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Abstract

Conventional and regulatory T cells develop in the thymus where they are exposed to samples of self-peptide MHC (pMHC)
ligands. This probabilistic process selects for cells within a range of responsiveness that allows the detection of foreign
antigen without excessive responses to self. Regulatory T cells are thought to lie at the higher end of the spectrum of
acceptable self-reactivity and play a crucial role in the control of autoimmunity and tolerance to innocuous antigens. While
many studies have elucidated key elements influencing lineage commitment, we still lack a full understanding of how
thymocytes integrate signals obtained by sampling self-peptides to make fate decisions. To address this problem, we apply
stochastic models of signal integration by T cells to data from a study quantifying the development of the two lineages
using controllable levels of agonist peptide in the thymus. We find two models are able to explain the observations; one in
which T cells continually re-assess fate decisions on the basis of multiple summed proximal signals from TCR-pMHC
interactions; and another in which TCR sensitivity is modulated over time, such that contact with the same pMHC ligand
may lead to divergent outcomes at different stages of development. Neither model requires that Tconv and Treg are
differentially susceptible to deletion or that the two lineages need qualitatively different signals for development, as have
been proposed. We find additional support for the variable-sensitivity model, which is able to explain apparently
paradoxical observations regarding the effect of partial and strong agonists on Tconv and Treg development.
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Introduction

Conventional CD4z T cells (Tconv) and CD4z T regulatory

cells (Treg) are essential components of the adaptive immune

system. Conventional T cells develop effector function in response

to foreign antigens, while natural T regulatory cells produced in

the thymus play a key role in the maintenance of tolerance to self-

antigens and prevent autoimmune diseases (reviewed in, for

example, [1]). Both populations are derived from precursors in the

thymus that develop, undergo selection and differentiate into

different T cell lineages. The differentiation of a thymocyte into

the mature ab T cell repertoire is dependent on the engagement of

its T cell receptor (TCR) with endogenous peptides presented by

major histocompatibility complex (MHC) molecules on thymic

antigen presenting cells. Continued very weak or null interactions

between the TCR and peptide-MHC ligands (pMHC) lead to

failure to positively select (‘death by neglect’) while excessively

strong TCR-pMHC interactions lead to negative selection,

removing highly autoreactive cells from the T cell repertoire.

However, the precise rules underlying T cell precursor fate are not

well understood; based on its exposure to a sample of pMHC, how

and when does a thymocyte decide to become a Tconv, a Treg, or

be deleted?

Studies using fetal thymic organ cultures have shown that there

exists a sharp avidity threshold between positive and negatively

selecting ligands [2,3]. There is substantial evidence indicating that

Treg are induced by TCR signals that lie below this negative

selection threshold, but above that required for selection into the

conventional T cell pool [4–8]. However, many uncertainties

remain. It has been shown that expression of cognate antigen

(which we loosely refer to ‘agonist peptide’) in the thymic

epithelium is required for the generation of Treg [9–13], but a

recent study showed that Treg commitment occurs over a wide

range of TCR affinities for a ubiquitously expressed self antigen

[14]. Further, the partitioning of fates with increasing strength of

recognition for self (deletion?Tconv?Treg?deletion) appears to

be questioned by a study in which both expression of an agonist

and a weaker partial-agonist could enhance deletion, but only the

agonist was able to induce the formation of Foxp3z regulatory T

cells [15], suggesting that either the mapping of avidity to fate is

more complex or that qualitatively different signals are required

for Treg and Tconv selection.

Many experimental models using TCR transgenic cells (clonal

populations of T cells with identical TCR) have shown that these

cells can develop into both the regulatory and conventional

lineages together in the same environment. This observation

implies that there is stochasticity in fate determination. This

stochasticity can be partitioned conceptually into two sources that

are not mutually exclusive. First, there may be heterogeneity at the
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early double positive (CD4zCD8z) stage of development, even

within a clonal population, that pre-disposes cells to different fates.

This heterogeneity might derive, for example, from differences in

expression of factors determining the baseline levels or dynamic

range of TCR signalling, or other signalling proteins related to

lineage commitment. Second, stochasticity may be present later in

the selection process, arising at least in part because each

thymocyte encounters an independent sample of self-peptide

ligands. Evidence for the latter comes from observations that

probabilities of deletion and Treg generation have been shown to

vary with levels of agonist-peptide expression; in-vivo studies in

TCR transgenic mice [16–18] and in-vitro fetal thymic organ

culture [19–21] have shown that the efficiency of Treg selection

increases with modest increases in agonist-peptide expression, but

drops when expression is high. (We use the term efficiency here

interchangeably with the probability of experiencing a given fate.)

The efficiency of selection into the Treg lineage also decreases in

the presence of increasing numbers of cells of the same specificity

[14,15,22–24]. Thus the availability of relevant ligands, either in

absolute terms or through competition, can influence fate

decisions.

The timing of an interaction with a ligand may also influence

fate. There is evidence that the sensitivity of thymocytes to TCR

stimulation is increased during maturation through the subcellular

localisation of signalling molecules such as tyrosine kinase Lck

[25]; the inhibition of extracellular signal-regulated kinase (ERK)

activation and increased expression of inhibitory tyrosine phos-

phatase SHP-1 [26]; the upregulation of the negative regulator

CD5 [27]; and the increased expression of ZAP-70, a downstream

target of TCR signalling [28]. However, the expression of miR-

181a, a microRNA that enhances sensitivity to TCR stimulation,

is reduced during thymic development [29,30], and TCR

signalling in response to low-affinity pMHC ligands is strongest

in immature thymocytes [31]. The net effect of changes in TCR

signal activating and inhibiting factors is not clear, but it is possible

that stimulation with the same ligand will lead to different levels of

activation in the same thymocyte at different stages of develop-

ment.

The challenge of synthesising these observations and describing

quantitatively how the affinity, number and timing of pMHC

contacts shape the developing T cell repertoire invites a

mathematical modelling approach. Models of thymic selection

have been successful in providing insight into the relationship

between diversity of self peptides sampled in the thymus and the

cross-reactivity [32,33], alloreactivity [34], size [35,36] and

CD4SP/CD8SP ratio [37] of the selected repertoire. Models have

also helped us understand the relation of HLA phenotype to viral

epitope recognition [38] and the trade-off between MHC and T

cell receptor diversity [39]. In this study we use stochastic

(probabilistic) models to describe previously published in vivo data

describing Tconv and Treg commitment of a transgenic cell

population in the presence of varying densities of agonist peptide

in the thymus [16]. These data allow us to test and discriminate

between models of how developing thymocytes might integrate

signals received from pMHC ligands to make lineage decisions.

