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Unsteady aerodynamic phenomena are encountered in a large number of modern aerospace
and non-aerospace applications. Leading edge vortices (LEVs) are of particular interest be-
cause of their large impact on the forces and performance. In rotorcraft applications, they
cause large vibrations and torsional loads (dynamic stall), affecting the performance ad-
versely. In insect flight however, they contribute positively by enabling high-lift flight.
Identifying the conditions that result in LEV formation and modeling their effects on the
flow is an important ongoing challenge. Perching (airfoil decelerates to rest) and hovering
(zero freestream velocity) maneuvers are of special interest. In earlier work by the authors,
a Leading Edge Suction Parameter (LESP) was developed to predict LEV formation for
airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream veloc-
ity. In this research, the LESP criterion is extended to situations where the freestream
velocity is varying or zero. A point-vortex model based on this criterion is developed and
results from the model are compared against those from a computational fluid dynamics
(CFD) method. Abstractions of perching and hovering maneuvers are used to validate
the low-order model’s performance in highly unsteady vortex-dominated flows, where the
time-varying freestream/translational velocity is small in magnitude compared to the other
contributions to the velocity experienced by the leading edge region of the airfoil. Time
instants of LEV formation, flow topologies and force coefficient histories for the various
motion kinematics from the low-order model and CFD are obtained and compared. The
LESP criterion is seen to be successful in predicting the start of LEV formation and the
point-vortex method is effective in modeling the flow development and forces on the air-
foil. Typical run-times for the low-order method are between 30–40 seconds, making it a
potentially convenient tool for control/design applications.

Nomenclature

α pitch angle, angle of airfoil chord with inertial horizontal
α̇ pitch rate
ḣ plunge rate
η(x) variation of camber along airfoil
γ(x, t) chordwise vorticity distribution
Γbt bound circulation of airfoil at time t
Γlevn strength of nth leading edge vortex
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Γtevm strength of mth trailing edge vortex
φB velocity potential from bound circulation
φlev velocity potential from leading edge vortices
φl lower surface velocity potential
φtev velocity potential from trailing edge vortices
φu upper surface velocity potential
ρ fluid density
θ variable of transformation of chordwise distance
a pivot location on the airfoil from 0 to 1 (x/c)
A0, A1, A2.... Fourier coefficients
Bxyz body frame
c airfoil chord
Cd drag coefficient
Cl lift coefficient
Cm pitching moment coefficient
CN normal force coefficient
CS leading edge suction force coefficient
cmpvt pivot for pitching moment calculation
FN normal force on airfoil
FS leading edge suction force on airfoil
h plunge displacement
M moment on airfoil
OXY Z inertial frame
p(x) pressure on airfoil surface
Reref Reynolds number based on reference velocity
ReVmag Reynolds number based on resultant velocity at the leading edge
S suction at the leading edge
t time
t∗ nondimensional time =

tUref

c
U(t) time-varying freestream velocity
Uref reference velocity
Vt tangential velocity on airfoil surface
Vmag magnitude of resultant velocity at the leading edge
W (x, t) local downwash
x chordwise distance
xp reference for pitching moment calculation
LESP leading edge suction parameter

I. Introduction

Interest in understanding the capabilities of natural flyers such as birds, bats and insects, and in de-
veloping micro air vehicles (MAVs) has resulted in substantial research efforts toward flapping flight and
the underlying unsteady aerodynamics. Perching maneuvers (employed by birds while landing) and hovering
maneuvers (exhibited by several insects) are of special interest. Perching can be modeled as a ramp variation
in angle of attack, in conjunction with the freestream velocity decreasing to zero (during landing). Hovering
maneuvers involve zero freestream and translational velocity. Some recent computational and experimental
studies on these motions can be found in Refs. 1–5.

