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Abstract

Multi-scale methods provide a new paradigm in many branches of sciences, including applied mechanics. However,

at lower scales continuum mechanics can become less applicable, and more phenomena enter which involve discon-

tinuities. The two main approaches to the modelling of discontinuities are briefly reviewed, followed by an in-depth

discussion of cohesive models for fracture. In this discussion emphasis is put on a novel approach to incorporate triaxi-

ality into cohesive-zone models, which enables for instance the modelling of crazing in polymers, or of splitting cracks

in shear-critical concrete beams. This is followed by a discussion on the representation of cohesive crack models in a

continuum format, where phase-field models seem promising.

c© 2013 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Dick van Campen and Geng-

dong Cheng
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1. Introduction

The demand for new or improved materials has been one of the driving forces behind the development

of multiscale techniques. This class of methods aims at understanding the material behaviour at a lower

level of observation, and can be a major tool for developing new materials.

When considering materials at a lower length scale, the classical concept of a continuum gradually

fades away. At the macroscopic level we have to take into account evolving or moving discontinuities

like cracks, shear bands, Lüders bands and Portevin-Le Chatelier bands, but at a lower level we also en-

counter grain boundaries in crystalline materials, solid-solid phase boundaries as in austenite-martensite

transformations [1], and discrete dislocations [2]. Thus, the proper modelling of discontinuities has a grow-

ing importance in material science. Classical discretisation methods are not well amenable to capturing

discontinuities. Accordingly, next to multiscale modelling, the proper capturing of discontinuities is a major

challenge in contemporary computational mechanics of materials.

In this contribution we focus on the capturing of discontinuities. Basically, two methods exist to handle

them. One either distributes them over a finite distance, or handles them as true discontinuities. The first

method has been a subject of much research in the past two decades. It will be discussed briefly at the

beginning of this paper, and we will come back to a continuum approach within the context of phase-field
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methods at the end of this paper. A major part of this paper focuses on an enhancement of the cohesive-

surface model for fracture to incorporate triaxiality effects.

2. Discrete vs. continuum representations of fracture

When scaling down, discontinuities arise which need to be modelled in an explicit manner. When the

discontinuity has a stationary character, such as in grain boundaries, this is fairly straightforward, since it

is possible to adapt the discretisation such that the discontinuity, either in displacements or in displacement

gradients, is modelled explicitly. An evolving or moving discontinuity, however, is more difficult to handle.

A possibility is to adapt the mesh upon every change in the topology, as was done by Ingraffea and co-

workers in the context of linear elastic fracture mechanics [3], and later by Camacho and Ortiz [4] for

cohesive fracture.

Another approach is to model fracture within the framework of continuum mechanics. A fundamental

problem is then that standard continuum models do not furnish a length scale which is indispensible for

describing fracture, or, more precisely, they result in a zero length scale. Since the energy dissipated in the

failure process is given per unit area of material that has completely degraded, and since a vanishing internal

length scale implies that the volume in which failure occurs goes to zero, the energy dissipated in the failure

process also tends to zero. Two approaches have been followed to avoid this physically unrealistic situation,

namely via discretisation and via regularisation of the continuum, see Fig. 1.

Fig. 1. Application of regularisation and discretisation methods to a discontinuity

In the first approach, researchers have let the spacing of the discretisation take over the role of the

missing internal length scale, so that the discontinuity in the left part of Fig. 1 is replaced by a displacement

distribution as in the right-lower part of this figure, where w is the spacing of the discretisation. The idea is

then to choose the discretisation such that the spacing of the discretisation coincides with the internal length

scale that derives from the physics of the process. Evidently, a good knowledge of the problem is required

and solutions, including the proper choice for the discretisation, are problem-dependent. Nevertheless, this

approach has been used successfully to obtain insight in various issues in materials science [5].

