Evolution of oil droplets in a chemorobotic platform

Parrilla Gutierrez, J. M. , Hinkley, T., Taylor, J. W. and Cronin, L. (2014) Evolution of oil droplets in a chemorobotic platform. Nature Communications, 5, 5571. (doi:10.1038/ncomms6571) (PMID:25482304) (PMCID:PMC4268700)

[img]
Preview
Text
98738.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

1MB

Abstract

Evolution, once the preserve of biology, has been widely emulated in software, while physically embodied systems that can evolve have been limited to electronic and robotic devices and have never been artificially implemented in populations of physically interacting chemical entities. Herein we present a liquid-handling robot built with the aim of investigating the properties of oil droplets as a function of composition via an automated evolutionary process. The robot makes the droplets by mixing four different compounds in different ratios and placing them in a Petri dish after which they are recorded using a camera and the behaviour of the droplets analysed using image recognition software to give a fitness value. In separate experiments, the fitness function discriminates based on movement, division and vibration over 21 cycles, giving successive fitness increases. Analysis and theoretical modelling of the data yields fitness landscapes analogous to the genotype–phenotype correlations found in biological evolution. , Trevor Hinkley, James Ward Taylor Kliment Yanev

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Cronin, Professor Lee and Taylor, Mr James and Parrilla Gutierrez, Dr Juan Manuel and Hinkley, Dr Trevor
Authors: Parrilla Gutierrez, J. M., Hinkley, T., Taylor, J. W., and Cronin, L.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Nature Communications
Publisher:Nature Publishing Group
ISSN:2041-1723
ISSN (Online):2041-1723
Copyright Holders:Copyright © 2014 The Authors
First Published:First published in Nature Communications 5:5571
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
577391Programmable Molecular Metal Oxides (PMMOs) - From Fundamentals to ApplicationLeroy CroninEngineering & Physical Sciences Research Council (EPSRC)EP/J015156/1CHEM - CHEMISTRY
646611Programmable 'Digital' Synthesis for Discovery and Scale-up of Molecules, Clusters and NanomaterialsLeroy CroninEngineering & Physical Sciences Research Council (EPSRC)EP/L023652/1CHEM - CHEMISTRY
503291Molecular-Metal-Oxide-nanoelectronicS (M-MOS): Achieving the Molecular LimitLeroy CroninEngineering & Physical Sciences Research Council (EPSRC)EP/H024107/1CHEM - CHEMISTRY
503295Molecular-Metal-Oxide-nanoelectronicS (M-MOS): Achieving the Molecular LimitLeroy CroninEngineering & Physical Sciences Research Council (EPSRC)EP/H024107/1CHEM - CHEMISTRY
562821Innovative Manufacturing Research Centre for Continuous Manufacturing and Crystallisation (CMAC)Leroy CroninEngineering & Physical Sciences Research Council (EPSRC)EP/I033459/1CHEM - CHEMISTRY