s′ : G,Γ ,∆2 · {s′[pi] : Ti})

[Sel] (Γ ,∆1)
s[p][q]⊕l−→ (Γ ,∆2) E1

s:p→q:l−→ E2

(E1,Γ ,∆1)
s[p][q]⊕l−→ (E2,Γ ,∆2)

[Bra] (Γ ,∆1)
s[p][q]&l−→ (Γ ,∆2) E1

s:q→p:l−→ E2

(E1,Γ ,∆1)
s[p][q]&l−→ (E2,Γ ,∆2)

[Tau]
(∆1 = ∆2, E1 = E2)∨ (∆1

λ−→ ∆2, E1
λ−→ E2)

(E1,Γ ,∆1)
τ−→ (E2,Γ ,∆2)

[Inv]
E1 −→∗ E ′1 (E ′1,Γ1,∆1)

`−→ (E2,Γ2,∆2)

(E1,Γ1,∆1)
`−→ (E2,Γ2,∆2)

Fig. 3. The LTS for the environment configuations

[Inv] is the key rule: the global environment E1 reduces to E ′1 to perform the observer’s
actions, hence the observed process can perform the action w.r.t. E ′1. Hereafter we write
−→ for τ−→.

Example 4.1 (LTS for environment configuration). Let E = s : p → q : 〈U〉.p → q :
〈U〉.G, Γ = v : U and ∆ = s[p] : [q]!〈U〉;Tp with Gdp= Tp, Gdq= Tq and roles(G) =
{p,q}. Then (E,Γ ,∆) is an environment configuration since if E −→E ′ then proj(E ′)⊃
∆ because E

s:p→q:U−→ s : p→ q : 〈U〉.G, proj(s : p→ q : 〈U〉.G) = s[p] : [q]!〈U〉;Tp ·s[q] :
[p]?(U);Tq and proj(s : p→ q : 〈U〉.G) ⊃ ∆ . Then we can apply [Out] to s : p→ q :

〈U〉.G s:p→q:U−→ s : G and (Γ ,s[p] : [q]!〈U〉;Tp)
s[p][q]!〈v〉−→ (Γ ,s[p] : Tp) to obtain (s : p→

q : 〈U〉.G,Γ ,∆)
s[p][q]!〈v〉−→ (s : G,Γ ,s[p] : Tp). By this and E −→ s : p→ q : 〈U〉.G, using

[Inv], we can obtain (E,Γ ,∆)
s[p][q]!〈v〉−→ (s : G,Γ ,s[p] : Tp), as required.

Governed reduction-closed congruency To define the reduction-closed congruency,
we first refine the barb, which is controlled by the global witness where observables of
a configuration are defined with the global environment of the observer.

(E,Γ ,∆ · s[p] : [q]!〈U〉;T) ↓s[p][q] if s[q] /∈ dom(∆),∃E ′ ·E −→∗ E ′
s:p→q:U−→ ,∆ ⊆ proj(E ′)

(E,Γ ,∆ · s[p] : [q]⊕{li : Ti}i∈I) ↓s[p][q] if s[q] /∈ dom(∆),∃E ′ ·E −→∗ E ′
s:p→q:lk−→ ,k ∈ I,∆ ⊆ proj(E ′),

(E,Γ ,∆) ↓a if a ∈ dom(Γ)

We write (Γ ,∆ ,E) ⇓m if (Γ ,∆ ,E)−→∗ (Γ ,∆ ′,E ′) and (Γ ,∆ ′,E ′) ↓m.
Let us write T1 v T2 if the syntax tree of T2 includes T1. For example, [q]?(U ′);T v

[p]!〈U〉; [q]?(U ′);T . Then we define: E1tE2 = {Ei(s) | E j(s)v Ei(s), i, j ∈ {1,2}, i 6=

11

j}∪E1 \dom(E2)∪E2 \dom(E1). As an example of E1tE2, let us define:

E1 = s1 : p→ q : 〈U1〉.p′→ q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p→ q : 〈W2〉.end
E2 = s1 : p→ q : 〈U3〉.end · s2 : p′→ q′ : 〈W1〉.p→ q : 〈W2〉.end

Then E1tE2 = p→ q : 〈U1〉.p′→ q′ : 〈U2〉.p→ q : 〈U3〉.end · s2 : p′→ q′ : 〈W1〉.p→
q : 〈W2〉.end. The behavioural relation w.r.t. a global whiteness is defined below.

