
Copyright © 2014 Elsevier Ltd.

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/94788

Deposited on: 30 June 2014
Numerical Analysis of the Heat Transfer Behaviour of Water Based Al$_2$O$_3$ and TiO$_2$ Nanofluids in a Circular Pipe under the Turbulent Flow Condition

Goutam Saha and Manosh C. Paul

Systems, Power and Energy Research Division, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

*Corresponding author. Tel.: +44(0)141 330 8466; fax: +44(0)141 330 4343.

Email address: Manosh.Paul@glasgow.ac.uk (M.C. Paul)

Abstract:
A numerical investigation has been carried out applying single phase approach on turbulent forced convection flow of water based Al$_2$O$_3$ and TiO$_2$ nanofluids flowing through a horizontal circular pipe under uniform heat flux boundary condition applied to the wall. The effect of volume concentrations, Brownian motion and size diameter of nanoparticles on flow and heat transfer have been examined for Reynolds number, $Re = 10 \times 10^3$ to 100×10^3, Prandtl number, $Pr = 7.04$ to 20.29, nanoparticle volume concentration, $\chi = 4\%$ and 6% and nanoparticles size diameter, $d_p = 10$, 20, 30 and 40 nm respectively. Results reveal that the small size of nanoparticles with their Brownian motion has the highest average shear stress ratio, heat transfer rate and thermal performance factor for $\chi = 6\%$. Besides, it is found that the heat transfer rate increases as the particle volume concentration and Reynolds number increase with a decrease of nanoparticles size diameter. Moreover, Al$_2$O$_3$ water nanofluid shows a higher heat transfer rate compared to that of TiO$_2$-water nanofluid. Finally, a conclusion has been drawn from the present analysis that the heat transfer performance is more affected by the size diameter and Brownian motion of nanoparticles than the thermal conductivity of nanofluid. Results of the non-dimensional fully developed velocity and turbulent kinetic energy, frictional factor and average Nusselt number for pure fluid (water) as well as the result of average Nusselt number for Al$_2$O$_3$ and TiO$_2$-water nanofluid have been validated with published experimental results as well as with available correlations where a reasonable good agreement has been achieved.

Key words: Nanofluid, Brownian motion, heat transfer rate, thermal performance factor, single phase model.
1. Introduction

Nanofluids are new kind of heat transfer fluids which are derived by stably suspending nanoparticles in conventional heat transfer fluids usually liquids, and the volumetric fraction of the nanoparticles is usually below 5 to 10%. Various applications of nanofluids are found in cooling electronic components [1], transportation [2], industrial cooling [3], heating buildings and reducing pollution [4], nuclear systems cooling [5], space and defence [6, 7], energy storage [8], solar absorption [9], friction reduction [10], magnetic sealing [11], antibacterial activity [12], nanodrug delivery [13], intensify micro reactors [14], microbial fuel cells [15] and so on. Hence, research is in progress to introduce nanofluids in many thermal applications where the conventional fluids such as Ethylene Glycol, engine oil and water are not capable of improving the rate of heat transfer as expected. For the first time, Choi [16] at Argonne National Laboratory used nanoparticles suspended in a conventional heat transfer fluid known as nanofluid and proposed that the addition of nanometer size particles into the base fluid helps to increase the thermal conductivity and hence enhances the heat transfer rate of nanofluid.

Numerous experimental and numerical investigation have been carried out by researchers on different types of pipes or tubes using nanofluids under turbulent flow regime using nanofluid with single phase approach. Qiang and Yimin [17] investigated experimentally the heat transfer characteristics of nanofluid in a circular tube under both laminar and turbulent flow regime. They have measured the heat transfer coefficient and Darcy friction factor of Cu-water nanofluid and showed that the heat transfer rate increased because of addition of nanoparticles in the base fluid, while the Darcy friction factor remained unchanged for different volume fractions. Mansour et al. [18] investigated experimentally the effect of physical properties of nanofluid flowing through a tube under constant and uniform heat flux boundary condition. They have demonstrated that the physical parameters vary considerably with the thermophysical properties of the nanofluid. Xuan and Li [19] investigated experimentally the flow and heat transfer behaviour of Cu-water nanofluid. They mentioned that enhancement of heat transfer rate depends on the increase of thermal conductivity or the random movement of the nanoparticles in nanofluid. They introduced a correlation to evaluate the average heat transfer rate of nanofluid under turbulent flow regime. Kim et al. [20], on the other hand, studied experimentally the effect of nanofluid on heat transfer flowing through a circular horizontal tube under both laminar and turbulent flow regime. Their investigation revealed that average heat transfer rate increases to 15% and 20% for Al₂O₃-water nanofluid at 3 vol% under both laminar and turbulent flow condition, respectively.