Models of thymic selection must relate the physical interaction

between a TCR and a pMHC ligand to the signal interpreted or

integrated by the thymocyte. There is evidence to support

competing models of TCR-pMHC interactions in which the level

of T cell activation is determined by TCR-pMHC dwell times,

through the kinetic proofreading model [40,41], TCR occupancy

[42–44] and overall pMHC ligand affinity [45]. Previous

approaches to quantitative modelling of TCR-pMHC interactions

can be divided into three broad categories: (i) detailed modelling of

signal transduction immediately downstream of TCR-pMHC

engagement [46,47]; (ii) kinetic models of binding events using

measured rates of TCR-pMHC association and disassociation

[48,49]; and (iii) the use of a ‘string model’ framework in which the

strength of an interaction is determined by pairwise interaction

energies between peptides and the aligned residues of amino acids

on the variable CDR3 loop of randomly generated TCRs [32,33].

However, binding kinetic parameters are not available for the full

range of endogenous peptides that are encountered during thymic

development, and uncertainty remains in the relation between

avidity and the signalling thresholds determining fate decisions.

Here, we abstract from the mechanistic model of signal strength

derived from molecular interactions. Instead we assume a

distribution of signal strengths that a given TCR derives from

pMHC ligands, in which low-strength signalling events occur with

the greatest likelihood and, in line with our knowledge of the

specificity of T cell recognition, stronger signalling events occur

with decreasing probability. We show that our conclusions are

insensitive to the precise form of this distribution.

We explore candidate mechanisms of Treg and Tconv selection

using the canonical hypothesis that signals associated with Treg

commitment are stronger than those required for Tconv commit-

ment but are below the threshold for negative selection. We use

the data of van Santen et al. [16] to reject a simple model of the

selection process in which thymocyte fate is based on testing

sequential single TCR-pMHC interactions. Instead, we find the

data can be explained with two generalisations of this model in

which perceived TCR signal strength correlates to a strict

hierarchy of cell fates (neglect?Tconv?Treg? negative selection).

In both models, thymocytes are continuously initiating fate

decisions based on measuring the strength of binding to self

peptide-MHC ligands in a series of encounters with antigen-

presenting cells. In one class of model, the p{sum model, cells

measure the avidity of each encounter, each of which comprises

binding to a sample of multiple self-peptide-MHC ligands

simultaneously. The p{sum model is motivated by studies

implicating the integration of signals from multiple pMHC

interactions in the priming of mature T cells by antigen [50–53].

In the second class of model, the two-phase model, we examine the

consequences of TCR sensitivity of thymocytes varying during

development. In this model a cell’s interpretation of the signal

derived from a given ligand depends on whether it occurs early or

late in selection. We show that both models are able to describe

the data, and also make predictions that are consistent with studies

quantifying the efficiency of Treg selection with avidity [14].

Author Summary

T cells develop in the thymus, where they are vetted – they
must respond weakly to self-antigens, but not so strongly
as to risk causing autoimmunity. This selection process
involves developing T cells being exposed to a large
sample of self-peptides presented on specialised cells in
the thymus, and deciding to die or to differentiate into
mature T cells of either conventional or regulatory
lineages. The rules by which T cells assimilate information
from these interactions to make these decisions are not
known. In this study we use previously published data to
assess and discriminate between different models of
thymic selection and find the most support for a model
in which T cells vary their sensitivity to self-peptides during
their development. This allows fate decisions to be made
on the basis of as few as one peptide at a time, which
allows for fine specificity in the selection process.

Modeling Thymic Selection
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However, we argue that variable TCR sensitivity is required to

explain the effect of partial and full agonist peptide expression in

the thymus on Treg generation and negative selection reported by

Cozzo Picca and colleagues [15].

Methods

Experimental data
We use data from van Santen et al. (2004) [16] in which the

frequency of high affinity intra-thymic ligands was manipulated in

vivo. Briefly, a mouse line was used that employs the tetracycline

inducible system to conditionally express an invariant chain

mutant, bearing the T cell epitope from moth cytochrome c

(MCC) in place of the class-II associated invariant chain peptide

(CLIP)-encoding region (TIM). TIM was expressed in both

cortical and medullary thymic epithelial cells (cTEC and mTEC),

and at controllable and graded levels. The mice also contained a

transgene encoding a TCR specific for this peptide, such that in

the absence of induced TIM, these cells differentiated efficiently

into mature ANDz CD4 single positive thymocytes. Expression

of TIM, measured by TIM RNA transcripts via real-time PCR,

influenced both Tconv and Treg formation in a non-linear fashion

(Figure 1).

In Figure 1 we see that (i) low frequencies of a strong agonist

(TIM) do not affect the selection of TCR-specific (AND)

thymocytes into the conventional T cell pool; (ii) moderate

increases in agonist expression lead to increasing efficiency of

selection of AND cells into Treg (log10(Treg) against log10(Relative

TIM RNA) between 10{5 and 10{2; Pearson correlation

r~0:59, pv0:002) and a concurrent drop in the efficiency of

Tconv selection; and (iii) high frequencies of a strong agonist lead to

the deletion of AND T cells. A very similar trend was observed by

Cozzo Picca et al. [17] using TCR transgenic cells specific for an

epitope of influenza virus in the presence of different levels of

expression of this agonist. Atibalentja et al. [18] also observed this

trend following intravenous injection of varying concentrations of

hen egg-white lysozyme (HEL), which was rapidly processed and

presented in the thymus, resulting in the negative selection of

specific TCR transgenic Tconv and an increase in TCR transgenic

Treg at low, but loss at higher, HEL concentrations.

Mathematical models
Developing thymocytes survey pMHC ligands presented on the

surface of thymic epithelial cells. In all models we assume that fate

decisions are continually reassessed based on ‘encounters’, each of

which is the sum of p interactions with pMHC (Figure 2), where

p§1. Each thymocyte participates in n encounters at most, where

a thymocyte might undergo negative selection, or initiate

development into the Tconv or Treg lineages, before reaching its

n-th encounter. We assume that each encounter with one or more

pMHC can be divided into four categories determined by its

affinity or avidity and the resulting signal through the T cell

receptor(s). These are (i) a weak or null signal below that required

for positive selection; (ii) a signal sufficient for selection into the

Tconv lineage; (iii) a signal that initiates selection into the Treg

lineage; and (iv) a strong signal that leads to deletion.

We considered two classes of models. In one, the distribution of

signal strengths resulting from encounters is constant throughout

Figure 1. Data taken from van Santen et al. [16]. Absolute number of clonotype positive CD4z CD25{ (Tconv, red circles) and CD4z CD25z

(Treg, blue circles) thymocytes in tetracycline-treated TAND mice, as a function of the relative expression level of TIM RNA in the thymus of these
animals. Control animals lacked either the transactivator or reporter transgene.
doi:10.1371/journal.pcbi.1003102.g001

Modeling Thymic Selection
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the selection period - the p{sum model. In the other, the two-

phase model, we allow for the possibility that this distribution shifts

during selection as a result of temporal changes in TCR sensitivity.

