Browse by Research Project Code

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

Gao, S., Hayes, F., Croke, S. , Messenger, C. and Veitch, J. (2022) Quantum algorithm for gravitational-wave matched filtering. Physical Review Research, 4(2), 023006. (doi: 10.1103/PhysRevResearch.4.023006)

Gabbard, H., Messenger, C. , Heng, I. S. , Tonolini, F. and Murray-Smith, R. (2022) Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. Nature Physics, 18(1), pp. 112-117. (doi: 10.1038/s41567-021-01425-7)

Galaudage, S., Wette, K., Galloway, D. K. and Messenger, C. (2022) Deep searches for X-ray pulsations from Scorpius X-1 and Cygnus X-2 in support of continuous gravitational wave searches. Monthly Notices of the Royal Astronomical Society, 509(2), pp. 1745-1754. (doi: 10.1093/mnras/stab3095)

Vermeulen, S. M. et al. (2021) Direct limits for scalar field dark matter from a gravitational-wave detector. Nature, 600(7889), pp. 424-428. (doi: 10.1038/s41586-021-04031-y)

McGinn, J., Messenger, C. , Williams, M.J. and Heng, I.S. (2021) Generalised gravitational burst generation with generative adversarial networks. Classical and Quantum Gravity, 38(15), 155005. (doi: 10.1088/1361-6382/ac09cc)

Williams, M. J. , Veitch, J. and Messenger, C. (2021) Nested sampling with normalizing flows for gravitational-wave inference. Physical Review D, 103(10), 103006. (doi: 10.1103/PhysRevD.103.103006)

Bayley, J. , Messenger, C. and Woan, G. (2020) Robust machine learning algorithm to search for continuous gravitational waves. Physical Review D, 102(8), 083024. (doi: 10.1103/PhysRevD.102.083024)

Gray, R. et al. (2020) Cosmological inference using gravitational wave standard sirens: a mock data analysis. Physical Review D, 101(12), 122001. (doi: 10.1103/PhysRevD.101.122001)

Williams, D. , Heng, I. S. , Gair, J., Clark, J.A. and Khamesra, B. (2020) A precessing numerical relativity waveform surrogate model for binary black holes: a Gaussian process regression approach. Physical Review D, 101, 063011. (doi: 10.1103/PhysRevD.101.063011)

Chan, M. L., Heng, I. S. and Messenger, C. (2020) Detection and classification of supernova gravitational wave signals: a deep learning approach. Physical Review D, 102, 043022. (doi: 10.1103/PhysRevD.102.043022)

Dreissigacker, C., Sharma, R., Messenger, C. , Zhao, R. and Prix, R. (2019) Deep-learning continuous gravitational waves. Physical Review D, 100, 044009. (doi: 10.1103/physrevd.100.044009)

Bayley, J. , Messenger, C. and Woan, G. (2019) Generalized application of the Viterbi algorithm to searches for continuous gravitational-wave signals. Physical Review D, 100(2), 023006. (doi: 10.1103/PhysRevD.100.023006)

This list was generated on Mon May 23 17:58:10 2022 BST.