Fotukian and Esfahany [21] investigated experimentally the turbulent heat transfer of Al₂O₃-water nanofluid in a circular tube. Their results indicated that insertion of small amounts of nanoparticles into the base fluid augmented heat transfer remarkably. Sajadi and Kazemi’s [22] experimental results on TiO₂-water nanofluid in a circular pipe also showed the same behaviour. Torii [23] however
observed that the forced convective heat transfer rate increased with the volume fraction of nanoparticle flowing through a straight circular tube under constant heat flux boundary condition. Sundar et al. [24] investigated experimentally the convective heat transfer and flow behaviours of Fe$_3$O$_4$ nanofluid inside a circular tube. It is found that addition of magnetic nanoparticle in the base fluid enhanced the heat transfer rate significantly compared to the other types of nanofluids.

Maiga et al. [25] studied numerically the flow and heat transfer behaviours of Al$_2$O$_3$-water nanofluid at various nanoparticle volume concentrations in a circular tube under turbulent flow regime. In this study, $Re = 10^4$ to 5×10^5 and the fluid inlet temperature of 293.15 K are considered. Also effect of nanoparticle volume fraction and Reynolds number are presented and a new correlation is proposed. Their numerical outcomes revealed that the inclusion of nanoparticles into the base fluid enhanced the heat transfer rate with the increase of nanoparticle volume fraction. The similar investigation is carried out by Bianco et al. [26] using both single phase and multiphase approaches and it is found that the accuracy of the multi-phase mixture model is better than the single phase model. However, Namburu et al. [27] analysed numerically the forced convective flow and heat transfer behaviour EG-water based CuO, Al$_2$O$_3$ and SiO$_2$ nanofluids flowing through a circular tube. It is shown that nanofluids have higher viscosity, thermal conductivity and heat transfer rate compared to the base fluid. On the other hand, Kumar [28] studied numerically the heat transfer behaviour of Al$_2$O$_3$-water nanofluid using the single phase approach covering both laminar and turbulent flow regime. It is observed that heat transfer rate significantly enhanced in the turbulent flow regime compared to that in the laminar flow regime.

In a practical situation, almost all of the flows are turbulent, and many of these demonstrate extremely high Reynolds numbers e.g. flow in aircraft wings, cars, ships, submarines, turbine blades and large pipe. In order to develop models for energy efficient applications, it is important to understand the phenomena of high Reynolds number turbulence. Therefore, present investigation, which has a particular focus on the thermal energy application, is carried out to explore the effect of Brownian motion and various sizes of nanoparticles of TiO$_2$-water and Al$_2$O$_3$-water nanofluids under the turbulent flow condition for $Re = 10 \times 10^3$ to 100×10^3. In the present investigation, Prandtl number, Pr, ranges from 7.04 to 20.29, the particle volume concentration of 4% and 6% and diameter of the nanoparticles of 10, 20, 30 and 40 nm are considered. To the best of our knowledge, no investigation is carried out to understand the effect of Brownian motion and size of different nanoparticles of Al$_2$O$_3$ and TiO$_2$-water nanofluids considering the above parameters. Hence, the aim of our study is to examine the effect of nanoparticles volume concentration, diameter size and Brownian motion of the nanoparticles on convective heat transfer for Al$_2$O$_3$ and TiO$_2$-water nanofluids using a single phase model.

2. Mathematical modelling

Two approaches have been used by the researchers to investigate the effect of inclusion of nanoparticles into the base fluid [26, 29, 30]. The first approach is the single phase model in which
both the fluid phase and the particles are in thermal equilibrium and flow with the same local velocity while the second approach is the multi-phase model. In the present analysis, single phase approach and two-dimensional axi-symmetric model are considered to describe the turbulent flow and heat transfer behaviour of nanofluids in a horizontal circular pipe under uniform heat flux boundary condition, whereas a multi-phase model is carried out in Saha and Paul [31]. Computational geometry consists of a pipe with length L of 1.0 m and a circular section with diameter, D_h, of 0.019 m as shown in Figure 1. The flow and thermal fields are supposed to be axisymmetric with respect to the horizontal plane parallel to the x-axis.