Perching and hovering maneuvers are hence special cases of a more general set of kinematics involving
variable freestream velocity. Classical unsteady theories, such as those by Theodorsen,6 Wagner7 and von
Kármán and Sears8 solve the unsteady two-dimensional flow problem assuming small amplitudes, planar
wakes and constant freestream velocity. Isaacs9 assumed the freestream velocity to be a constant plus a
sinusoidal term and derived a solution for the lift on the airfoil. Greenberg10 developed an extension to
Theodorsen’s theory which modeled non-constant freestream, assuming that the wake was sinusoidal. A
method to solve for the loads on an airfoil in an arbitrarily varying freestream using an indicial response is
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given by van der Wall and Leishman.11

Unsteady aerodynamic phenomena are also encountered in dynamic stall in rotors. A common charac-
teristic between rotorcraft dynamic stall and insect/MAV aerodynamics is the presence of the Leading Edge
Vortex (LEV). LEV formation in rotorcraft and the accompanying dynamic stall phenomena are usually
detrimental to performance of the vehicle.12 On the other hand, LEVs are credited with being largely re-
sponsible for the success of high-lift flight in insects.13–16 For both scenarios, the identification of conditions
resulting in LEV formation is an important challenge.

Low-order numerical models based on point vortex methods are useful tools in studying unsteady aero-
dynamics. While the computational cost may be kept low in comparison with a conventional CFD method,
unsteady phenomena such as flow separation may be modeled using phenomenological augmentation of the
method. Sarpkaya,17Katz18 and Clements19 are some of the researchers who have applied point vortex meth-
ods to unsteady scenarios such as separated flow on an airfoil and bluff body flow. An extensive review of the
literature in vortex methods up to the 1980s is given by Leonard.20 More recently, Ansari et al.,21 Pullin &
Wang22 and Wang & Eldredge23 have proposed point vortex methods to model the effects the leading edge
vortices on the flowfield and forces. However, a common drawback in all these methods is that the conditions
under which flow separation occur are not defined. Instead, it is assumed that the flow is always separated at
the leading edge and a Kutta condition is enforced at the leading edge at all times. While this assumption is
valid for flat plates with sharp leading edges, rounded airfoils can support a certain amount of suction at the
leading edge. Hemati et al.24 have recently employed optimum control theory to establish that relaxing the
Kutta condition at the leading edge improves model predictions in comparison with high-fidelity methods.
Hence a criterion to identify flow separation at the leading edge is necessary to accurately model LEVs using
point vortex methods.

In previous work, the authors developed an unsteady airfoil theory which accounted for large amplitudes
and nonplanar wakes,25 and proposed the Leading Edge Suction Parameter (LESP) criterion26 to predict
the onset of LEV formation. For a given Reynolds number and airfoil, it was shown that LEV formation is
always initiated at the same value of LESP (calculated from inviscid theory), regardless of motion kinematics.
This criterion was used in conjunction with the unsteady airfoil theory to develop a point vortex method
with LESP-modulated vortex shedding from the leading edge.27 The results from this model were success-
fully validated against flow visualization and force histories from experimental and computational data. In
the current research, we aim to extend the low-order model to situations involving arbitrary variation in
translational/freestream velocity. Hence, the LESP hypothesis is generalized to account for variation in
Reynolds number during the motion. A point-vortex model is developed, using the revised LESP hypothesis
to modulate vortex shedding at the leading edge.

II. Theoretical Formulation

II.A. Time stepping approach

Figure 1. An illustration of the time stepping method.
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Details of this time stepping method can be found in Refs. 25 and 28. The inertial frame is given by
OXY Z and the body frame attached to the airfoil is given by Bxyz. At time t = 0, the body frame is
assumed to coincide with the inertial frame and at time t > 0, moves towards the left of the page along a
prescribed path. At each discrete time-step, a trailing-edge vortex is shed from the trailing-edge as shown
in Figure 1. Leading edge vortices are shed in accordance with the LESP criterion which is detailed in
Section II.C.

The vorticity distribution over the airfoil is taken to be a Fourier series in a manner analogous to thin-
airfoil theory.

γ(θ, t) = 2Vmag(t)

[
A0(t)

1 + cos θ

sin θ
+

∞∑
n=1

An(t)sin(nθ)

]
(1)

where,

x =
1

2
(1− cos θ) (2)

θ varies from 0 to π as x varies from 0 to 1 along the airfoil. Vmag is the magnitude of resultant velocity at
the leading edge, derived as a function of airfoil motion, freestream and induced velocities by free vortices
(Figure 2). The location of pitch pivot is given by a and Vind is calculated as described in Section II.D.

