Cardiac MR imaging to measure myocardial blood flow response to the cold pressor test in healthy smokers and nonsmokers

Fairbairn, T. A., Motwani, M., Mather, A. N., Biglands, J. D., Larghat, A. M., Radjenovic, A. , Greenwood, J. P. and Plein, S. (2014) Cardiac MR imaging to measure myocardial blood flow response to the cold pressor test in healthy smokers and nonsmokers. Radiology, 270(1), pp. 82-90. (doi: 10.1148/radiol.13122345)

Full text not currently available from Enlighten.

Abstract

Purpose: To determine if myocardial perfusion cardiac magnetic resonance (MR) imaging can show changes in myocardial blood flow (MBF) during the cold pressor test (CPT) and can allow identification of the differing endothelial function of smokers and nonsmokers when compared during adenosine stress.<p></p> Materials and Methods: The study was approved by the institutional ethics review board and all participants gave informed written consent. Twenty-nine healthy volunteers (19 nonsmokers, 10 smokers; mean age ± standard deviation, 22 years ± 4) underwent 1.5-T MR imaging and analysis. Myocardial perfusion was assessed during rest, peak CPT, and adenosine hyperemia with a saturation-recovery gradient-echo pulse sequence (spatial resolution, 2.4 × 2.4 × 10 mm). Global, endocardial, and epicardial MBF were calculated by using Fermi-constrained deconvolution. Paired and independent t test statistical analyses were used to compare the responses between tests and groups. Regression analysis was performed to identify predictors of MBF change.<p></p> Results MBF at rest was similar between the nonsmoking and smoking groups (0.97 mL/g/min ± 0.4 vs 0.96 mL/g/min ± 0.3, respectively; P = .96). Nonsmokers responded to CPT with a 47% increase in MBF (1.43 mL/g/min ± 0.5) and smokers responded with a 27% increase (1.22 mL/g/min ± 0.4; P < .001). An endocardial-to-epicardial gradient existed at rest (nonsmokers, 1.10 [P = .002]; smokers, 1.30 [P = .01]) and CPT (nonsmokers, 1.19 [P < .001] smokers, 1.28 [P = .04]) but reversed during adenosine stress (nonsmokers, 0.89 [P = .03]; smokers, 0.92 [P = .42]). Conclusion: Myocardial perfusion cardiac MR imaging during CPT can allow assessment of changes in MBF globally and in the separate myocardial layers in healthy smokers and nonsmokers. This allows the combined assessment of endothelium-dependent (CPT) and endothelium-independent (adenosine stress test) MBF reserve in a single study.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Radjenovic, Dr Aleksandra
Authors: Fairbairn, T. A., Motwani, M., Mather, A. N., Biglands, J. D., Larghat, A. M., Radjenovic, A., Greenwood, J. P., and Plein, S.
College/School:College of Medical Veterinary and Life Sciences > School of Cardiovascular & Metabolic Health
Journal Name:Radiology
Publisher:Radiological Society of North America, Inc.
ISSN:0033-8419
ISSN (Online):1527-1315

University Staff: Request a correction | Enlighten Editors: Update this record