Yet, this approach can not be called a proper solution in the sense that the mathematical setting of the

initial value problem remains unchanged. Indeed, the introduction of degradation of the material properties

in a standard, rate-independent continuum model–and therefore, the introduction of a stress–strain curve

with a descending slope–can locally cause the governing differential equations to change character. Without

special provisions such as the application of special interface conditions between both domains at which

different types of differential equations hold, the initial value problem becomes ill-posed. Numerically, this

has the consequence that the solution becomes fully dependent upon the discretisation [6, 7]. An example

is shown in Figs. 2 and 3. It concerns a bar composed of a porous, fluid-saturated material that is loaded

by an impulse load at the left end. Upon reflection at the right boundary, the stress intensity doubles and

the stress in the solid exceeds the yield strength and enters a linear descending branch, Fig. 2. The results

are shown in Fig. 3 in terms of the strain profile along the bar at discrete time intervals. It is observed that
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a Dirac-like strain distribution develops immediately upon wave reflection, indicating that the governing

equations change locally from hyperbolic, as is normal in wave propagation, to elliptic, which implies that a

standing wave develops. To further strengthen this observation the analysis was repeated with a 25% refined

mesh, which resulted in a marked increase of the localised strain (Fig. 3), and has been plotted on the same

scale as the results of the original discretisation. We remark that in dynamic calculations of softening media

without regularisation, not only the spatial discretisation strongly influences the results, but also the time

discretisation [8].
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Fig. 2. Top: Uniaxial bar subject to impact load. Bottom: Applied stress as function of time (left) and local stress-strain diagram (right)
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Fig. 3. Strain profiles along the bar for 101 grid points (left) and 126 grid points (right)

As a more rigorous solution, various regularisation methods have been proposed, including nonlocal

averaging, the addition of viscosity or rate dependency, or the inclusion of couple stresses or higher-order

strain gradients, see [9] for an overview. The effect of these strategies is that the discontinuity shown in the

left side of Fig. 1 is transformed into the continuous displacement distribution shown in the right-upper part

of this figure. In contrast to discretisation strategies, the internal length scale w is now set by the constitutive

model for the solid material, and as soon as a sufficiently fine discretisation has been adopted to properly

capture this displacement distribution, the numerically calculated results only change in a sense that is

normally expected upon mesh refinement. It is emphasised that the above observations for discretisation

and regularisation hold for any discretisation method, including finite element approaches, finite difference

methods, meshfree methods and finite volume methods [10].

The fact that discretisation provides only a partial remedy to the ill-posedness of the underlying initial

value problem, and that difficulties that still persist with regularisation strategies – notably the unresolved

issue of additional boundary conditions, the need to use fine meshes in the zone of the regularised discon-

tinuity, and the need to determine additional material parameters from tests that impose an inhomogeneous



128   René de Borst et al.  /  Procedia IUTAM   10  ( 2014 )  125 – 137 

deformation field – has been a contributing factor to revisit the research into (more flexible) methods to

capture arbitrary, evolving discontinuities in a discrete sense.

At present, four such methods exist: zero-thickness interface elements [11], meshless or meshfree meth-

ods [12], the partition-of-unity method which exploits the partition-of-unity property of finite element shape

functions [13], also known as the extended finite element method [14], and isogeometric analysis [15].

Meshfree methods were originally thought to behold a great promise for fracture analyses due to the fact

that this class of methods does not require meshing, and remeshing upon crack propagation, but the diffi-

culties to properly redefine the support of a node when it is partially cut by a crack, have led to a decreased

interest. However, out of the research into this class of methods, the analysis methods that exploit the

partition-of-unity property of finite element shape functions have arisen, which is a powerful method for

large-scale fracture analyses. The most recent development is to model evolving discontinuities, including

cohesive cracks, using isogeometric analysis, where the use of knot insertion is believed to be the most

elegant approach [15].

3. Cohesive-surface models

Most engineering materials are not perfectly brittle in the Griffith sense, but display some ductility

after reaching the strength limit. In fact, there exists a zone ahead of the crack tip, in which small-scale

yielding, micro-cracking and void initiation, growth and coalescence take place. If this fracture process

zone is sufficiently small compared to the structural dimensions, linear-elastic fracture mechanics concepts

can apply. However, if this is not the case, the cohesive forces that exist in this fracture process zone must

be taken into account. The most powerful and natural way is to use cohesive-surface models, which were

introduced in [16, 17] for elastic-plastic fracture in ductile metals, and for quasi-brittle materials in the

so-called fictitious crack model [18].