3. **Governing equations**

The dimensional steady-state governing equations of fluid flow and heat transfer for the single phase model have been presented and the following assumptions are considered:

i. Fluid flow is incompressible, Newtonian and turbulent,

ii. The Boussinesq approximation is negligible as the pipe is placed horizontally,

iii. Fluid phase and nanoparticles phase are in thermal equilibrium and no-slip between them and they flow with the same local velocity,

iv. Nanoparticles are spherical and uniform in size and shape,

v. Radiation effects and viscous dissipation are negligible.

Under the above assumptions, the dimensional steady state governing equations for the fluid flow and heat transfer for the single phase model can be expressed as [32]:

Continuity equation:

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_r}{\partial r} + \frac{v_r}{r} = 0$$

x-momentum equation:

$$\frac{1}{r} \frac{\partial}{\partial x} \left(r v_x v_x\right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r v_r v_r\right) = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\mu}{\rho} \frac{\partial}{\partial x} \left[\left(\frac{\partial v_x}{\partial x} - \frac{2}{3} (\nabla \cdot \mathbf{v})\right)\right] + \frac{\mu}{\rho} \frac{\partial}{\partial r} \left[\frac{\partial v_x}{\partial r} + \frac{\partial v_r}{\partial x}\right]$$

r-momentum equation:

$$\frac{1}{r} \frac{\partial}{\partial x} \left(r v_x v_r\right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r v_r v_r\right) = -\frac{1}{\rho} \frac{\partial p}{\partial r} + \frac{\mu}{\rho} \frac{\partial}{\partial x} \left[\left(\frac{\partial v_r}{\partial x} + \frac{\partial v_x}{\partial r}\right)\right] + \frac{\mu}{\rho} \frac{\partial}{\partial r} \left[\left(\frac{2}{3} \frac{\partial v_r}{\partial r} - \frac{2}{3} (\nabla \cdot \mathbf{v})\right)\right] - \frac{2}{3} \frac{\mu v_r^2}{\rho r^2} + \frac{21 \mu}{3 \rho} (\nabla \cdot \mathbf{v})$$

where

$$(\nabla \cdot \mathbf{v}) = \frac{\partial v_x}{\partial x} + \frac{\partial v_r}{\partial r} + \frac{v_r}{r}$$

Energy equation:

$$\frac{\partial (v_x T)}{\partial x} + \frac{\partial (v_r T)}{\partial r} = \frac{1}{\rho} \left(\frac{\partial}{\partial x} \left(\Gamma \frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial r} \left(\Gamma \frac{\partial T}{\partial r}\right)\right)$$

where x and r are the axial and radial coordinates respectively, v_x and v_r are the respective axial and radial velocity, T is the temperature, Γ is the exchange coefficient for general transport, ρ is the
density, \(p \) is the pressure and \(\mu \) is the dynamic viscosity of nanofluid. For turbulent flow regime, both the terms \(\Gamma \) and \(\mu \) are replaced by their effective values and defined as

\[
\mu_{\text{eff}} = \mu + \mu_t \tag{6}
\]

\[
\Gamma_{\text{eff}} = \frac{\mu}{Pr} + \frac{\mu_t}{\sigma_t} \tag{7}
\]

respectively, where \(\mu_t \) is the turbulent molecular viscosity, \(\sigma_t \) is the constant of turbulent Prandtl number and \(Pr \) is the Prandtl number of nanofluid.

4. Turbulent modeling

Realizable \(\kappa - \epsilon \) turbulent model was proposed by Shih et al. [33], which is used in the present numerical investigation because it differs from the standard \(\kappa - \epsilon \) model in two important ways. Firstly, the realizable \(\kappa - \epsilon \) model includes a new formulation for the turbulent viscosity and secondly, a new transport equation for the dissipation rate is drawn from an exact equation for the transport of the mean-square vorticity fluctuation [32]. To justify the use of realizable \(\kappa - \epsilon \) turbulent model in the present analysis, following investigation is initially carried out.