Definition 4.3 (Configuration relation). The relation R is a configuration relation
between two configurations E1,Γ ` P1 .∆1 and E2,Γ ` P2 .∆2, written E1 tE2,Γ `
P.∆1 R P2 .∆2 if E1tE2 is defined.

Proposition 4.1 (Decidability). (1) Given E1 and E2, a problem whether E1 tE2 is
defined or not is decidable and if it is defined, the calculation of E1 tE2 terminates;
and (2) Given E, a set {E ′ | E −→∗ E ′} is finite.

Definition 4.4 (Global configuration transition). We write E1,Γ `P1.∆1
`−→E2,Γ

′ `
P2 .∆2 if E1,Γ ` P1 .∆1, P1

`−→ P2 and (E1,Γ ,∆1)
`−→ (E2,Γ

′,∆2).

Proposition 4.2. (1) (E1,Γ ,∆1)
`−→ (E2,Γ2,∆2) implies that (E2,Γ2,∆2) is an environ-

ment configuration; and (2) If Γ `P.∆ and P−→P′ with co(∆), then E,Γ `P.∆ −→
E,Γ ` P′ .∆ ′ and co(∆ ′).

The definition of the reduction congruence for governance follows. Below we define
E,Γ ` P.∆ ⇓n if P ⇓m and (E,Γ ,∆) ⇓m.

Definition 4.5 (Governed reduction congruence). A configuration relation R is gov-
erned reduction congruence if E,Γ ` P1 .∆1 R P2 .∆2 then
1. E,Γ ` P1 .∆1 ⇓n if and only if E,Γ ` P2 .∆2 ⇓n
2. P1→→ P′1 if and only if P2→→ P′2 and E,Γ ` P′1 .∆ ′1 R P′2 .∆ ′2
3. For all closed context C, such that E,Γ ` C[P1] . ∆ ′1 and E,Γ ` C[P2] . ∆ ′2 then

E,Γ `C[P1].∆ ′1 R C[P2].∆ ′2.
The union of all governed reduction congruence relations is denoted as ∼=s

g.

Globally governed bisimulation and its properties This subsection introduces the
globally governed bisimulation relation definition and studies its main properties.

Definition 4.6 (Globally governed bisimulation). A configuration relation R is a glob-
ally governed weak bisimulation (or governed bisimulation) if whenever E,Γ ` P1 .
∆1 R P2 .∆2, it holds:

1. E,Γ ` P1 .∆1
`−→ E ′1,Γ

′ ` P′1 .∆ ′1 implies E,Γ ` P2 .∆2
ˆ̀

=⇒ E ′2,Γ
′ ` P′2 .∆ ′2 such

that E ′1tE ′2,Γ
′ ` P′1 .∆ ′1 R P′2 .∆ ′2.

2. The symmetric case.
The maximum bisimulation exists which we call governed bisimilarity, denoted by ≈s

g.
We sometimes leave environments implicit, writing e.g. P≈s

g Q.

Theorem 4.1 (Sound and completeness). ≈s
g =
∼=s

g.

12

The relationship between ≈s and ≈s
g is given as follows.

Theorem 4.2. If for all E, E,Γ ` P1 .∆1 ≈s
g P2 .∆2 then Γ ` P1 .∆1 ≈s P2 .∆2. Also if

Γ ` P1 .∆1 ≈s P2 .∆2, then for all E, E,Γ ` P1 .∆1 ≈s
g P2 .∆2.

To justify the above theorem, consider the following processes:

P1 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s1[2][3]!〈v〉;s2[2][1]?(x);s2[2][3]!〈x〉;0
P2 = s1[1][3]!〈v〉;0 | s2[1][2]!〈w〉;0 | s1[2][3]!〈v〉;s2[2][1]?(x);s2[2][3]!〈x〉;0

then we have P1 ≈s P2. By the above theorem, we expect that for all E, we have E,Γ `
P1 .∆1 and E,Γ ` P2 .∆2 then E ` P1 ≈s

g P2. This is in fact true because the possible E
that can type P1 and P2 are:

E1 = s1 : 1→ 3 : 〈U〉.2→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈W 〉.2→ 3 : 〈W 〉.end
E2 = s1 : 2→ 3 : 〈U〉.1→ 3 : 〈U〉.end · s2 : 1→ 2 : 〈W 〉.2→ 3 : 〈W 〉.end

