An unsteady airfoil theory applied to pitching motions validated against experiment and computation

Ramesh, K. , Gopalarathnam, A., Edwards, J. R., Ol, M. V. and Granlund, K. (2013) An unsteady airfoil theory applied to pitching motions validated against experiment and computation. Theoretical and Computational Fluid Dynamics, 27(6), pp. 843-864. (doi: 10.1007/s00162-012-0292-8)

Full text not currently available from Enlighten.

Publisher's URL:


An inviscid theoretical method that is applicable to non-periodic motions and that accounts for large amplitudes and non-planar wakes (large-angle unsteady thin airfoil theory) is developed. A pitch-up, hold, pitch-down motion for a flat plate at Reynolds number 10,000 is studied using this theoretical method and also using computational (immersed boundary method) and experimental (water tunnel) methods. Results from theory are compared against those from computation and experiment which are also compared with each other. The variation of circulatory and apparent-mass loads as a function of pivot location for this motion is examined. The flow phenomena leading up to leading-edge vortex shedding and the limit of validity of the inviscid theory in the face of vortex-dominated flows are investigated. Also, the effect of pitch amplitude on leading-edge vortex shedding is examined, and two distinctly different vortex-dominated flows are studied using dye flow visualizations from experiment and vorticity plots from computation.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Ramesh, Dr Kiran
Authors: Ramesh, K., Gopalarathnam, A., Edwards, J. R., Ol, M. V., and Granlund, K.
College/School:College of Science and Engineering > School of Engineering > Autonomous Systems and Connectivity
Journal Name:Theoretical and Computational Fluid Dynamics
Publisher:Springer Verlag
ISSN (Online):1432-2250

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
9550Theoretical, Computational, and Experimental Studies of the Aerodynamics of Perching FlightDr. Ashok GopalarathnamAFOSRUNSPECIFIED