Three different turbulent models such as realizable \(\kappa - \epsilon \) turbulent model, standard \(\kappa - \epsilon \) turbulent model and RNG \(\kappa - \epsilon \) turbulent model are used to see the variation of fully developed turbulent kinetic energy profile for \(Re = 21800 \) and \(Pr = 7.04 \) as shown in Fig. 2. These profiles are compared with the experimental result of Schildknecht et al. [34] as well as different \(\kappa - \epsilon \) models suggested by Launder and Sharma [35], Chien [36] and Fan et al. [37]. It is clearly understood that the realizable \(\kappa - \epsilon \) turbulent model performs better than the other two \(\kappa - \epsilon \) turbulent models.

The equations for the turbulent kinetic energy (\(\kappa \)) and dissipation rate of turbulent kinetic energy (\(\epsilon \)) used in the realizable \(\kappa - \epsilon \) turbulent model are given by

\[
\text{div}(\rho \kappa \vec{v}) = \text{div} \left(\left(\mu + \frac{\mu_t}{\sigma_k} \right) \text{grad} \kappa \right) + G_\kappa - \rho \epsilon \tag{8}
\]

\[
\text{div}(\rho \epsilon \vec{v}) = \text{div} \left(\left(\mu + \frac{\mu_t}{\sigma_\epsilon} \right) \text{grad} \epsilon \right) + \rho C_1 S \epsilon - \rho C_2 \frac{\epsilon^2}{\kappa + \sqrt{\epsilon}} \tag{9}
\]

where

\[
C_1 = \max \left(0.43, \frac{\eta}{\eta + 5} \right), \quad \eta = \frac{\kappa}{\epsilon} \quad \text{and} \quad S = \sqrt{2 S_{ij} S_{ij}} \tag{10}
\]

In these equations, \(G_\kappa \) represents the generation of turbulence kinetic energy due to the mean velocity gradients, determined from \(\mu_t S^2 \) where, \(S \) is the modulus of the mean rate-of-strain tensor, \(\sigma_k \) and \(\sigma_\epsilon \) are the effective Prandtl numbers for turbulent kinetic energy and rate of dissipation, respectively; and \(\mu_t \) is modelled as

\[
\mu_t = \frac{\rho \kappa^2}{\epsilon} \left(A_0 + A_s \frac{\kappa U^*}{\epsilon} \right)^{-1} \tag{11}
\]

where \(A_0 \) and \(A_s \) are the model constants given as \(A_0 = 4.04 \) and \(A_s = \sqrt{6 \cos \phi} \) respectively with \(\phi = \left(3 \cos^{-1} \sqrt{6 W} \right)^{-1} \) and the formulations for \(U^* \) and \(W \) depend on the angular velocity. In Eqs. (8) and (9), the model constants are \(C_2 = 1.9, \sigma_k = 1.0 \) and \(\sigma_\epsilon = 1.2 \). Further information is available in Fluent [32] for turbulent modelling.
5. Boundary conditions

The set of governing partial differential equations are non-linear and coupled. Hence, the solution of the system of nonlinear partial differential equations depends on suitable boundary conditions and thus following boundary conditions are used. At the pipe inlet, uniform velocity \(v_{x,\text{in}} \) as well as uniform temperature \(T_{\text{in}} = 293 \, K \), turbulent intensity \(I = 0.16 \, Re^{-1/8} \) and hydraulic diameter, \(D_h = 0.019 \, m \) have been stated. All the thermal properties calculation is taken at \(T_{\text{in}} \) which is also considered as a reference temperature. For the prediction of flow in a circular pipe, the Reynolds number is defined as

\[
Re = \frac{v_m D_h}{\nu}
\]

where \(v_m \) is the mean fluid velocity defined as

\[
v_m = \frac{2}{R^2} \int_0^R v(r, x) \, r \, dr
\]

where \(\nu \) is the kinematic viscosity of the nanofluid, \(v(r, x) \) is the axial velocity profile and \(R \) is the radius of the pipe.

