Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina

Coles, J. A. and Orkand, R. K. (1985) Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina. Journal of Physiology, 362(1), pp. 415-435.

Full text not currently available from Enlighten.

Publisher's URL: http://jp.physoc.org/content/362/1/415.full.pdf+html

Abstract

Ion-selective micro-electrodes were used to measure Na+ activity, aNa, in the two types of cell, photoreceptors and glial cells, and in the extracellular space, in superfused slices of the retina of the honey-bee drone, Apis mellifera male. Movements of Na+ were induced by light stimulation, or by increasing [K+] in the superfusate. In the dark, aNa in the photoreceptors was 10 mM (S.E. of the mean = 1 mM); in the glial cells it was higher: 37 +/- 2 mM. We estimate that in this preparation about 2/3 of the free Na+ in the tissue is in the glial cells. Stimulation with a train of light flashes, 1 s-1 for 90 s caused aNa in the photoreceptors to increase by 16 +/- 2 mM. K+ activity, aK, decreased by 21 +/- 3 mM. During the standard train of light flashes, aNa in glial cells decreased by only 1.5 +/- 0.3 mM, much less than the increase in aK (7 +/- 2 mM). One possible interpretation of this result is that most of the increase in aK is due to K+ uptake by a mechanism other than Na+-K+ exchange. In extracellular fluid, stimulation caused aNa to fall to a relatively steady value in about 10 s. Unlike aK, there was no tendency for aNa to return to the base line during the remainder of the 90 s stimulation. The fall in aNa was 14 +/- 1 mM: a greater fall is prevented by extracellular electric currents and a decrease in extracellular volume. When [K+] in the superfusate was increased from 7.5 to 18 mM, aNa decreased in the glial cells but not in the photoreceptors. In this tissue, stimulation causes changes in aNa in the neurones that might be large enough to modify the biochemistry of the cells. But in the glia, the fractional changes are small.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Coles, Dr Jonathan
Authors: Coles, J. A., and Orkand, R. K.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Journal of Physiology
Publisher:Wiley
ISSN:0022-3751
ISSN (Online):1469-7793

University Staff: Request a correction | Enlighten Editors: Update this record