In cohesive-surface models, the degrading mechanisms in the wake of the crack tip are lumped into a

discrete plane. The most important parameters of cohesive surface models are the tensile strength ft and

fracture energy Gc [19], which is the work needed to create a unit area of fully developed crack. It has the

dimensions J/m2 and is formally defined as

Gc =

∫ ∞
�un�=0

tnd�un�, (1)

with tn the normal traction and �un� the normal relative displacement across the fracture process zone. The

fracture energy introduces an internal length scale into the model, since the quotientGc/E has the dimension

of length. For quasi-brittle fracture, also the shape of the decohesion curve can play an important role [20].

The tractions at the discontinuity, t, can be derived by differentiating the fracture energy Gc with respect to

the jump of the displacement field, �u�, as follows

t =
∂Gc

∂�u�
. (2)

Most fracture problems are driven by crack opening (mode-I). However, in a number of cases, the

sliding (mode-II) components can become substantial. A possible way to include the sliding components is

to redefine Eq. (1) as, cf. [21]

Gc =

∫ ∞
�ũ�=0

t̃d�ũ� (3)

with t̃ = t̃(�ũ�), where

�ũ� =
√
�un�2 + β

(
�us�2 + �ut�2

)
(4)

and �us� and �ut� the sliding components, β being a mode-mixity parameter that sets the ratio between the

mode-I and the mode-II components.

The cohesive surface model as outlined in the preceding is a two-dimensional model embedded in a

three-dimensional continuum, and only the crack opening and the crack sliding modes are available. The



129 René de Borst et al.  /  Procedia IUTAM   10  ( 2014 )  125 – 137 

Γ
d

dΓ+

Γ
d
*

b
Ω

h

Ω+

Ω

Γ

Γ
d

d
+

Fig. 4. A cohesive band model

normal strain parallel to the cohesive surfaces is not available, and neither is the normal stress in this di-

rection. This hampers the accurate computation of failure modes in metals where stress triaxiality plays

a role, but also prevents the prediction of splitting cracks in concrete or masonry structures where a large

compressive stress induces cracks that are aligned with the normal stress [22]. To circumvent this deficiency

of the cohesive surface model it has been proposed to take the normal stress from a neighbouring integration

point in the continuum and to insert this stress component in the failure criterion for the cohesive surface

model [23, 24]. In the sequel a more rigorous solution is outlined.

3.1. An extension: the cohesive-band model
We consider the cohesive crack depicted in Fig. 4. The thick lines are the cohesive surfaces Γ−d and Γ+d ,

characterised by the normals nΓ−d and nΓ+d , respectively, see Fig. 4 right. The thickness of the cohesive band

Ωb between the surfaces Γ−d and Γ+d is denoted by h. The bulk ΩB = Ω\Ωb consists of the sub-domain Ω−
that borders the cohesive surface Γ−d , and the sub-domain Ω+ that borders the cohesive surface Γ+d , Fig. 4.

For consistency the relative displacement vector and the traction vector must be decomposed in the same

coordinate system. There is some freedom in the choice of the vector that is normal to the fracture plane. A

possible choice is

nΓ∗d =
1

2
(nΓ−d + nΓ+d ), (5)

as the normal vector of the plane Γ∗d on which the cohesive tractions act, cf. [25], and on which the relative

displacement �un�, �us� and �ut�, and the tractions tn, ts and tt are defined.

The position vector x of a material point in the body Ω can be expressed in terms of its position in the

undeformed configuration ξξξ and two piecewise smooth displacement fields û(ξξξ) and ũ(ξξξ)

x(ξξξ) = ξξξ + û(ξξξ) +HΓ0
d
ũ(ξξξ), (6)

where HΓ0
d

is the generalised Heaviside function centred at the discontinuity Γ0
d . Then, the deformation

gradient can be derived as

F(ξξξ) = I +
∂û
∂ξξξ
+HΓ0

d

∂ũ
∂ξξξ
+ δΓ0

d
ũ ⊗ nΓ0

d
, (7)

with I the unit matrix and δΓ0
d

the generalised Dirac function centred at Γ0
d . We note that this spatial derivative

of the Heaviside functionH0
d is non-zero only at the discontinuity Γ0

d which resides in the band Ωb. We can

therefore define the deformation gradient at the −−− side of the discontinuity, ξξξ ∈ Ω−, as