At the pipe outlet, a static gauge pressure, \(p_{\text{gauge}} = 0 \) is specified and the solver extrapolates the other flow and scalar quantities such as temperature and turbulent quantities from the interior domain. Note that the length of the pipe considered is sufficiently large for the flow and temperature fields to develop fully by the outlet section. On the pipe wall, a no-slip boundary condition is introduced and uniform heat flux boundary condition has been implemented.

Enhanced wall treatment is a near-wall modelling method that combines a two-layer model with enhanced wall functions. If the near-wall mesh is fine enough to be able to resolve the laminar sublayer, then the enhanced wall treatment will be identical to the traditional two-layer model. However, the restriction that the near-wall meshes must be sufficiently fine everywhere which might impose to large computational requirement. Ideally, then, one would like to have a near-wall formulation that can be used with coarse meshes as well as fine meshes. In addition, excessive error should not be incurred for intermediate meshes that are too fine for the near-wall cell centroid to lie in the fully turbulent region, nor too coarse to properly resolve the sublayer [32]. That’s why, in the present analysis, enhanced wall treatment is used.

6. Nanofluids physical properties

It’s not easy to evaluate the thermophysical properties in nanofluids, because we don’t know which models will give us reliable results and also the solutions are strongly affected by them. Different types of models for nanofluids thermophysical properties have been presented and published by many researchers. Nevertheless, categorisation of thermophysical properties of nanofluids are still remain a subject of debate and no conclusion has been made for flow and heat transport applications because of its variety and intricacy. In the present analysis, thermophysical properties of density and heat
capacitance of the nanofluid are calculated by using following formulas which are considered as classical relationships between the base fluid and nanoparticles, Buongiorno [38].

6.1 Density
The density of the nanofluid is defined as

\[\rho_{nf} = (1 - \chi)\rho_f + \chi \rho_p \]

where \(\chi \) is the nanoparticles volume concentration, \(\rho_f \) and \(\rho_p \) are the density of the base fluid and nanoparticles respectively.

6.2 Specific heat
The heat capacitance of the nanofluid is defined as

\[(\rho c_p)_{nf} = (1 - \chi)(\rho c_p)_f + \chi(\rho c_p)_p \]

where \((\rho c_p)_f\) and \((\rho c_p)_p\) are the heat capacitance of the base fluid and nanoparticles respectively.

6.3 Thermal conductivity
Because of lack of experimental results and correlations which depend on the nanoparticle size diameter as well as temperature, in relation to the thermophysical properties of nanofluid, the following correlations proposed by Corcione [39] are used in our analysis. Corcione [39] introduced the following correlation to examine the thermal conductivity of nanofluid which depends on the temperature and volume concentration of nanofluid, size diameter and thermal conductivity of nanoparticles and also the base fluid. He used regression analysis and proposed the following correlation with 1.86% standard deviation of error:

\[\frac{\lambda_{nf}}{\lambda_f} = 1 + 4.4 Re_p^{0.4} Pr_f^{0.66} \left(\frac{T}{T_{fr}} \right)^{10} \left(\frac{\lambda_p}{\lambda_f} \right)^{0.03} \chi^{0.66} \]

where, \(Re_p \) is the nanoparticles Reynolds number, defined as

\[Re_p = \frac{\rho_f u_B d_p}{\mu_f} = \frac{2 \rho_f \kappa_b T}{\pi \mu_f^2 d_p} \]

Here \(T_{fr} \) is the freezing point of the base liquid (273.16 K), \(\kappa_b \) is the Boltzmann constant \((\kappa_b \approx 1.38 \times 10^{-23} \, J/K) \), \(d_f \) is the fluid molecular diameter, \(d_p \) is the diameter of nanoparticles \((10 \, nm \leq d_p \leq 150 \, nm) \), \(T \) is the nanofluid temperature \((294 \leq T(K) \leq 324) \), \(\chi \) is a particle volume concentration which is valid for \(0.2% \leq \chi \leq 9% \), \(Pr_f \) is the Prandtl number of the base fluid, \(\rho_f \) and \(\mu_f \) are the density and the dynamic viscosity of the base fluid, respectively, and \(u_B \) is the nanoparticle Brownian velocity which is calculated as the ratio between \(d_p \) and the time \(\tau_D = \frac{d_p^2}{6D} \) by assuming the absence of agglomeration. Here \(D \) is the Einstein diffusion coefficient.