Fate decisions made by integrating TCR signals; the

p{sum model. The p interactions constituting an encounter

may occur simultaneously, or sequentially within a time interval

that is short compared to the decay time for TCR signals

transduced by binding to pMHC. We consider an encounter to be

the unit of information that can influence fate decisions. When one

TCR binds to one randomly chosen pMHC, the contact results in

a signal of strength drawn from an unknown probability

distribution. One correlate of ‘strength’ might be the affinity of

binding. Indeed affinity of binding to selecting pMHC ligands has

been demonstrated to be linearly proportional to selection

efficiency [14]. Similarly, when signals from multiple, proximal

TCR-pMHC binding events are integrated in each encounter

(pw1), the resulting signal strength might be related to the avidity

of the interaction. However we allow freedom in the interpretation

of the term strength to allow for non-linear relationships between

the off-rate of a TCR-pMHC complex and the signal transduced

by the TCR. It is simply the quantity resulting from each

encounter that the T cell uses in its fate-determination machinery.

We assume a log-normal distribution of signal strengths, for

reasons we discuss below.

To illustrate the calculation of selection efficiencies in this

model, consider the case p~1 (Figure 3A). Selection into the

conventional T cell lineage requires:

1. at least one encounter with strength greater than a positive

selection threshold, k1;

2. all n encounters below a higher threshold k2.

Experimental evidence suggests that Treg development requires

agonist peptide to be presented in the thymus [9,10,12,24,54]. The

canonical explanation is that Treg are induced by TCR signals that

lie below the threshold of negative selection, but above that

required for selection into the conventional T cell pool. So we

define a negative selection threshold k3, above k2, such that an

encounter between k2 and k3 triggers divergence into the Treg

lineage. For Treg selection, then,

1. at least one of the n encounters is above a positive selection

threshold, k1 (to pass positive selection),

2. all n encounters are below the threshold k3 (to avoid negative

selection),

3. at least one encounter occurs between thresholds k2 and k3.

While this model does not contain time explicitly, the n

encounters are considered to occur sequentially and so negative

selection (deletion) can be initiated at any time by an encounter

with strength wk3. This also means that it is possible, for example,

for a cell to receive a signal within the Treg region and initiate

development into that lineage, but later to have an encounter

above k3 and be deleted. It also means than n is an upper limit on

the number of thymocyte encounters; the mean number of

encounters will be fewer than n due to early termination through

negative selection.

We then calculate the probability of each fate (fail positive

selection, Tconv, Treg, deletion) after n encounters. These depend

simply on the probabilities ai of an encounter falling in each region

(Figure 3A, blue curve);

P½Tconv (CTRL)�~P½all n encounters fall below k2�

{P½all n encounters fall below k1�

~(a1za2)n{an
1

ð1Þ

P½Treg (CTRL)�~P½all n encounters fall below k3�

{P½all n encounters fall below k2�

~(a1za2za3)n{(a1za2)n

ð2Þ

Now assume a proportion t of endogenous peptides are replaced

by the agonist peptide TIM. Each TCR-pMHC contact will

involve an endogenous peptide with probability (1{t) or TIM

with probability t. The signal strength derived from this contact

will respectively be lognormally-distributed or with fixed strength

kTIM. Agonist ligands appear to induce deletion as well as Treg

Figure 2. Thymocyte encounters with self-peptides. An encounter is defined as the simultaneous or temporally proximal binding of p TCR to p
pMHC ligands on a thymic epithelial cell. Here, p~3.
doi:10.1371/journal.pcbi.1003102.g002
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commitment [9–13,16] and so it is likely that kTIM lies above k2.

To illustrate, assume it lies within the window that triggers Treg

commitment, the region bounded by (k2,k3). At expression level t,

the probabilities ai change as follows (Figure 3A, red curve):

a1?(1{t)a1, a2?(1{t)a2, a3?(1{t)a3zt: ð3Þ

For any kTIMwk2, the probability of selection into Tconv is

P½Tconv(t)�~

(1{t)n((a1za2)n{an
1)~(1{t)nP½Tconv(CTRL)�

ð4Þ

and the probability of selection into Treg is

Figure 3. The influence of TIM expression on the distribution of signal strengths resulting from thymocyte encounters. A: The case
p~1. The probabilities ai(i~1 . . . 4) are those of a signal lying within the different selecting regions. Blue curve; log-normally distributed signal
strengths S from self pMHC in the absence of TIM expression. Area under the curve = 1. Red curve; TIM expressed at frequency t superimposed on
this wild-type (endogenous pMHC) distribution. The spike at kTIM (shown for convenience here with finite width and height) is a point mass in the
probability distribution, of area t; the remainder is of area (1{t). B: For pw1 the different selecting regions lie beween different signal strength
thresholds K1, K2 and K3 . Increasing TIM expression t (the proportion of pMHC within an encounter, on average) shifts the distribution of signal
strengths rightwards.
doi:10.1371/journal.pcbi.1003102.g003

P½Treg (t)�~

(1{t)nP½Treg(CTRL)�

z 1{tz
t

(P½Tconv(CTRL)�zP½Treg(CTRL)�)1=n

 !n

{(1{t)n

" #

|(P½Tconv(CTRL)�zP½Treg(CTRL)�), if k2vkTIMvk3

(1{t)nP½Treg(CTRL)�, if kTIMwk3,

0
BBBBBB@

ð5Þ
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which is a function of the maximum number of encounters n but is

independent of the selection thresholds or the probabilities ai.

When pw1, we assume each encounter is of strength

Zp~
Pp

j~1 Xj . The Xj are identically distributed random

variables representing the strength of a single TCR-pMHC

binding. Each binding generates either (i) a signal arising from a

randomly selected endogenous pMHC, with probability (1{t), or

(ii) a signal of strength kTIM resulting from an interaction with

TIM pMHC with probability t. We denote the selection thresholds

as Ki. When p is small, the distribution of signal strengths contains

point masses at kTIM, 2 kTIM, and so on. As p increases, the

distribution becomes smoother and shifts rightwards with increas-

ing t (Figure 3B). Text S1 contains the calculation of the selection

probabilities for pw1.

Given the complexities of TCR signalling, individual TCR

binding events may not contribute linearly to an encounter’s

strength, however ‘strength’ is defined. However for our

arguments all we require is (i) that endogeneous pMHC provide

a smooth distribution of signal strengths arising from encounters,

(ii) when agonist is present at frequency t, this distribution shifts

rightwards, and (iii) the more pMHC involved in an encounter, the

smoother this perturbed distribution is. The additive model is a

minimal model that gives this biologically reasonable behaviour.

Variable TCR sensitivity: The two-phase model. This

model is an extension of the one-hit (p~1) model that also allows

the sensitivity of immature thymocytes to TCR stimulation to vary

during maturation. For simplicity, the selection process is divided

into two distinct phases, A and B, each with maximum number of

interactions nA and nB. In each phase the TCR-pMHC

encounters are divided into distinct selecting categories, as before,

with probabilities (a1,a2,a3,a4) in the A-phase, where

a4~1{a1{a2{a3, and probabilities (b1,b2,b3,b4) in the B-

phase (Figure 4).

As above, we assume that a thymocyte participates in n
encounters at most. At any time during development a signal

above the positive selection threshold k1 triggers Tconv develop-

ment; this decision can be superceded by a signal above the

threshold k2 which triggers differentiation into the Treg lineage;

and a thymocyte can be negatively selected at any time by a signal

greater than k3.