Note that all E that are instances up-to weakening are E1 and E2.
To clarify the difference between ≈s and ≈s

g, we introduce the notion of a simple
multiparty process defined in [11]. A simple process contains only a single session so
that it satisfies the progress property as proved in [11]. Formally a process P is simple
when it is typable with a type derivation where the session typing in the premise and the
conclusion of each prefix rule is restricted to at most a single session (i.e. any Γ ` P.∆

which appears in a derivation, ∆ contains at most one session channel in its domain,
see [11]). Since there is no interleaving of sessions in simple processes, the difference
between ≈s and ≈s

g disappears.

Theorem 4.3 (Coincidence). Assume P1 and P2 are simple. If ∃E ·E,Γ ` P1 .∆1 ≈s
g

P2 .∆2 then Γ ` P1 .∆1 ≈s P2 .∆2.

To justify the above theorem, consider: P1 = s[1][2]?(x);s[1][3]!〈x〉;0 | s[2][1]!〈v〉;0 and
P2 = s[1][3]!〈v〉;0. It holds that for E = s : 2→ 1 : 〈U〉.1→ 3 : 〈U〉.end then E ` P1 ≈s

g
P2. We can easily reason P1 ≈s P2.

Example 4.2 (Governed bisimulation). Recall the example from § 1 and Example 3.1.
Q1 is the process corresponding to Example 3.1, while Q2 has a parallel thread instead
of the sequential composition (this corresponds to P1 | R2 in § 1).

Q1 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(x);0 | s1[2][3]!〈v〉;0
Q2 = s1[1][3]!〈v〉;s2[1][2]!〈w〉;0 | s2[2][1]?(x);s1[2][3]!〈v〉;0

Assume: Γ = v : S ·w : S
∆ = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

Then we have Γ ` Q1 .∆ and Γ ` Q2 .∆ . Now assume the two global witnesses as:

E1 = s1 : 1→ 3 : 〈S〉.2→ 3 : 〈S〉.end · s2 : 1→ 2 : 〈S〉.end
E2 = s1 : 2→ 3 : 〈S〉.1→ 3 : 〈S〉.end · s2 : 1→ 2 : 〈S〉.end

Then the projection of E1 and E2 are given as:

proj(E1) = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s1[3] : [1]?(S); [2]?(S);end
s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

proj(E2) = s1[1] : [3]!〈S〉;end · s1[2] : [3]!〈S〉;end · s1[3] : [2]?(S); [1]?(S);end·
s2[1] : [2]!〈S〉;end · s2[2] : [1]?(S);end

13

with ∆ ⊂ proj(E1) and ∆ ⊂ proj(E2). The reader should note that the difference be-
tween E1 and E2 is the type of the participant 3 at s1.

By definition, we can write: Ei,Γ ` Q1 .∆ and Ei,Γ ` Q2 .∆ for i = 1,2. Both
processes are well-formed global configurations under both witnesses. Now we can

observe Γ ` Q1 .∆
s[2][3]!〈v〉−→ Γ ` Q′1 .∆ ′ but Γ ` Q2 .∆

s[2][3]!〈v〉
6−→ . Hence Γ ` Q1 .∆ 6≈s

Q2 .∆ . By the same argument, we have: E2,Γ ` Q1 .∆ 6≈s
g Q2 .∆ . On the other hand,

since E1 forces to wait for s[2][3]!〈v〉, E1,Γ ` Q1 .∆

s[2][3]!〈v〉
6−→ . Hence Q1 and Q2 are

bisimilar, i.e. E1,Γ ` Q1 .∆ ≈s
g Q2 .∆ . This concludes the optimisation is correct.