6.4 Dynamic viscosity
Corcione [39] proposed another correlation to evaluate the dynamic viscosity of nanofluid. He used best-fit of the selected data specified in his research work and proposed the following correlation with 1.84% standard deviation of error:
\[\frac{\mu_f}{\mu_{nf}} = 1 - 34.87 \left(\frac{d_p}{d_f} \right)^{-0.3} \chi^{1.03} \]
(18)

where \(d_p \) is the diameter of nanoparticles (25 nm \(\leq d_p \leq 200 \text{nm} \)), \(\chi \) is a particle volume concentration which is valid for \(0.01\% \leq \chi \leq 7.1\% \), \(T \) is the nanofluid temperature (293 \(\leq T(K) \leq 333 \)) and \(d_f \) is the base fluid molecular diameter defined by

\[d_f = 0.1 \left(\frac{6M}{N\pi\rho_f} \right)^{1/3} \]
(19)

in which \(N \) is the Avogadro number and \(M \) is the molecular weight of the base fluid.

The above correlations are derived from an extensive selection of empirical data relative to nanofluids consisting of different mean diameter of nanoparticles, suspended in water (H\(_2\)O) or Ethylene glycol (EG) for the development of thermal conductivity correlation and water (H\(_2\)O), propylene glycol (PG), Ethylene glycol (EG) or ethanol (Eth) for the development of dynamic viscosity correlation. It is to be noted that the conventional Maxwell theory mostly fails when implemented to nanofluids. In reality, the conventional Maxwell equation tends either to underestimate or to overestimate the value of thermal conductivity of nanofluid, according as the nanoparticle diameter is small or large, respectively and the temperature of the suspension is high or low, respectively as discussed in Corcione [39]. Also the Brinkman equation mostly fails when implemented to nanofluids, with a percentage error that increases as the size diameter of nanoparticles decreases. It should also be noted that for the calculation of dynamic viscosity of nanofluid with nanoparticles size diameter of 10 and 20 nm, this model is used in this study by assuming a possible standard deviation of error higher than 1.84%.

7. Thermophysical properties of the base fluid and nanoparticles

The mass density, heat capacitance, kinematic viscosity and thermal conductivity of the base fluid (water) were calculated using the following correlations proposed by Kays and Crawford [40]. All these correlations are valid over 278 \(\leq T(K) \leq 363 \).

\[\rho_f = 330.12 + 5.92T - 1.63 \times 10^{-2}T^2 + 1.33 \times 10^{-5}T^3 \]
(20)

\[C_{pf} = 10^{-3} \times (10.01 - 5.14 \times 10^{-2} T + 1.49 \times 10^{-4} T^2 - 1.43 \times 10^{-7} T^3) \]
(21)

\[\nu_f = 1.08 \times 10^{-4} - 9.33 \times 10^{-7} T + 2.70 \times 10^{-9} T^2 - 2.62 \times 10^{-12} T^3 \]
(22)

\[\lambda_f = -12.16 + 0.12T - 3.66 \times 10^{-4} T^2 + 3.81 \times 10^{-7} T^3 \]
(23)

The density, heat capacitance and thermal conductivity of Al\(_2\)O\(_3\) at \(T = 293 \text{K} \) is considered as Masuda et al. [41]:

\[\rho_p = 3880 \text{kg/m}^3, \quad C_{pp} = 773 \text{J/kgK}, \quad \lambda_p = 36 \text{W/mK} \]

The thermal conductivity of TiO\(_2\) is obtained from the following relation and designed by curve fitting on the data of Powel et al. [42]:

\[\lambda_p = 100 \times (0.1813 - 4.768 \times 10^{-4} T + 5.089 \times 10^{-7} T^2), \]
where \(273 \leq T(K) \leq 350 \)
(24)
The heat capacitance of TiO$_2$ is obtained from the following relation and designed by curve fitting on the data of Smith et al. [43]:

$$C_{pp} = 58.4528 + 3.02195T - 3.02923 \times 10^{-3}T^2,$$

where $269.35 \leq T(K) \leq 339.82$

(25)

The density of TiO$_2$ is considered as $4250 \frac{kg}{m^3}$.

