Browse by Research Project Code

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Álvarez Martín, J. A. , Gollee, H. , Müller, J. and Murray-Smith, R. (2021) Intermittent control as a model of mouse movements. ACM Transactions on Computer-Human Interaction, 28(5), 35. (doi: 10.1145/3461836)

Puthiya Parambath, S. , Anagnostopoulos, C. , Murray-Smith, R. , MacAvaney, S. and Zervas, E. (2021) Max-Utility Based Arm Selection Strategy for Sequential Query Recommendations. In: 13th Asian Conference on Machine Learning (ACML 2021), 17-19 Nov 2021, (Accepted for Publication)

Jadidinejad, A. H. , Macdonald, C. and Ounis, I. (2021) The Simpson's Paradox in the offline evaluation of recommendation systems. ACM Transactions on Information Systems, 40(1), 4. (doi: 10.1145/3458509)

Romaszko, L., Borowska, A. , Lazarus, A., Dalton, D., Berry, C. , Luo, X. , Husmeier, D. and Gao, H. (2021) Neural network-based left ventricle geometry prediction from CMR images with application in biomechanics. Artificial Intelligence In Medicine, 119, 102140. (doi: 10.1016/j.artmed.2021.102140)

Anderson, K., Chirion, C., Fraser, M., Purcell, M., Stein, S. and Vuckovic, A. (2021) Markers of central neuropathic pain in Higuchi Fractal Analysis of EEG signals from people with spinal cord injury. Frontiers in Neuroscience, 15, 705652. (doi: 10.3389/fnins.2021.705652)

Bin, M., Crisostomi, E., Ferraro, P., Murray-Smith, R. , Parisini, T., Shorten, R. and Stein, S. (2021) Hysteresis-based supervisory control with application to non-pharmaceutical containment of COVID-19. Annual Reviews in Control, (doi: 10.1016/j.arcontrol.2021.07.001) (Early Online Publication)

Macdonald, C. and Tonellotto, N. (2021) On Approximate Nearest Neighbour Selection for Multi-Stage Dense Retrieval. In: 30th ACM International Conference on Information and Knowledge Management, 01-05 Nov 2021, (Accepted for Publication)

Tonellotto, N. and Macdonald, C. (2021) Query Embedding Pruning for Dense Retrieval. In: 30th ACM International Conference on Information and Knowledge Management, 01-05 Nov 2021, (Accepted for Publication)

Macdonald, C. , Tonellotto, N. and Ounis, I. (2021) On Single and Multiple Representations in Dense Passage Retrieval. In: 11th Italian Information Retrieval Workshop (IIR 2021), Bari, Italy, 13-15 Sep 2021, (Accepted for Publication)

Paun, L. M., Borowska, A. , Colebank, M. J., Olufsen, M. S. and Husmeier, D. (2021) Inference in Cardiovascular Modelling Subject to Medical Interventions. In: 3rd International Conference on Statistics: Theory and Applications (ICSTA'21), 29-31 Jul 2021, p. 109. ISBN 9781927877913

Rusu, M. M., Schött, S. Y., Williamson, J. H. , Schmidt, A. and Murray-Smith, R. (2021) Low‐dimensional embeddings for interaction design. Advanced Intelligent Systems, (doi: 10.1002/aisy.202100045) (Early Online Publication)

Wang, X., Macdonald, C. , Tonellotto, N. and Ounis, I. (2021) Pseudo-Relevance Feedback for Multiple Representation Dense Retrieval. In: 7th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR 2021), 11 Jul 2021, pp. 297-306. ISBN 9781450386111 (doi:10.1145/3471158.3472250)

Wu, Y., Macdonald, C. and Ounis, I. (2021) Partially Observable Reinforcement Learning for Dialog-based Interactive Recommendation. In: 15th ACM Conference on Recommender Systems (RecSys21), Amsterdam, The Netherlands, 27 Sep - 01 Oct 2021, (Accepted for Publication)

Bach, E., Rogers, S. , Williamson, J. and Rousu, J. (2021) Probabilistic framework for integration of mass spectrum and retention time information in small molecule identification. Bioinformatics, 37(12), pp. 1724-1731. (doi: 10.1093/bioinformatics/btaa998) (PMID:33244585)

Claudio Quiros, A., Coudray, N., Yeaton, A., Sunhem, W., Murray-Smith, R. , Tsirigos, A. and Yuan, K. (2021) Adversarial Learning of Cancer Tissue Representations. In: 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021), 27 Sept-1 Oct 2021, (Accepted for Publication)

Uhrenholt, A. K. , Charvet, V. and Jensen, B. S. (2021) Probabilistic Selection of Inducing Points in Sparse Gaussian Processes. In: 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021), 27-29 Jul 2021, (Accepted for Publication)

Davies, V. , Wandy, J., Weidt, S., van der Hooft, J. J.J. , Miller, A. , Daly, R. and Rogers, S. (2021) Rapid development of improved data-dependent acquisition strategies. Analytical Chemistry, 93(14), pp. 5676-5683. (doi: 10.1021/acs.analchem.0c03895) (PMID:33784814) (PMCID:PMC8047769)

Claudio Quiros, A., Murray-Smith, R. and Yuan, K. (2021) PathologyGAN: Learning deep representations of cancer tissue. Journal of Machine Learning for Biomedical Imaging, 2021(4), pp. 1-48.