The predictions of the model are independent of the order of

the phases A and B. Here we discuss the situation in which TCR

sensitivity increases during thymic development. In this scenario,

kTIM initially lies within the Treg-selecting region, meaning that an

encounter with agonist in phase A initiates Treg commitment and

causes deletion in phase B (Figure 3). The changes in the quantities

ai and bi with TIM expression t follow the form of equation 3, and

we then express the probabilities of selection into each lineage as a

function of t and the parameters nA,nB,kTIM,ai and bi,(i~1,2,3).
Details are in Text S2.

The choice of the distribution of signal strengths. In

both models, a thymocyte’s fate is determined by the maximum

Figure 4. The two-phase model. In this instance, TCR sensitivity is assumed to increase during development, such that an encounter with the
agonist ligand TIM delivers a signal that initiates Treg development early in selection (phase A) but causes deletion if encountered later (phase B).
doi:10.1371/journal.pcbi.1003102.g004

Modeling Thymic Selection
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signal strength experienced over a large number of encounters. We

assume the strength of a single TCR-pMHC binding is log-

normally distributed. The strength of an encounter (the sum of p

proximal TCR-pMHC interactions) is then also approximately

log-normally distributed [55]. We choose the log-normal distribu-

tion because it is ubiquitous in cell biology, and arises naturally

when a random variable is derived from multiplying random

variables from arbitrary distributions – such as concentrations of

different signalling molecules in signal transduction pathways.

However the maximum value of a large sample drawn from any

heavy-tailed distribution converges to the same (Fréchet) distribu-

tion [56,57]. Each thymocyte is indeed expected to participate in a

large number of encounters, and so our results hold for any heavy-

tailed distribution of TCR-pMHC interaction strengths. Further,

relative, not absolute, values of these signal strengths are key to the

modelling of fate decisions and so we can set the mean of this

distribution to be 1. The variance of the distribution is a free

parameter which also does not influence our conclusions, but we

discuss its influence on some parameter estimates in the Results.

Relating absolute peptide abundance to relative RNA

expression. We model agonist abundance t as the fraction of

endogenous peptides replaced by the agonist peptide, while the

measure of agonist abundance used in ref. [16] is the relative

expression of TIM RNA compared to that in control thymi. The

relationship between t and TIM RNA is unknown, although we

would expect it to increase monotonically. Further, a saturating

level of TIM RNA is unlikely to achieve exclusive TIM expression

(t~1), either due to competition for loading onto MHC from

endogenous peptides and/or the presence of dendritic cells in the

thymus that express endogenous but not TIM peptide MHC

complexes. In the absence of more information we assume a

sigmoid linear-log relation that is approximately linear at low TIM

expression levels and saturates at tmax,

t~
tmax

1z
log(½RNA�)

log(B)

� �C
ð6Þ

where [RNA] is the TIM RNA expression level relative to controls

and B is the expression level at which t is half-maximum. C is a

measure of the steepness of the function around B and is the slope

of log(t) versus log½RNA� at low TIM expression levels (Figure 5).

Despite our uncertainty in the relation between relative TIM RNA

and t, we will show that we can make robust statements regarding

the ability of different models to describe the data.

Parameter estimation
The key parameters of interest were the encounter size p for the

p{sum model, and the number of encounters in each phase in the

two-phase model. Other parameters were estimated simultaneous-

ly, but several quantities were taken as inputs to the models

because the data from [16] did not allow us to parameterise them

directly. These were (i) the parameters specifying the relation

between relative RNA expression and absolute peptide abun-

dance; (ii) the distribution of signal strengths obtained by the AND

TCR from randomly sampled self pMHC ligands; and (iii) the

relation between selection probabilities and absolute cell numbers.

First, we explored ranges of parameters defining the mapping func-

tion (equation 6); tmax [ (10{6,1), B [ (10{6,1), and C [ (2,10). We

chose to use this generic sigmoid dose-response curve given our

ignorance of the mechanistic relation between RNA expression and

peptide-MHC abundance on thymic epithelial cells. However, we

were able to partially validate this choice of function, and the region

of parameter space that we explored, using data from the study by

Obst et al. [58]. They characterised the relation between the degree

Figure 5. Relating TIM RNA to peptide abundance. We use equation 6 to connect the TIM peptide abundance t to the expression of TIM RNA
relative to controls. Shown are three representative functions using different values of the breadth-parameter C, with location parameter B~10{3

and saturating TIM abundance tmax~0:05.
doi:10.1371/journal.pcbi.1003102.g005

Modeling Thymic Selection

PLOS Computational Biology | www.ploscompbiol.org 7 July 2013 | Volume 9 | Issue 7 | e1003102



of activation of adoptively transferred AND CD4z T cells and the

relative TIM RNA expression on MHC class II-expressing cells,

using a similar tetracycline-inducible expression system to that used

in [16]. Their readout of immune activation was the fraction of

AND cells that had divided 60 h following induction of TIM

expression. Assuming this fraction is linearly related to peptide

availability we used the data from Obst et al. to estimate the

parameters of the mapping function (equation 6). We found that

both the recruited fraction and an alternative measure of immune

activation, the estimated per capita rate of recruitment into division,

yielded mappings within the envelope of functions generated with

our parameter ranges. These mappings also lay well within the 95%

uncertainty envelope generated by the best-fitting parameters from

our analysis of the data from [16]. For details, see Text S3, Figure

S1 and Table S1. Second, we assumed the logarithm of the signal

strength derived from a single AND-TCR endogenous-pMHC

interaction is normally distributed with zero mean and unit

variance. The scale of the distribution of signal strengths is arbitrary

and its coefficient of variation does not influence our conclusions

(see Results). Third, the models provide the probabilities of selection

into the Tconv and Treg lineages and the data are absolute numbers

of these populations in the thymus. We relate the numbers to

probabilities through a scaling constant derived from the proportion

of AND TCR cells that fail negative selection in control mice (Text

S1).

Parameter estimation in the p-sum model. The p{sum
model is characterised by a further six parameters

(n,p,kTIM,K1,K2,K3) but three could be eliminated or constrained.

First, because the AND TCR is strongly selecting we assumed that

the probability of any one encounter falling below the positive

selection threshold, e~P½ZpvK1�, is small. Second, the param-

eter n is the upper limit on the number of encounters made by a

thymocyte during selection, and is expected to be large.

Thymocytes move through the medulla and cortex at similar

speeds (15 mm/min and 10 mm/min, respectively) [59]. In the

medulla, these speeds were shown to be associated with DC

contacts at a rate of between 4 and 7 per hour, respectively. If we

assume that additional contacts with TECs will contribute up to 50

contacts per hour, and that the time-spent in the thymus is

between 5–10 days, then 10000 is a plausible upper bound on n.