F− = I +
∂û
∂ξξξ
, (8)

while at the “+++” side of the discontinuity, ξξξ ∈ Ω+, we have

F+ = I +
∂û
∂ξξξ
+
∂ũ
∂ξξξ
. (9)
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Using Nanson’s formula, the normals at the “−−−” and at the “+++” sides can be related to that in the original

configuration nΓ0
d
, as follows

nΓ−d = det(F−)nΓ0
d
· (F−)−1

dΓd,0

dΓ−d
,

nΓ+d = det(F+)nΓ0
d
· (F+)−1

dΓd,0

dΓ+d
.

(10)

The average normal nΓ∗d then becomes

nΓ∗d = det(F∗)nΓ0
d
· (F∗)−1 dΓd,0

dΓ∗d
, (11)

where

F∗ =
1

2

(
F− + F+

)
, (12)

and

dΓ∗d =
1

2
(dΓ−d + dΓ+d ). (13)

In view of Eq. (6) the displacement u(ξξξ) of a material point in the body Ω can be expressed as

u(ξξξ) = û(ξξξ) +HΓ0
d
ũ(ξξξ). (14)

Then, the displacement jump �u� equals the value of the additional displacement field at the discontinuity

plane

�u� = ũ(ξξξ) ∀ ξξξ ∈ Γ0
d . (15)

The Green–Lagrange strain E(ξξξ) in the bulk ΩB = Ω\Ωb is now derived from the deformation gradient in a

standard manner

E(ξξξ) =
1

2

(
FT(ξξξ) · F(ξξξ) − I

)
∀ ξξξ ∈ ΩB. (16)

We next define the Green–Lagrange strain tensor in the cohesive band, expressed in the n, s, t local frame

of reference of the band:

Ē =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Enn Ens Ent

Esn Ess Est

Etn Ets Ett

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∀ ξξξ ∈ Ωb. (17)

The components of this matrix are based on the magnitude of the relative displacements and on the in-plane

Green–Lagrange strains in the band. Denoting h0 as the value of h in a reference state, the component Fnn

of the deformation gradient F reads

Fnn =
h
h0

= 1 +
�un�
h0

. (18)

with �un� the crack opening measured with respect to the reference state where h0. The normal component

of the Green–Lagrange strain tensor within the band can subsequently be derived as

Enn =
1

2

(
F2

nn − 1) =
�un�
h0

+
�un�2

2h2
0

. (19)

The corresponding shear components read

Ens =
�us�
2h0

+
�us�2

2h2
0

and Ent =
�ut�
2h0

+
�ut�2

2h2
0

. (20)

In a standard manner the virtual strain components can be derived as

δEnn =
δ�un�

h0

+
�un�δ�un�

h2
0

, (21)
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for the normal strain and

δEns =
δ�us�
2h0

+
�us�δ�us�

h2
0

and δEnt =
δ�ut�
2h0

+
�ut�δ�ut�

h2
0

, (22)

for the shear strains. Taking the current configuration as the reference configuration, so that h0 = h and

�un� = �us� = �ut� = 0, these expressions reduce to

δEnn =
δ�un�

h
(23)

and

δEns =
δ�us�

2h
and δEnt =

δ�ut�
2h
. (24)

It is noted that when h0 is set equal to zero, the width h of the discontinuity in the deformed configuration

equals the normal opening of the discontinuity �un�

h = �un�. (25)

The in-plane terms of the strain tensor in the band, Ess, Ett and Est = Ets are independent of the mag-

nitude of the displacement jump. They represent the Green–Lagrange normal strain components in the s-

and t-directions, respectively, and the Green–Lagrange in-plane shear strain. Since h0 is small compared to

the in-plane dimensions of the fracture plane, it is reasonable to assume that the in-plane strain components

vary linearly in the n-direction of the band Ωb, so that

Ess =
1

2

(Ess|Γ−d + Ess|Γ+d
) Ett =

1

2

(Ett |Γ−d + Ett |Γ+d
)

and Est =
1

2

(Est |Γ−d + Est |Γ+d
)
. (26)