Borowska, A. , Giurghita, D. and Husmeier, D. (2021) Gaussian process enhanced semi-automatic approximate Bayesian computation: parameter inference in a stochastic differential equation system for chemotaxis. Journal of Computational Physics, 429, 109999. (doi: 10.1016/j.jcp.2020.109999)

Bin, M. et al. (2021) Post-lockdown abatement of COVID-19 by fast periodic switching. PLoS Computational Biology, 17(1), e1008604. (doi: 10.1371/journal.pcbi.1008604) (PMID:33476332)

Dentro, S. C. et al. (2021) Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell, 184(8), 2239-2254.e39. (doi: 10.1016/j.cell.2021.03.009) (PMID:33831375) (PMCID:PMC8054914)

Taka, E., Stein, S. and Williamson, J. H. (2020) Increasing interpretability of Bayesian probabilistic programming models through interactive visualizations. Frontiers in Computer Science, 2, 567344. (doi: 10.3389/fcomp.2020.567344)

Yilmaz, S., Dudkina, E., Bin, M., Crisostomi, E., Ferraro, P., Murray-Smith, R. , Parisini, T., Stone, L. and Shorten, R. (2020) Kemeny-based testing for COVID-19. PLoS ONE, 15(11), e0242401. (doi: 10.1371/journal.pone.0242401) (PMID:33211725) (PMCID:PMC7676669)

Maadi, S. (2020) CAV-based Adaptive Traffic Signal Control with Reinforcement Learning. 2020 Scottish Informatics and Computer Science Alliance (SICSA) Conference, 01 October 2020. (Unpublished)

Anagnostopoulos, C. and Kolomvatsos, K. (2020) Predictive intelligence of reliable analytics in distributed computing environments. Applied Intelligence, 50, pp. 3219-3238. (doi: 10.1007/s10489-020-01712-5)

Wu, Y., Macdonald, C. and Ounis, I. (2020) A Hybrid Conditional Variational Autoencoder Model for Personalised Top-n Recommendation. In: ICTIR 2020: The 6th ACM International Conference on the Theory of Information Retrieval, Stavanger, Norway, 14-18 Sep 2020, pp. 89-96. ISBN 9781450380676 (doi:10.1145/3409256.3409835)

Claudio Quiros, A., Murray-Smith, R. and Yuan, K. (2020) PathologyGAN: Learning Deep Representations of Cancer Tissue. In: Third Conference on Medical Imaging with Deep Learning, Montreal, Canada, 6-9 Jul 2020, pp. 669-695.

Laux, L., Cutiongco, M. F.A. , Gadegaard, N. and Jensen, B. S. (2020) Interactive machine learning for fast and robust cell profiling. PLoS ONE, 15(9), e0237972. (doi: 10.1371/journal.pone.0237972) (PMID:32915784) (PMCID:PMC7485821)

Kolomvatsos, K., Anagnostopoulos, C. , Koziri, M. and Loukopoulos, T. (2020) Proactive & time-optimized data synopsis management at the edge. IEEE Transactions on Knowledge and Data Engineering, (doi: 10.1109/TKDE.2020.3021377) (Early Online Publication)

Savva, F. , Anagnostopoulos, C. , Triantafillou, P. and Kolomvatsos, K. (2020) Large-scale data exploration using explanatory regression functions. ACM Transactions on Knowledge Discovery from Data, 14(6), 76. (doi: 10.1145/3410448)

Tonolini, F., Radford, J., Turpin, A. , Faccio, D. and Murray-Smith, R. (2020) Variational inference for computational imaging inverse problems. Journal of Machine Learning Research, 21(179), pp. 1-46.

Husmeier, D. and Paun, L. M. (2020) Closed-loop effects in cardiovascular clinical decision support. In: Ladde, G. and Samia, N. (eds.) Proceedings of the 2nd International Conference on Statistics: Theory and Applications (ICSTA'20). Avestia Publishing: Ottawa, Canada, p. 128. ISBN 9781927877685 (doi:10.11159/icsta20.128)

Savva, F. , Anagnostopoulos, C. and Triantafillou, P. (2020) Adaptive learning of aggregate analytics under dynamic workloads. Future Generation Computer Systems, 109, pp. 317-330. (doi: 10.1016/j.future.2020.03.063)

Anagnostopoulos, C. (2020) Edge-centric inferential modeling & analytics. Journal of Network and Computer Applications, 164, 102696. (doi: 10.1016/j.jnca.2020.102696)