8. **Numerical methods**

The computational domain is formed by using the commercial pre-processor software GAMBIT 2.4.6 which is also used for meshing and setting the boundary conditions. Then the governing non-linear partial differential equations for the continuity, momentum, energy and other scalars such as turbulence together with the suitable boundary conditions are discretised and hence solved by using the Finite volume solver Fluent 6.3.26. The finite volume technique converts the non-linear partial differential equations with the second order upwind scheme to a system of nonlinear algebraic equations that are solved numerically. Second order upwind scheme is employed to achieve higher-order accuracy at the cell faces through a Taylor series expansion of the cell-centred solution about the cell centroid. The pressure-based solver employed to solve the pressure based equation which is derived from the momentum and continuity equations. All these equations are solved sequentially and iteratively so as to obtain a converged numerical solution. For all the simulations carried out in the present analysis, convergence criteria for the solutions are considered when the residuals become less than 10^{-6}.

9. **Grid sensitivity analysis**

In order to justify the correctness as well as the stability of the numerical findings, extensive computations have been performed to determine the total number of grid points that generate a suitable arrangement result which will be appropriate to determine the flow and thermal field in a pipe. The grid sensitivity study is carried out by varying the total number of grid distributions in both the radial (Nr) and axial (Nx) directions. For a particular test case of the base fluid water of Prandtl number, $Pr = 7.04$ and Reynolds number, $Re = 100 \times 10^3$, various combinations of grid have been analysed to justify that the numerical results are grid independent. Figure 3 shows the variation of radial velocity, temperature and turbulent kinetic energy profiles at the fully developed location ($x = 0.9$ m) near the outlet. It can be seen that the grids 500×100, 500×150 and 1000×100 generate most reasonable results as the differences found among the results are insignificant. Therefore, the selected grid for the present calculations consisted of 500 and 100 nodes respectively along the axial and radial directions to save the computational time and to avoid any inconsistencies in the numerical results. In addition, to capture the large variations of flow field behaviour near the inlet and pipe wall, uniform grid in the axial direction and non-uniform grid in the radial direction are considered.
10. Validation of the present numerical results

10.1 Water

In order to validate the accurateness of the present numerical findings, firstly the radial velocity and turbulent kinetic energy profile for $Re = 21800$ and $Pr = 7.04$ which are taken at the fully developed section near the outlet are validated against the experimental result of Schildknecht et al. [34] as well as with different κ-ϵ models suggested by Launder and Sharma [35], Chien [36], Fan et al. [37], Jones and Launder [44, 45], Lai and So [46] and Myong and Kasagi [47]. These researchers have used the following model to determine the turbulent kinematic viscosity with the model constants summarised in Table 1.

$$v_T = C_\mu f_\mu \frac{\kappa^2}{\epsilon}$$ \hspace{1cm} (26)

where f_μ is a damping function.

Table 1: Model constants

<table>
<thead>
<tr>
<th>Researchers</th>
<th>C_μ</th>
<th>C_1</th>
<th>C_2</th>
<th>σ_κ</th>
<th>σ_ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launder and Sharma [35]</td>
<td>0.09</td>
<td>1.44</td>
<td>1.92</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Chien [36]</td>
<td>0.09</td>
<td>1.35</td>
<td>1.8</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Fan et al. [37]</td>
<td>0.09</td>
<td>1.40</td>
<td>1.8</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Jones and Launder [44, 45]</td>
<td>0.09</td>
<td>1.45</td>
<td>2.0</td>
<td>1.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Lai and So [46]</td>
<td>0.09</td>
<td>1.35</td>
<td>1.8</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Myong and Kasagi [47]</td>
<td>0.09</td>
<td>1.40</td>
<td>1.8</td>
<td>1.4</td>
<td>1.3</td>
</tr>
</tbody>
</table>

In Figure 4, radial velocity and turbulent kinetic energy are nondimensionalised by fiction velocity, u_f, and then presented. From Fig. 4(a), it can be seen that the non-dimensional velocity profile shows good agreement with the models proposed by Launder and Sharma [35], Chien [36] and Fan et al. [37]. It is also found that the present result differs from the models proposed by Jones and Launder [44, 45] and Lai and So [46] as well as the experimental result of Schildknecht et al. [34]. In fact, a significant variation is observed between all the models as well as the present result with the experimental result. The reason behind this fact may be the over estimation of the maximum mean velocity obtained from the experimental result. Among all the results, Jones and Launder [44, 45] show the poorest prediction of the non-dimensional velocity profile.