5 Related and Future Work

As a typed foundation for structured communications programming, session types [9,
17] have been studied over the last decade for a wide range of process calculi and pro-
gramming languages. Recently several works developed multiparty session types and
their extensions. While typed behavioural equivalences are one of the central topics
of the π-calculus, surprisingly the typed behavioural semantics based on session types
have been less explored, and the existing ones only focus on binary (two-party) sessions.
Our work [14] develops an asynchronous binary session typed behavioural theory with
event operations. An LTS is defined on session type process judgements and ensures
session typed properties, such as linearity in the presence of asynchronous queues. The
work [15] proves the proof conversions induced by Linear Logic interpretation coin-
cide with an observational equivalence over a strict subset of the binary synchronous
session processes. The main focus of our paper is multiparty session types and gov-
erned bisimulation, whose definitions and properties crucially depend on information
of global types. In the first author’s PhD thesis [13], we studied how governed bisimula-
tions can be systematically developed under various semantics including three kinds of
asynchronous semantics by modularly changing the LTS for processes, environments
and global types. For governed bisimulations, we can reuse all of the definitions among
four semantics by only changing the conditions of the LTS of global types to suit each
semantics. Another recent work [6] gives a fully abstract encoding of a binary syn-
chronous session typed calculus into a linearly typed π-calculus [3]. We believe the
same encoding method is smoothly applicable to ≈s since it is defined solely based on
the projected types (i.e. local types). However a governed bisimulation requires a global
witness, hence the additional global information would be required for full abstraction.

The constructions of our work are hinted by [8] which studies typed behavioural
semantics for the π-calculus with IO-subtyping where a LTS for pairs of typing en-
vironments and processes is used for defining typed testing equivalences and barbed
congruence. On the other hand, in [8], the type environment indexing the observational
equivalence resembles more a dictator where the refinement can be obtained by the fact
that the observer has only partial knowledge on the typings, than a coordinator like our
approach. Several papers have developed bisimulations for the higher-order π-calculus
or its variants using the information of the environments. Among them, a recent paper
[12] uses a pair of a process and an observer knowledge set for the LTS. The knowl-

14

edge set contains a mapping from first order values to the higher-order processes, which
allows a tractable higher-order behavioural theory using the first-order LTS.

We record a choreographic type as the witness in the environment to obtain fine-
grained bisimulations of multiparty processes. The highlight of our bisimulation con-
struction is an effective use of the semantics of global types for LTSs of processes
(cf. [Inv] in Figure 3 and Definition 4.4). Global types can give a guidance how to co-
ordinate parallel threads giving explicit protocols, hence it is applicable to a semantic-
preserving optimisation (cf. Example 4.2 and [7]). While it is known that it is undecid-
able to check P≈ Q in the full π-calculus, it is an interesting future topic to investigate
automated bisimulation-checking techniques for the governed bisimulations for some
subset of multiparty session processes.

References

1. Ocean Observatories Initiative (OOI). http://www.oceanobservatories.org/.
2. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous pi-

calculus. TCS, 195(2):291–324, 1998.
3. M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-calculus. In Proc. TLCA’01,

volume 2044 of LNCS, pages 29–45, 2001.
4. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In CONCUR,

volume 5201 of LNCS, pages 418–433. Springer, 2008.
5. W3C Web Services Choreography. http://www.w3.org/2002/ws/chor/.
6. R. Demangeon and K. Honda. Full abstraction in a subtyped pi-calculus with linear types.

In CONCUR, volume 6901 of LNCS, pages 280–296. Springer, 2011.
7. Technical report of this paper. Department of Computing, Imperial College, DTR 2013/4.
8. M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the presence

of subtyping. Mathematical Structures in Computer Science, 14(5):651–684, 2004.
9. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disciplines for

structured communication-based programming. In ESOP’98, volume 1381 of LNCS, pages
22–138. Springer, 1998.

10. K. Honda and N. Yoshida. On reduction-based process semantics. TCS, 151(2):437–486,
1995.

11. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In
POPL’08, pages 273–284. ACM, 2008.

12. V. Koutavas and M. Hennessy. A testing theory for a higher-order cryptographic language.
In ESOP, volume 6602 of LNCS, pages 358–377, 2011.

13. D. Kouzapas. A study of bisimulation theory for session types. PhD thesis, Department of
Computing, Imperial College London, May 2013.

14. D. Kouzapas, N. Yoshida, and K. Honda. On asynchronous session semantics. In FMOOD-
S/FORTE, volume 6722 of Lecture Notes in Computer Science, pages 228–243, 2011.

15. J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical relations for session-based
concurrency. In ESOP, volume 7211 of LNCS, pages 539–558. Springer, 2012.

16. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. MSCS, 6(5):409–
454, 1996.

17. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing Sys-
tem. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994.

18. N. Yoshida. Graph types for monadic mobile processes. In FSTTCS, volume 1180 of LNCS,
pages 371–386. Springer, 1996.

15