The internal virtual work of the solid can be expressed in terms of the Cauchy stress tensor σσσ and the

variation of the Green–Lagrange strain tensor referred to the current configuration x. In the bulk of the

domain, ΩB, we denote the variation of the strain tensor by δεεε, while in the cohesive band, Ωb, we have δEEE
denoting the variation of the strain tensor and SSS the Cauchy stresses, so that

δWint =

∫
ΩB

σσσ : δεεεdΩ +

∫
Ωb

SSS : δEEEdΩ. (27)

The second term, which represents the contribution of the cohesive band, can be rewritten as

δWint

∣∣∣Ωb
=

∫
Γ∗d

∫ h
2

− h
2

S̄̄S̄S : δĒ̄ĒE dndΓ. (28)

Again using the assumption that the deformation in the cohesive band is constant in the n-direction, we

integrate analytically in the thickness direction

δWint

∣∣∣Ωb
= h
∫
Γ∗d
S̄̄S̄S : δĒ̄ĒE dΓ, (29)

or written in terms of the individual components

δWint

∣∣∣Ωb
= h
∫
Γ∗d

(SnnδEnn + SssδEss + SttδEtt + 2SnsδEns + 2SntδEnt + 2SstδEst) dΓ, (30)

which relation holds irrespective of the value of the cohesive band width h. Substitution of the strain terms

as derived in Eqs. (23), (24) and (26) gives

δWint

∣∣∣Ωb
=

∫
Γ∗d

(Snnδ�un� + hSssδEss + hSttδEtt + Snsδ�us� + Sntδ�ut� + 2hSstδEst) dΓ, (31)



132   René de Borst et al.  /  Procedia IUTAM   10  ( 2014 )  125 – 137 

Fig. 5. Geometry and boundary conditions of a three point bending test

In the limit, i.e. when h→ 0, this expression reduces to

δWint

∣∣∣Ωb
=

∫
Γ∗d

(Snnδ�un� + Snsδ�us� + Sntδ�ut�) dΓ, (32)

or replacing the stress components Snn, Sns and Snt by the tractions tn, ts and ts, we obtain the usual cohesive

surface relation

δWint

∣∣∣Ωb
=

∫
Γ∗d

(tnδ�un� + tsδ�us� + ttδ�ut�) dΓ. (33)

The effect of the in-plane strains in the cohesive band has now disappeared, as should be. We finally note

that a similar approach, in which a crack has been modelled as a zero-thickness interface at the macroscopic

scale, while a small, but finite thickness has been used for the modelling at a subgrid scale, has been used

for modelling fluid flow in cracks that are embedded in a surrounding porous medium [26–28].

3.2. Double cantilever peel test

We next consider the double cantilever test shown in Fig. 5. The structure with length l = 10 mm consists

of two layers with the same thickness h = 0.5 mm and with the same (isotropic) material properties: a

Young’s modulus E = 100.0 MPa and a Poisson ratio ν = 0.3. The two layers are connected through an

adhesive with a normal strength tmax = 1.0 MPa and a fracture toughness Gc = 0.1 N/mm. The initial

delamination extends over a = 1.0 mm. An external load P is applied at the tip of both layers. Delamination

growth in a laminate with a symmetric lay-up can be modelled with a simple two-dimensional damage

model with a loading function f defined as

f (�un�, κ) = �un� − κ. (34)

The normal traction tn decreases exponentially, according to

tn = tmax exp

(
− tmax

Gc

κ

)
. (35)

The specimen has been analysed with four-noded quadrilateral elements. The results are compared to a

model with a standard cohesive surface model in Fig. 6. We clearly observe the effect of the in-planestrains,

which are generated through the coupling to the crack opening displacement through the Poisson ratio.