We used a conservative lower bound of n~500. Thus the

probability of all n encounters falling below the positive selection

threshold, en, is vanishingly small and we set K1~0. Further, for a

given choice of n and p, the thresholds for Treg commitment (K2)

and negative selection (K3) are determined by the observed

probabilities of selection of conventional and regulatory T cells in

control mice (Text S1). Selection in TIM transgenic mice using the

p{sum model is then described by three free parameters (n, p,

kTIM). Only two of these can be identified uniquely, so we

explored a discrete set of values of n [ (500,1000,10000) and for

each used a maximum likelihood approach to identify values of p
and kTIM, the signal strength derived from a single AND TCR

contact with TIM agonist. The process was repeated across

randomly sampled parameters characterising the mapping func-

tion. The residual sum of squares (RSS) and the Akaike

information criterion (AIC), where with N observations

AIC = N log(RSS) up to an additive constant, were used to

identify the best fitting parameter values. Approximate 95%

confidence intervals were generated from the parameter sets that

yielded AIC values within 2 units of the lowest value.

Parameter estimation in the two-phase model. The

predictions of the two-phase model are determined by the TIM

mapping function and the three parameters nA, nB, and a4 (Text

S2). We varied a4, the probability that a randomly sampled

pMHC in phase A will lead to negative selection, between 10{4

and 0.1, and used a maximum likelihood approach to identify nA

and nB. As above, the process was repeated for a wide range of

mapping functions and AIC used to identify best-fitting parameter

combinations and approximate 95% confidence intervals.

Results

Without TCR sensitivity varying during development, a
model in which fate decisions derive from single TCR-
pMHC contacts is unable to explain the data

The key features of the data are (i) Tconv numbers decline

monotonically with agonist expression and (ii) modest increases in

agonist expression lead to an increase in the absolute number of

AND Treg, with numbers then decreasing at higher levels of TIM

expression (Figure 1). Assuming there is a positive relationship

between TIM peptide presentation (t) and relative TIM RNA

expression, equation 4 shows that a model in which fate decisions

are re-evaluated after single TCR-pMHC contacts (p~1) can

describe the Tconv data, which falls progressively with t.

However, we can see using a graphical argument (Figure 6,

upper panel) that the p{sum model with constant TCR sensitivity

will only be able to capture the trend in Treg numbers if encounters

comprise TCR signals integrated over multiple pMHC bindings

(pw1). If the strength of an interaction between a single AND-

TCR and agonist TIM (kTIM) lies within the Treg-selecting range

(k2,k3), we would expect to see a monotonic increase in Treg

numbers with increasing agonist peptide expression; as agonist

becomes more abundant, progressively more probability mass is

contained within this area, boosting the probability of Treg

selection (Figure 5, upper panel; Figure 7A, dotted-blue curve).

Here, the one-hit model predicts that the absolute increase in Treg

numbers is greater than or equal to the absolute decline in Tconv

numbers. Conversely, if kTIM is above the threshold for negative

selection, k3, then we would predict a continuous decrease in Treg

as agonist peptide becomes more abundant and increases the

probability of deletion (Figure 5, upper panel; Figure 7A, dashed

red curve). Neither of these trends are what is observed and so we

rule out these scenarios. Finally, we can exclude the possibility that

kTIM lies within the Tconv -selecting range; if kTIMvk2, increasing

TIM expression would then increase the probability of selection

into Tconv, which we do not observe. Thus we can reject the simple

one-hit model for selection of AND thymocytes.

The data are consistent with a model in which fate
decisions derive from integrating multiple TCR-pMHC
encounters

Extending the argument above, to explain the rise and fall of

Treg numbers with agonist peptide expression (t) requires the

probability mass within the Treg-selecting region to increase then

decrease with t. This becomes possible when thymocytes read

multiple TCR-pMHC bindings simultaneously (pw1). Qualita-

tively, this is because when pw1, replacing an increasing fraction

of endogenous peptides with TIM (t) right-shifts the distribution of

encounter strengths and, in contrast to the p~1 case, increases the

probability of an encounter within both the Treg and negative-

selection regions (Figure 3B). The probability contained below the

Treg selection threshold falls with t, consistent with Tconv numbers

falling; the probability a3 of an encounter occurring within the

Treg zone first increases then decreases with t, as required to

explain the data; and the probability of negative selection

continually increases (Figure 6, middle panel).
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We explored this quantitatively and sought to identify the

parameters of the p{sum model from the data. They cannot all

be identified uniquely. As described in Methods we took the

approach of exploring a range of plausible parameters governing

the function mapping RNA expression to endogenous peptide

replacement by TIM, and a range of values of the maximum

number of encounters, n.

Remarkably, all values of n yielded equivalent descriptions of

the data, and the encounter size p was highly insensitive to other

parameters; it lay between 2 and 5 for all models, with best fitting

value p~3, independent of n. We also found that a range of

mapping functions were able to describe the data equally well

(Table S1). In particular, we predict that at maximum RNA

expression, TIM replaces beween 0.1% and 12% of endogenous

peptides. Representative fits to the data are shown in Figure 7.

Panel A illustrates the failure of the one-hit model, with the best fit

obtained by forcing p~1. Panel B shows the fit achieved with the

p{sum model with p a free parameter.

The estimate of p is also independent of the variance of the

TCR-pMHC signal strength distribution s2. This also derives

from the fact that the key quantities are just the probabilities ai of

interactions lying between the different thresholds Ki. However

these thresholds become increasingly spaced with s2 (that is, as the

log-normal distribution becomes increasingly fat-tailed). The less

heavy-tailed the distribution of signal strengths, the smaller is the

window of affinity/avidity for triggering Treg development with

respect to the mean signal strength. Small increases in affinity can

shift TCR signals from positively to negatively selecting [2,3], and

so if signal strength relates linearly to affinity or avidity [14], our

model predicts that the distribution of encounter strengths with self

may not be strongly heavy-tailed.

The estimated encounter size p increases in the presence of
null peptides

Anything between ten and a few hundred pMHC have been

shown to be required for T cell activation (see for example, [60])

and as few as 3–5 for pMHC recognition by cytotoxic T cell

effector function [61], although with the extent of TCR binding

influencing the degree of activation [42]. However, data

interpreted using the kinetic proofreading model suggest that

multiple interactions with very weak ligands may not lead to

activation at the whole cell level (see, for example, [40,41,62]).

Therefore we wanted to test whether the low estimates of p are an

artefact of the assumption that every TCR-pMHC interaction

generates a signal and so an encounter comprising p weak TCR-

pMHC bindings might still lead to strong signalling.

To do this, we extended the p{sum model such that only a

fraction (q) of self-peptides are capable of inducing a signal

through the AND TCR, and the remaining fraction 1{q are

classifed as null. This introduces a stochastic element to the

number of TCR contributing to the signal from each encounter.

We found that increasing the abundance of null ligands increases

the estimated TCR engagements per encounter (Table S1). For

example, we estimate the number of proximal TCR-pMHC

engagements per encounter (p) to be between 20–190 if 99% of

peptides fail to trigger the TCR, and between 350–1000 when

99.9% of peptides are null. Intuitively, the increase in p derives

from the dilution of the information content of each encounter by

the presence of null peptides. For each encounter to be a unit of

sufficient information with which fate decisions can be triggered,

the sample size p must increase in the presence of null interactions.

As for the simpler model (q~1) the estimate of p is also

independent of the number of encounters, n.

