Carroll-type deformations in nonlinear elastodynamics

Rogers, C., Saccomandi, G. and Vergori, L. (2014) Carroll-type deformations in nonlinear elastodynamics. Journal of Physics A: Mathematical and Theoretical, 47(20), p. 205204. (doi: 10.1088/1751-8113/47/20/205204)

Full text not currently available from Enlighten.

Publisher's URL:


Classes of deformations in nonlinear elastodynamics with origins in the pioneering work of Carroll are investigated for a Mooney–Rivlin material subject to body forces corresponding to a nonlinear substrate potential. Exact representations are obtained which, inter alia, are descriptive of the propagation of circularly polarized waves and motions with oscillatory spatial dependence. It is shown that a description of slowly modulated waves leads to a novel class of generalized nonlinear Schrödinger equations. The latter class, in general, is not integrable. However, a procedure is presented whereby integrable Hamiltonian subsystems may be isolated for a broad class of deformations.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Vergori, Dr Luigi
Authors: Rogers, C., Saccomandi, G., and Vergori, L.
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Journal of Physics A: Mathematical and Theoretical
Publisher:IOP Publishing
ISSN (Online):1751-8121

University Staff: Request a correction | Enlighten Editors: Update this record