The additional strains and ensuing stresses give rise to an additional term in the internal virtual work, thus

resulting in a higher peak load and a more ductile behaviour. Evidently, the effect diminishes for smaller

values of the Poisson ratio, and disappears for ν = 0, when the results of the standard cohesive surface model

are retrieved.
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Fig. 6. Effect of Poisson’s ratio ν on the load-displacement curve for a cohesive band model

4. Continuum representations of the cohesive model

The cohesive-zone model is essentially a discrete concept. However, it can be transformed into a con-

tinuum formulation by distributing the fracture energy Gc over the thickness w of the volume in which the

crack localises [29]. The disadvantages of the formulation are that a pseudo-softening modulus is introduced

which is inversely proportional to the number of elements, and, more importantly, that the boundary-value

problem becomes ill-posed, implying a dependence on the discretisation. As discussed before, this anomaly

is inherent in all smeared formulations without proper regularisation. A smeared formulation that is properly

regularised, and therefore exhibits no mesh dependence, can be obtained using the phase-field concept, and

will be outlined below.

4.1. Cohesive fracture and phase fields

As the starting point of the derivation of the phase field approximation to cohesive fracture we consider

the internal energy

Wint =

∫
Ω

ψe(ε)dV +
∫
Γ

G(�u�, κ)dA. (36)

In this expression, the elastic energy density ψe depends on the strain tensor ε. Under the assumption of

small displacement gradients, the infinitesimal strain tensor is an appropriate measure of the deformation of

the body, and is equal to the symmetric gradient of the displacement field u

εi j = u(i, j) =
1

2

(
∂ui

∂x j
+
∂u j

∂xi

)
. (37)

The elastic energy density is expressed by Hooke’s law for an isotropic linear elastic material as

ψe(ε) =
1

2
λεiiε j j + μεi jεi j, (38)

with λ and μ the Lamé constants.

We now define xn = (x − xc) · n(xc), with n(x) the unit vector normal to the fracture surface and xc

the position vector of a point on the fracture surface. The Dirac function δ can then be used to relate the

infinitesimal surface area dA to the infinitesimal volume dV of the surrounding body

dA(xc) =

∞∫
−∞
δ (xn) dV. (39)
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Equation (39) allows for smeared descriptions of the fracture surface by an approximation of the Dirac

function. As in [30, 31] we consider the approximated Dirac function

δε(xn) =
1

2ε
exp

(
−|xn|
ε

)
, (40)

with ε > 0 a length scale parameter. Evidently

∞∫
−∞
δε(xn)dxn = 1 (41)

for arbitrary ε. Clearly, the fracture surface is distributed over a larger volume for higher values of ε. The

corresponding infinitesimal fracture surface area then follows from

dAε(xc) =

∞∫
−∞
δε (xn) dV. (42)

Using the approximation to the Dirac function expressed in Eq. (40), the internal energy, Eq. (36), is

approximated by

Wint,ε =

∫
Ω

(
ψe(εe) + G(v, κ)δε

)
dV. (43)

Note that, compared to Eq. (36), we have replaced the infinitesimal strain tensor ε by the “elastic” infinites-

imal strain tensor εe, and the jump in the displacement field �u�(xc) by an auxiliary field v(x). This is

necessary since in the phase-field formulation, the crack only exists in a smeared sense. Hence, the clear

distinction between the bulk and interface kinematics, i.e. between the infinitesimal strain tensor, Eq. (37),

and the crack opening �u� is lost.

In the phase-field formulation for cohesive fracture it is crucial to derive kinematic relations that are

consistent with the discrete problem, in the sense that as the length scale parameter ε approaches zero, the

kinematics of the discrete problem are recovered. In order to arrive at such relations, we first introduce the

distributed internal discontinuity

Γε = {x ∈ Ω|d(x) > tol} (44)

with tol 	 1 being a small tolerance that truncates the support of the smeared crack, which provides the

support for the auxiliary field v(x). Hence, the auxiliary field is only present at the smeared crack, and the

kinematics away from the crack are governed by the displacement field u(x). Next, we define the normal to

the smeared crack based on the point closest to the discrete boundary Γ, denoted by xc, as

nε(x) = n(xc) with xc(x) = argmin
y∈Γ

(‖y − x‖) . (45)

In the discrete formulation, the displacement jump is strictly defined at the internal discontinuity Γ. In

the phase-field approach the crack exists in smeared sense, and so does the crack opening. Therefore, we

approximate the discrete displacement jump at xc in terms of the auxiliary jump field v(x) as

�u�(xc) ≈
∫ ∞
−∞

v(x)δεdxn. (46)