Figure 6. Modelling Treg selection as a function of agonist abundance. Upper panel If TCR sensitivity remains static throughout thymic
development, the simplest one-hit model fails to explain the rise and fall of Treg numbers with agonist expression, because the predicted probability
of receiving a Treg selecting signal either increases or decreases monotonically. Middle panel. Again with static thresholds, if encounters comprise p
contacts with pMHC, and pw1, the distribution of signal strengths from each encounter Zp is smoother and shifts rightwards with TIM expression,
first increasing then decreasing the probability a3 of triggering Treg development, as required. Lower panel. The two-phase mode also explains the
data and allows for encounters comprising single (p~1, illustrated here) or multiple (pw1) TCR-pMHC engagements to dictate fate. The trend in Treg

numbers arises from the balance between an increasing probability of receiving a Treg -selecting signal with agonist expression in the low-sensitivity
phase, and a decreasing probability in the higher-sensitivity phase.
doi:10.1371/journal.pcbi.1003102.g006

Figure 7. Model descriptions of the data. Representative descriptions of the data by the models. Treg in blue, Tconv in red. Panel A; the one-hit
model in which fate decisions are re-evaluated after single TCR-pMHC contacts. The dotted curves, k2vkTIMvk3 ; dashed curves, kTIMwk3 . Panel B;
the p{sum model; Panel C; the two-phase model with p~1.
doi:10.1371/journal.pcbi.1003102.g007
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Therefore, this extended model predicts that in the AND TCR

system the expected number of productive TCR-peptide MHC

interaction per encounter remains remarkably small (of the order

1). This is perhaps unsurprising, as low values of p will allow

thymocytes to discriminate between ligands with small differences

in affinity.

The two-phase model also explains the dependence of
Treg and Tconv on agonist expression

Next we explored the implications of a time-varying sensitivity

of thymocytes to TCR stimulation during maturation. The two

phase model, as described in Methods, extends the one-hit model

to include time-varying TCR sensitivity. Its predictions are

independent of the direction of variation, but to illustrate we

assume an interaction with agonist leads to Treg commitment

during phase A early in development, but causes deletion in phase

B when the same peptide is capable of inducing a stronger

downstream TCR signal (Figure 4). Selection into the Treg lineage

is still possible in both phases; what changes between phase A and

phase B is a right-shift in the distribution of signal strengths with

respect to the selection thresholds. This shift in probabilities within

the different fate-determining affinity ranges yields the required

trends in Tconv and Treg production with TIM expression (Figure 6,

lower panel).

The details of parameter estimation for this model are in

Methods and in Text S2. The unknowns are nA, the number of

encounters in phase A (Since p~1, this is the maximum number

of pMHC sampled in phase A), nB, the number of encounters in

phase B, and a4, the probability that a randomly sampled pMHC

in the low-sensitivity phase A will lead to negative selection.

As for the p{sum model, a range mapping functions described

the data equally well. A representative fit using the two-phase

model is shown in Figure 7C. We found a clear inverse

relationship between the value of tmax and the total number of

encounters, nA+nB (Figure 8A). The model predicts that between

1–2% of encounters occur in the lower sensitivity phase

(Figure 8B).

Model discrimination: The two-phase model is required
to explain the effect of partial and full agonists on Treg

selection
We have used data in which there is a profound loss of

conventional T cells in the presence of relatively low frequency of

agonist peptide, while Treg numbers are maintained and even

initially increase with moderate increases in agonist frequency

(Figure 1). These observations suggested the hypothesis that

regulatory T cells are intrinsically more resilient to deletion by

agonist peptides than conventional T cells [16]. Further, the study

by Cozzo Picca et al. [15] showed that a partial agonist can induce

deletion of conventional T cells but only an agonist could boost

regulatory T cell generation. This led to a hypothesis that agonist

peptide may deliver a qualitatively different signal that induces

regulatory T cells.

We argue that neither of these hypotheses need be invoked. We

have shown that both models can explain the first set of

observations within a single affinity/avidity framework with

different thresholds, without the need to assume differential

susceptibilities of Treg and Tconv to deletion. Further, we can see

immediately that the p{sum model will not explain the partial/

full agonist observations in ref. [15]. Their observation that partial

agonist increases the probability of deletion with no increase in

Treg suggests that the presence of the partial agonist shifts the

distribution of the sum of p interactions far to the right of the wild-

type distribution, such that the bulk of the distribution is contained

above the negative selection threshold. It follows that strong

agonist must push this distribution even further rightwards, and so

the probability of signals lying within the Treg-inducing zone must

fall. This is inconsistent with the observed increase in Treg with

agonist strength.

In contrast, the simple two-phase model can explain the effect

(Figure 9). Assume that the partial agonist is not strong enough to

Figure 8. Two phase model. (A) Total number of encounters (nA+nB) and (B) the proportion of all encounters that take place in phase A, for
plausible ranges of tmax, the proportion of endogenous peptides replaced by TIM at maximum RNA expression.
doi:10.1371/journal.pcbi.1003102.g008
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induce Treg commitment in phase A when the TCR is relatively

insensitive, but in the more sensitive phase B delivers a signal that

lies above the negative selection threshold. Then the net effect of

introducing a weak agonist is to increase deletion and have little

effect on Treg numbers, as is observed. In contrast, suppose the

strong agonist triggers Treg commitment when the TCR in phase

A, but is negatively selecting in phase B (Figure 9, right hand

columns). Then (i) expression of the strong agonist will always lead

to a fall in conventional T cell numbers, and (ii) moderate levels of

strong agonist, while increasing the overall probability of negative

selection, can drive a net increase in Treg production by boosting

the probability of receiving a Treg-inducing signal in phase A.

Figure 9 illustrates this effect for the case p~1, but the same

argument holds for a generalisation of the two-phase model with

pw1 (Figure S2).

Discussion

How does a thymocyte decide to become a conventional or

regulatory T cell, or die, and when are these decisions most likely

to take place? To address these questions, we have used

experimental data to test models of how thymocytes interpret

TCR interactions with self-peptide MHC to make fate decisions.

We showed that the data cannot be explained with a model in

which (from a given TCR’s perspective) individual self-peptide

MHC ligands are classed as positively selecting, negatively

selecting or promoting Treg development, and in which a single

engagement with a strong agonist pMHC is sufficient to influence

cell fate. Instead we found stronger and roughly equivalent support

for two alternative models, in which (i) a thymocyte bases decisions

on TCR signals summed from multiple engagements with pMHC

ligands, and/or (ii) a two-phase model in which TCR sensitivity

alters during development, and so an engagement with the same

pMHC ligand may lead to divergent outcomes at different stages

of development. A robust prediction of the p{sum model is that

the number of non-null TCR-self-peptide interactions per

encounter that contribute to fate decisions is remarkably small.

The two-phase model predicts that the initiation of differentiation

into the Treg lineage is most efficient during a relatively short

temporal window during which the TCR is less sensitive to

stimulation. Importantly, the models express the probabilistic

aspect of thymic selection that likely underlies the heterogeneity in

lineage decisions within a clonotypic population.