Vmag = |~U +
~̇
h+ ~̇αac+ ~Vind| (3)

Figure 2. 1, 2, 3 and 4 are the flow velocity contributions at the LE due to α̇, ḣ, U and vortical structures respectively.
The magnitude of their vector sum is Vmag.

We note that in our earlier work,25–27 the instantaneous freestream velocity U(t) was used instead of
vmag in Eqn. 1. In the current paper, since the method is extended to cases where U(t) can become zero
or small compared to the other perching or hovering velocity contributions, Vmag(t) has been used as the
better scaling parameter in Eqn. 1.

II.B. Calculation of local downwash and Fourier coefficients

The Fourier coefficients are given in terms of the local downwash W (x, t) as:

A0(t) = − 1

π

∫ π

0

W (x, t)

Vmag(t)
dθ (4)

An(t) =
2

π

∫ π

0

W (x, t)

Vmag(t)
cosnθdθ (5)

The local downwash is calculated by enforcing the boundary condition of zero normal flow on the airfoil
surface:

W (x, t) ≡ ∂φB

∂z
=

∂η

∂x

[
U(t) cosα+ ḣ sinα+

∂φlev

∂x
+

∂φtev

∂x

]
−U(t) sinα−α̇(x−ac)+ḣ cosα− ∂φtev

∂z
− ∂φlev

∂z
(6)
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where ∂φlev

∂x and ∂φtev

∂x are velocities induced along the chord and ∂φlev

∂z and ∂φtev

∂z are the induced velocities
normal to the chord due to discrete vortices in the flow shed by the leading and trailing edges. The calculation
of these quantities is detailed in section II.D.

The unknown at each time step is the strength of the last shed trailing edge vortex, assuming that no
leading edge vortex is formed at this time step. This is calculated iteratively using a Newton-Raphson
iteration to satisfy Kelvin’s condition.

Γbt +

ntev∑
m=1

Γtevm +

nlev∑
n=1

Γlevn = 0 (7)

where Γbt is the bound circulation calculated by integrating the chordwise vorticity over the airfoil chord:

Γbt = Vmag(t)cπ

[
A0(t) +

A1(t)

2

]
(8)

II.C. Criterion for prediction of LEV formation using LESP

The Leading Edge Suction Parameter (LESP)26 is a measure of the suction peak at the leading edge, which
in turn is caused by the stagnation point moving away from the leading edge when the airfoil is at an angle
of attack. As the airfoil thickness approaches zero, the leading edge radius also approaches zero giving rise
to a theoretically infinite flow velocity at the leading edge. From Refs. 29 and 30, we have that the form of
the infinity is:

VLE(t) = lim
x→LE

S√
x

(9)

S is a measure of the suction at the leading edge and is given by,

S = lim
x→LE

1

2
γ(x, t)

√
x (10)

Since γ(x, t) is infinite in order of 1/
√
x at the leading edge, the value of S is finite. Evaluating using the

current formulation,

S =
√
cVmag(t)A0(t) (11)

Although the theoretical velocity at the leading edge is infinite, real airfoils have rounded leading edges
which can support some suction even when the stagnation point is away from the leading edge.18 The
amount of suction that can be supported is a characteristic of the airfoil shape and Reynolds number of
operation. In previous research,26 the Leading Edge Suction Parameter was defined as the quantity obtained
by nondimensionalizing the suction with a function of the reference velocity (LESP (t) = A0(t)). Following
the lines of work by Evans & Mort31 and Beddoes32 who observed that LEV formation was correlated with
the occurrence of critical value of velocity/pressure gradient peak at the leading edge, we hypothesized that
LEV formation is correlated with a critical value of the LESP. Using dye-flow images from experiment and
vorticity plots from computation, we verified that LEV formation occurred at a critical value of LESP,
irrespective of motion kinematics as long as the airfoil and freestream Reynolds number remained the same.

In the current research, the freestream velocity is time variant and can become zero or small compared
to other velocity contributions. For the purpose of characterizing flow at the leading edge, specifically the
boundary layer development and separation leading to LEV formation, a better Reynolds number is one
that is based on Vmag(t) instead of U(t). We refer to this Reynolds number as ReVmag :

ReVmag (t) =
Vmag(t)c

ν
(12)

=
Vmag(t)

Uref
Reref (13)

where Reref is Reynolds number based on reference velocity (Reref =
Uref c

ν ).
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