Under the condition that the auxiliary field is constant in the direction normal to the fracture, i.e.
∂v
∂xn
= 0,

we have

v(x) = v(xc + ζn) = v(xc), (47)

with n the vector normal to the crack, and ζ the coordinate along n. Back-substitution into Eq. (46) shows

that v(x) reflects the crack opening at the closest point xc on the discrete internal boundary. Consequently,
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Fig. 7. Schematic representation of a uniaxial rod with a cohesive interface

in Eq. (43) the crack opening �u� that appears as an argument of the fracture energy is directly replaced

by the auxiliary field v(x). In the limiting case that the length scale parameter ε goes to zero, the smeared

crack Γε coincides with the discrete crack Γ and the auxiliary displacement field consides with the discrete

displacement jump. The requirement that the auxiliary jump field is constant in the direction normal to the

crack is now enforced weakly through an additional term in the internal energy functional

Wint,ε =

∫
Ω

(
ψe(εe) + G(v, κ)δε +

1

2
α

∥∥∥∥∥ ∂v∂xn

∥∥∥∥∥
2)

dV, (48)

with α a positive constant parameter.

With the discontinuity kinematics determined through the auxiliary jump field, the elastic strain tensor

εe can be derived by requiring the auxiliary field not to exert any external power on the problem, such that

the balance of power is given by

∫
Ω

(
σe

i jε̇
e
i j + ti(v, κ)δε v̇i

)
dV =

∫
∂Ω

tiu̇idA. (49)

Application of Gauss’ theorem to the right-hand side of this equation, and requiring the traction to be in

equilibrium with the elastic stress, σe
i jn j = ti, yields

∫
Ω

σe
i j

(
ε̇e

i j + δε sym
(
v̇in j

))
dV =

∫
Ω

σe
i ju̇(i, j)dV. (50)

From the balance of power it is directly observed that the elastic infinitesimal strain tensor is related to the

displacement field u(x) and auxiliary field v(x) as

εe
i j = u(i, j) − sym

(
vin j

)
δε. (51)

In this expression the first part is the symmetric part of the gradient of the displacement field. The second

part can be interpreted as the strain caused by the displacement jump. Hence the elastic strain is defined

as the symmetric gradient of the displacement field, minus the strain caused by the crack opening. We

immediately note from Eq. (51) that away from the crack, i.e. for x � Γε , the continuum expression of

Eq. (37) is recovered. In the limiting case that ε goes to zero, the elastic equivalent strain is equal to the

symmetric gradient of the displacement field at every point in the interior of the domain. The unbounded

strain term at the discontinuity is caused by the jump of the displacement field over this internal boundary.

4.2. Cohesive fracture of a rod

As an example we consider the one-dimensional bar loaded in tension as shown in Fig. 7. The bar has a

unit length and also the modulus of elasticity equals unity. The fracture toughness and fracture strength are

taken as Gc = 1 and ft = 0.75, respectively. Figure 8 shows the response obtained using various mesh sizes

for the phase-field model and compares it with the exact solution to the discrete problem. It is observed that

upon mesh refinement the phase-field model converges to the discrete solution.
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Fig. 8. Force-displacement curve for the one-dimensional cohesive zone problem

5. Concluding remarks

Multi-scale models have the potential to give predictions of material behaviour that are better rooted

in physical evidence than purely phenomenological approaches. However, when scaling down, more and

more discontinuities are encountered. These discontinuities can be modelled either using truly discrete

approaches, or by smearing them out and casting them in a continuum description. A prototypical problem

is (cohesive) crack propagation. Indeed, the cohesive approach to fracture is enjoying an ever increasing

popularity. Its successful use is limited by two factors. From the modelling point of view, it is deficient

in the sense that in the classical cohesive surface models the normal strain in the fracture plane is not

included in the model, thus precluding the proper capturing of triaxiality effects, or splitting cracks in shear-

critical concrete beams. Regarding discretisation, the proper modelling of propagating cracks along a priori

unknown crack paths requires novel and flexible discretisation methods, such as partition-of-unity based

finite element methods or isogeometric analysis if the cohesive crack is modelled as a true discontinuity.

Alternatively, it can be smeared over a small, but finite width. This approach requires a proper regularisation,

as for instance provided by phase-field approaches, or by gradient damage models [32].
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