Explaining selection efficiency as a function of TCR
affinity

We focused here on a system in which agonist availability could

be manipulated. We can also use the models to make predictions

regarding selection efficiency as a function of TCR affinity. Lee et

al. [14] quantified the efficiency of Treg selection in the rat insulin

promoter (RIP)-mOVA system for a range of CD4z TCR clones

with varying affinity for OVA. They found Treg were generated

across a broad range of reactivities and found an increase in Treg

selection efficiency with increasing affinity for a self peptide. Both

the p{sum and variable-sensitivity models are able to explain

these observations (Text S4 and Figure S3), but they make distinct

predictions. The p{sum model predicts that the probability of the

summed-proximal signals at each encounter exceeding the Treg

threshold is lower for weaker clones; but this probability remains

constant throughout development. A variable-sensitivity model

predicts that Treg selection efficiency is determined by the duration

of the window in which agonist contact triggers Treg commitment.

In an increasing-sensitivity scenario, clones that recognise OVA

Figure 9. Using the two-phase model to explain the dependence of Treg development on agonist strength. Partial agonist (left panels)
may drive Tconv commitment in the early phase but induce deletion when TCR sensitivity is increased. In contrast, strong agonist (right panels) may
drive Treg commitment early, and despite triggering deletion later, the net effect is still a net increase in Treg numbers. For clarity we illustrate here
with the signal-strength distribution derived from p~1, as in the basic two-phase model, but the argument holds also for a generalised two-phase
model with encounters of size pw1 (Figure S2).
doi:10.1371/journal.pcbi.1003102.g009
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more weakly will take longer to reach a level of TCR sensitivity

that can induce Treg, and so a prediction of the model is that

lower-affinity TCR clones will commit to the Treg lineage later in

development.

These models might be distinguished by manipulating thymo-

cytes’ TCR sensitivity, for example through altered expression of

signalling proteins, at different stages of thymocyte development.

The p{sum model predicts that the efficiency of Treg selection

would be altered equally for all clones, whereas a model of

increasing TCR sensitivity predicts that damping of TCR

signalling later in development would most strongly reduce Treg

selection efficiency for clones with low affinity for self peptide.

Robustness of results despite parameter uncertainties
We deliberately did not use model selection criteria to

discriminate between models, in part because it is not possible to

identify all parameters uniquely. Instead we identified regions of

parameter space for each model that provided reasonable

descriptions of the data. Importantly, the predicted values of the

encounter size p for different abundances of null peptides (q) are

insensitive to the remaining parameters (Table S1). We consider

the p{sum and two-phase models capable of describing the data

equally well because they are able to capture the decline in Tconv

and increase then decrease in Treg with TIM abundance. Both

models capture this behaviour provided TIM abundance increases

monotonically with RNA expression, which we expect to be the

case. Further, model selection criteria are not required to reject the

simplest one-hit model, nor to compare the abilities of the p{sum
and two-phase models to describe the partial agonist observations.

The effect of integrating many intermediate affinity
binding events

One prediction of an avidity-based model is that thymocytes

may be deleted if they interact simultaneously with several pMHC

at moderate affinities. We believe this prediction is not necessarily

unreasonable; such events may be an inevitable byproduct of a

selection process that is inherently probabilistic and which can

result in cells with identical TCR experiencing divergent fates.

Generalisations of the two models
The two mechanisms we explore here are not mutually

exclusive. We illustrated the two-phase model assuming that

decisions are made based on single, rather than summed

interactions with pMHC. However it can be generalised to an

extended version of the p{sum model in which encounters are

interpreted differently as TCR sensitivity increases. This model

will be able to explain the observations a least as well as the

p{sum or two phase models, at the cost of extra parameters. Also,

we illustrated the impact of increasing TCR sensitivity with a

simple model that divided development into two discrete phases,

while increases in TCR sensitivity are likely to be continuous.

Modelling smooth changes in TCR sensitivity will introduce

additional parameters but we expect such a model to yield

qualitatively similar results. Importantly, our analysis does not

exclude the possibility that Treg are more resistant to deletion and/

or that qualitatively different signals are involved in Treg and Tconv

commitment; we simply show that these mechanisms need not be

invoked to explain the observations.

The nature of positively selecting signals
There is evidence that positive selection requires multiple low-

affinity contacts with self-peptides in the thymus [63–65]. In

contrast, in our model, a single encounter above the threshold K1

is sufficient for positive selection. We assumed this threshold is very

low for the AND thymocytes, which are strongly selecting under

normal conditions. These cells will presumably receive essentially

continuous positively selecting signals. In the general case, and

particularly for weakly signalling TCRs that are near the threshold

for death by neglect, the threshold K1 would need to be included

in the parameter search and the model would be extended to

include a memory of recent interactions; one possibility is a model

in which levels of survival or fate-determining proteins are

increased by TCR signalling but decay in its absence.

The role of precursor frequency in limiting Treg

development
There is substantial evidence that increasing the frequency of a

given clonal (single TCR specificity) population reduces its

efficiency of selection and in particular the probability of being

directed into the Treg lineage [14,22,24]. Our models treat cells as

independent entities and do not explicitly incorporate the

possibility that competition between thymocytes of similar TCR

specificities might influence the availability of selecting ligands.

However one mechanism of competition can be represented quite

straightforwardly in the models. If the strength of an encounter

correlates with its duration, or perhaps increases the probability of

internalisation of the pMHC ligand by the thymocyte, the TCR-

specific cells will compete for and possibly sequester agonist and

other high-avidity pMHC ligands. This will shift the apparent

distribution of signal strengths leftwards towards lower avidity (and

more available) interactions, reducing the probability of acquiring

Treg-selecting signals. This model of competition for higher-avidity

pMHC ligands may also explain the observation that the efficiency

of Tconv selection can increase with precursor frequency [22].

However it remains an open question whether competition for

pMHC plays an important role in selection at physiological

precursor frequencies.

Cytokine requirements for Treg development
Signalling through the IL-2 receptor is a requirement for Treg

development [66–68]. It is thought that strong TCR signalling

below the negative selection threshold may sensitise cells to IL-2,

licensing progression towards the Treg lineage. Whatever the

precise role for IL-2, it must operate downstream of fate-

determining signals if selection is governed by a hierarchy of

TCR avidity thresholds. Nevertheless, if IL-2 is limiting it may

provide an upper bound on the total rate of production of Treg,

either by redirection of cells to the Tconv lineage or through loss.

We argue however that competition for non-specific factors is

unlikely to play a significant role in the system we are working

with. First, the source of the IL-2 is unclear but we can reasonably

suppose that IL-2 production in this system is independent of TIM

expression. Treg numbers increase with TIM at low expression

levels, indicating that IL-2 cannot be limiting in this region

(Figure 1). Similarly it cannot be limiting at higher TIM levels as

Treg decrease. It remains possible that a capping of Treg

production through competition for IL-2 may be occuring in a

small flat region near the peak in Treg numbers, but competition

for non-specific factors alone cannot explain the key aspects of Treg

development we are attempting to describe.