Husmeier, D. and Paun, L. M. (2020) Closed-loop effects in coupling cardiac physiological models to clinical interventions. In: Irigoien, I., Lee, D.-J., Martínez-Minaya, J. and Rodríguez-Álvarez, M. X. (eds.) Proceedings of the 35th International Workshop on Statistical Modelling. Servicio Editorial de la Universidad del País Vasco: Bilbao, Spain, pp. 120-125. ISBN 9788413192673

Jadidinejad, A. H. , Macdonald, C. and Ounis, I. (2020) Using Exploration to Alleviate Closed-Loop Effects in Recommender Systems. In: 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2020), Xi'an, China, 25-30 Jul 2020, pp. 2025-2028. ISBN 9781450380164 (doi:10.1145/3397271.3401230)

Williamson, J. H. , Quek, M., Popescu, I., Ramsay, A. and Murray-Smith, R. (2020) Efficient human-machine control with asymmetric marginal reliability input devices. PLoS ONE, 15(6), e0233603. (doi: 10.1371/journal.pone.0233603) (PMID:32479507) (PMCID:PMC7263597)

Savva, F. , Anagnostopoulos, C. and Triantafillou, P. (2020) SuRF: Identification of Interesting Data Regions with Surrogate Models. In: 36th IEEE International Conference on Data Engineering (IEEE ICDE), Dallas, TX, USA, 20-24 April 2020, pp. 1321-1332. ISBN 9781728129037 (doi:10.1109/ICDE48307.2020.00118)

Savva, F. , Anagnostopoulos, C. and Triantafillou, P. (2020) Aggregate Query Prediction under Dynamic Workloads. In: 2019 IEEE International Conference on Big Data (IEEE BigData 2019), Los Angeles, CA, USA, 09-12 Dec 2019, pp. 671-676. ISBN 9781728108582 (doi:10.1109/BigData47090.2019.9006267)

Anagnostopoulos, C. and Triantafillou, P. (2020) Large-scale predictive modeling and analytics through regression queries in data management systems. International Journal of Data Science and Analytics, 9(1), pp. 17-55. (doi: 10.1007/s41060-018-0163-5)

Mohammadi, S., Uhrenholt, A. K. and Jensen, B. S. (2020) Odd-One-Out Representation Learning. Object Representations for Learning and Reasoning, 11 Dec 2020.

Ireland, D.G. , Doring, M., Glazier, D.I., Haidenbauer, J., Mai, M., Murray-Smith, R. and Ronchen, D. (2019) Kaon photoproduction and the Lambda decay parameter alpha. Physical Review Letters, 123, 182301. (doi: 10.1103/PhysRevLett.123.182301)

Wandy, J., Davies, V. , van der Hooft, J. J.J. , Weidt, S., Daly, R. and Rogers, S. (2019) In silico optimization of mass spectrometry fragmentation strategies in metabolomics. Metabolites, 9(10), 219. (doi: 10.3390/metabo9100219) (PMID:31600991)

Jadidinejad, A. , Macdonald, C. and Ounis, I. (2019) How Sensitive is Recommendation Systems' Offline Evaluation to Popularity? In: REVEAL 2019 Workshop at RecSys, Copenhagen, Denmark, 20 Sep 2019,

Davies, V. , Harvey, W. T., Reeve, R. and Husmeier, D. (2019) Improving the identification of antigenic sites in the H1N1 Influenza virus through accounting for the experimental structure in a sparse hierarchical Bayesian model. Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(4), pp. 859-885. (doi: 10.1111/rssc.12338) (PMID:31598013) (PMCID:PMC6774336)

Tonolini, F., Jensen, B. S. and Murray-Smith, R. (2019) Variational Sparse Coding. In: Conference on Uncertainty in Artificial Intelligence (UAI 2019), Tel Aviv, Israel, 22-25 July 2019,

Savva, F. , Anagnostopoulos, C. and Triantafillou, P. (2019) Explaining Aggregates for Exploratory Analytics. In: IEEE Big Data 2018, Seattle, WA, USA, 10-13 Dec 2018, pp. 478-487. ISBN 9781538650356 (doi:10.1109/BigData.2018.8621953)

Jadidinejad, A. H. , Macdonald, C. and Ounis, I. (2019) Unifying Explicit and Implicit Feedback for Rating Prediction and Ranking Recommendation Tasks. In: 5th ACM SIGIR International Conference on the Theory of Information Retrieval, Santa Clara, CA, USA, 02-05 Oct 2019, pp. 149-151. ISBN 9781450368810 (doi:10.1145/3341981.3344225)

Moran, O., Caramazza, P., Faccio, D. and Murray-Smith, R. (2018) Deep, Complex, Invertible Networks for Inversion of Transmission Effects in Multimode Optical Fibres. In: 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, 02-08 Dec 2018,

This list was generated on Fri Oct 22 21:09:14 2021 BST.