The sticky resting box, a new tool for studying resting behaviour of Afrotropical malaria vectors

Pombi, M., Guelbeogo, W. M., Kreppel, K., Calzetta, M., Traoré, A., Sanou, A., Ranson, H., Ferguson, H. M. , Sagnon, N.’F. and della Torre, A. (2014) The sticky resting box, a new tool for studying resting behaviour of Afrotropical malaria vectors. Parasites and Vectors, 7(247), (doi: 10.1186/1756-3305-7-247)

[img]
Preview
Text
94843.pdf - Published Version
Available under License Creative Commons Attribution.

3MB

Abstract

Background: Monitoring densities of adult mosquito populations is a major challenge in efforts to evaluate the epidemiology of mosquito-borne diseases, and their response to vector control interventions. In the case of malaria, collection of outdoor-resting Anophelines is rarely incorporated into surveillance and control, partially due to the lack of standardized collection tools. Such an approach, however, is increasingly important to investigate possible changes in mosquito behaviour in response to the scale up of Insecticide Treated Nets and Indoor Residual Spraying. In this study we evaluated the Sticky Resting Box (SRB) - i.e. a sticky variant of previously investigated mosquito Resting Box, which allows passive collection of mosquitoes entering the box – and compared its performance against traditional methods for indoor and outdoor resting mosquito sampling.<p></p> Methods: Daily collections were carried out in two neighbouring villages of Burkina Faso during rainy season 2011 and dry season 2012 by SRB located indoors and outdoors, and by Back-Pack aspiration inside houses (BP) and in ad hoc built outdoor pit-shelters (PIT).<p></p> Results: Overall, almost 20,000 Culicidae specimens belonging to 16 species were collected and morphologically identified. Malaria vectors included Anopheles coluzzii (53%), An. arabiensis (12%), An. gambiae s.s. (2.0%) and An. funestus (4.5%). The diversity of species collected in the two villages was similar for SRB and PIT collections outdoors, and significantly higher for SRB than for BP indoors. The population dynamics of An. gambiae s.l. mosquitoes, as obtained by SRB-collections was significantly correlated with those obtained by the traditional methods. The predicted mean estimates of An. gambiae s.l. specimens/sampling-unit/night-of-collections was 6- and 5-times lower for SRB than for BP indoors and PIT outdoors, respectively.<p></p> Conclusions: Overall, the daily performance of SRB in terms of number of malaria vectors/trap was lower than that of traditionally used approaches for in- and outdoor collections. However, unlike these methods, SRB could be set up to collect mosquitoes passively over at least a week. This makes SRB a promising tool for passively monitoring anopheline resting populations, with data presented here providing guidance for how to set up SRB-based collections to acquire information comparable to those obtained with other methods.<p></p>

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Kreppel, Dr Katharina and Ferguson, Professor Heather
Authors: Pombi, M., Guelbeogo, W. M., Kreppel, K., Calzetta, M., Traoré, A., Sanou, A., Ranson, H., Ferguson, H. M., Sagnon, N.’F., and della Torre, A.
College/School:College of Medical Veterinary and Life Sciences > School of Biodiversity, One Health & Veterinary Medicine
Journal Name:Parasites and Vectors
Publisher:BioMed Central
ISSN:1756-3305
ISSN (Online):1756-3305
Copyright Holders:Copyright © 2014 The Authors
First Published:First published in Parasites and Vectors 7(247)
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record