Predictions of the models regarding the timing of
regulatory T cell commitment

Early neonatal thymectomy experiments suggested that the

development of Treg is delayed compared to conventional T cells

[69–71]. A key Treg marker, the transcription factor Foxp3, is
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predominantly observed in the mature CD4 single positive stage of

thymocyte development [72]. However, there may be a lag

between initiation of Treg development and the stable expression

of Foxp3; and it is possible that factors required for Treg

development such as IL-2 [66–68] or medullary thymic epithelial

cells [73] may only be required later in the maturation process.

Thus the timing of Treg commitment remains unclear. The two

models explored here make different predictions regarding this

timing. The p{sum model suggests that diversion into the

regulatory T cell lineage occurs with constant probability per

encounter throughout selection. In contrast, the key prediction of

the two-phase model is that the development of AND TCR Treg is

triggered most efficiently within a relative short window during

which thymocytes are relatively insensitive to TCR signalling. This

window is estimated to span roughly 2% of the total pMHC

ligands sampled, with the caveat that the two-phase model is an

abstraction of what is more likely to be a temporally graded shift in

sensitivity.

The two-phase model’s predictions are identical whether the

shorter, less sensitive phase occurs early or late in development.

However, expression of the downstream TCR-signalling protein

Zap70 increases progressively between the double positive (DP)

and single positive stages of thymocyte development, and is

associated with increasing sensitivity to TCR stimulation [28];

immature DP thymocytes display lower surface expression of

TCRs, as compared to mature single positive (CD4z or CD8z)

thymocytes, and TCR signalling may be actively inhibited in

immature DPs [74]. Thymocytes’ signalling environment may also

change as they develop. Selection begins in the thymic cortex,

where pMHC are encountered on cortical thymic epithelial cells,

before cells migrate to the medulla where they encounter pMHC

on medullary thymic epithelial cells and dendritic cells. It is

thought that levels of co-stimulation and antigen presentation are

generally lower in the cortex than in the medulla [75–77],

suggesting that there may be an effective increase in TCR

signalling during development. Using these observations, the two-

phase model predicts that Treg development begins predominant-

ly, but not exclusively, during a short window at the earliest double

positive stage of selection. Clearly, definitive experimental

identification of when Treg development is initiated will substan-

tially increase our understanding of how thymocytes process

information.

Ligand discrimination — a role for time-varying TCR
sensitivity in the thymus?

Reliable recognition and discrimination of self and nonself

ligands requires both TCR sensitivity and specificity. Specificity

will decrease as the number of pMHC integrated per encounter (p)

increases — when p is large, many pMHC engagements are

integrated at each encounter, and so the thymocyte is then just

sampling the mean of the distribution of pMHC affinities, and

information is lost. This may explain why the optimum values of p

in the p{sum model are at the lower end of the reported numbers

of pMHC engagements required for T cell activation; T cell

activation may invole a relatively small number of informative

TCR recognition events, together with many brief engagements

with null or very low affinity peptide ligands. Our analysis of the

p{sum model places small lower bounds on the number of non-

null TCR engagements per encounter; but the two-phase model

explains the data by allowing even a single non-null pMHC

recognition event to influence fate. We speculate that varying

TCR sensitivity with time in the thymus may allow for increased

specificity in self-nonself discrimination.

Supporting Information

Figure S1 Fitting the TIM mapping function to various
readouts of immune activation derived from the data in
Obst et al. [58]. Upper row: Our proposed sigmoid mapping

function yielded reasonable descriptions of three readouts of

immune activation, all assumed to be proportional to peptide

abundance on APC. Lower panel: we show the best fitting

functions derived from the three measures superimposed on the

95% uncertainty envelope in mapping functions derived from the

best-fitting parameters of the p{{sum model. Assuming TIM

abundance was proportional to the recruited fraction at 60 h (red

curve) or to the per capita rate of recruitment (orange curve)

yielded functions that lay well within this region.

(EPS)

Figure S2 Explaining the effect of partial and strong
agonists on Treg selection efficiency. Figure 9 in the main

text illustrates how the observations of Cozzo Picca et al. [15]

regarding the effect of partial and strong agonists on Treg selection

efficiency can be explained with the two phase model. This model

can be extended to include multiple pMHC per encounter and

with it a similar schematic can be used to explain the observations.

As before, the temporal order of the low and high TCR sensitivity

phases has no effect on our results; here we illustrate the argument

for an increasing-sensitivity model. The presence of partial agonist

may make Tconv commitment far more likely than Treg

commitment in phase of lower TCR sensitivity (upper left panel).

Increasing TCR sensitivity then may predominantly induce

deletion (lower left panel). In contrast, strong agonist (right panels)

may yield a higher probability of Treg commitment when TCR

sensitivity is lower but, as with a partial agonist, predominantly

trigger deletion when TCR sensitivity increases. The net effect is

an increase in Treg numbers as we shift from partial to strong

agonist.

(EPS)

Figure S3 Alternative models of Treg selection for TCR
clonotypes with varying sensitivity to endogenously
expressed ovalbumin (OVA) peptide, as used in Lee et
al. [14]. In the p{sum model (upper panel), each curve

represents the distribution of summed signal strengths (Zp) for

TCRs with varying affinity for endogenously expressed OVA

peptide. The probability that the summed signal from multiple

pMHC contacts leads to Treg commitment is higher for TCR with

higher affinity for OVA, and this probability remains constant for

each encounter throughout development. In the varying-TCR

sensitivity model (lower panel), each curve represents the

strength of signal derived from a single contact with OVA for

each TCR as a function of time. There is a window of

susceptibility in which contact with an OVA pMHC will lead to

Treg commitment; the probability of a contact with OVA is equal

for all TCR, but the duration and timing of this window will vary

for each TCR as a function of its initial ability to respond to OVA.

(The blue line represents TCR with highest affinity for OVA; and

orange represents TCR with the weakest affinity for OVA).

(EPS)

Table S1 Plausible combinations of parameters of the
p{sum model. We used discrete combinations of n, the

maximum number of APC encounters made by a thymocyte,

and q, the fraction of endogenous peptides that are capable of

inducing a TCR signal. Mean (minimum, maximum) values

correspond to parameter combinations that described the data

within DAICv2 of the lowest AIC achieved for each (n,q)

combination. p is the number of peptides contacted per APC
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encounter; kTIM reflects the signal derived from a single TCR

contact with agonist TIM (as a percentile of signal strengths

derived from contacts with non-null endogenous peptides); k2

represents the minimal signal required for Treg selection; k3

represents the minimal signal required for negative selection

(percentile of signal strengths received per encounter (with

functional and null endogenous peptides)); and tmax, B and C
parameterise the mapping function from relative TIM RNA to

peptide abundance.

(PDF)

Text S1 The calculation of the selection probabilities in
the p{sum model.
(PDF)

Text S2 The calculation of the selection probabilities in
the two-phase model.
(PDF)

Text S3 Exploring the relation between relative TIM
RNA expression and immune activation.
(PDF)

Text S4 Explaining variation in Treg selection efficiency
with TCR affinity.
(PDF)
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