Defining the chemokine basis for leukocyte recruitment during viral encephalitis

Michlmayr, D., McKimmie, C.S., Pingen, M., Haxton, B., Mansfield, K., Johnson, N., Fooks, A.R. and Graham, G.J. (2014) Defining the chemokine basis for leukocyte recruitment during viral encephalitis. Journal of Virology, 88(17), pp. 9553-9567. (doi: 10.1128/JVI.03421-13)

Full text not currently available from Enlighten.

Abstract

The encephalitic response to viral infection requires local chemokine production and the ensuing recruitment of immune and inflammatory leukocytes. Accordingly, chemokine receptors present themselves as plausible therapeutic targets for drugs aimed at limiting encephalitic responses. However, it remains unclear which chemokines are central to this process and whether leukocyte recruitment is important for limiting viral proliferation and survival in the brain or whether it is predominantly a driver of coincident inflammatory pathogenesis. Here we examine chemokine expression and leukocyte recruitment in the context of avirulent and virulent Semliki Forest virus (SFV) as well as West Nile virus infection and demonstrate rapid and robust expression of a variety of inflammatory CC and CXC chemokines in all models. On this basis, we define a chemokine axis involved in leukocyte recruitment to the encephalitic brain during SFV infection. CXCR3 is the most active; CCR2 is also active but less so, and CCR5 plays only a modest role in leukocyte recruitment. Importantly, inhibition of each of these receptors individually and the resulting suppression of leukocyte recruitment to the infected brain have no effect on viral titer or survival following infection with a virulent SFV strain. In contrast, simultaneous blockade of CXCR3 and CCR2 results in significantly reduced mortality in response to virulent SFV infection. In summary, therefore, our data provide an unprecedented level of insight into chemokine orchestration of leukocyte recruitment in viral encephalitis. Our data also highlight CXCR3 and CCR2 as possible therapeutic targets for limiting inflammatory damage in response to viral infection of the brain.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Michlmayr, Ms Daniela and Pingen, Dr Marieke and McKimmie, Dr Clive and Graham, Professor Gerard
Authors: Michlmayr, D., McKimmie, C.S., Pingen, M., Haxton, B., Mansfield, K., Johnson, N., Fooks, A.R., and Graham, G.J.
College/School:College of Medical Veterinary and Life Sciences > Institute of Infection Immunity and Inflammation
Journal Name:Journal of Virology
Publisher:American Society for Microbiology
ISSN:0022-538X
ISSN (Online):1098-5514

University Staff: Request a correction | Enlighten Editors: Update this record