Further, it is seen that the highest value of turbulent kinetic energy founds at some radial location near the wall. It is also seen that this radial location does not differ extensively among the experimental and numerical results as shown in Fig. 4(b). It is found that most of the models proposed by the different researchers predicted relatively good value of the magnitude of highest turbulent kinetic energy compared with the experimental result. But the findings of Jones and Launder [44, 45], Launder and Sharma [35] and also the present result show an under prediction of the maximum peak intensity. This may be due to the different models for the turbulent viscosity as well as different model constants and damping functions used by the researchers.

Additional validation has been done against the existing correlations for different $Re = 10 \times 10^3$ to 100×10^3 and $Pr = 7.04$. In order to perform the validation, numerical results of Darcy friction factor
are compared with the correlations suggested by Blasius [48] and Petukhov [49] and also, average Nusselt number are compared with the correlations proposed by Petukhov [49], Notter and Rouse [50] and Gnielinski [51] which are given as follows:

Blasius equation:
Blasius [48] proposed the following relation for the calculation of friction factor for pure fluid which is expressed as

$$ f = \frac{0.316}{Re^{0.25}}, 3000 \leq Re \leq 10^5 $$ \hspace{1cm} (27)

Petukhov [49] equation:
$$ \overline{Nu} = \frac{f}{8} \frac{Re Pr}{1.07 + 12.7 \left(\frac{f}{8} \right)^{0.5} \left(Pr^{2} - 1 \right)^{0.5}}, 0.5 \leq Pr \leq 2000, 10^4 \leq Re \leq 5 \times 10^6 $$ \hspace{1cm} (28)

Notter-Rouse Equation:
Notter and Rouse [50] introduced the following correlation for the calculation of average Nusselt number for pure fluid:

$$ \overline{Nu} = 5.0 + 0.015 Re^{0.856} Pr^{0.347} $$ \hspace{1cm} (29)

Gnielinski [51] equation:
$$ \overline{Nu} = \frac{f}{8} \frac{(Re - 1000) Pr}{1.0 + 12.7 \left(\frac{f}{8} \right)^{0.5} \left(Pr^{2} - 1 \right)^{0.5}}, 0.5 \leq Pr \leq 2000, 3000 < Re \leq 5 \times 10^6 $$ \hspace{1cm} (30)

$$ f = (1.82 \ln Re - 1.64)^{-2}, 10^4 \leq Re \leq 5 \times 10^6 $$

Figure 5(a) shows compatible results of the Darcy friction factor between the present numerical result on the base fluid and other correlations of Blasius [48] and Petukhov [49]. Maximum deviation of 8.91% for $Re = 20 \times 10^3$ and minimum deviation of 3.47% are observed for $Re = 100 \times 10^3$. This may be due to the higher pressure drop obtained for different Re in the present simulation.

Also, the result of average Nusselt number is presented in Fig. 5(b). The maximum deviation between our numerical result and the correlations of Petukhov [49], Notter and Rouse [50] and Gnielinski [51] are 3.84%, 1.63% and 5.40% respectively which shows very good agreement with these correlations.

It is important to note that all these available correlations are not highly accurate. The accuracy of each correlation is fully dependent on different types of application so more or less variation will occur depending on the problems. Hence, it’s possible to say that percentage error of 3.84%, 1.63% and 5.40% are in very close to the acceptable region. Other factors like near wall mesh distribution and temperature gradient at the wall are also responsible for such variations.

Here we note that the Darcy friction factor and local Nusselt number are evaluated according to the following relations:

Darcy friction factor for turbulent flows in a circular pipe is defined as

$$ f = \frac{2Dh \Delta p}{\rho L \nu_m^2} $$ \hspace{1cm} (31)
Local Nusselt number and heat transfer coefficient are defined as

\[Nu(x) = \frac{h(x) \, D_h}{\lambda_f} \quad \text{where} \quad h(x) = \frac{\dot{q}_s}{T_w - T_m(x)} \quad \text{and} \quad \dot{q}_s = -\lambda_f \frac{dT}{dr} \bigg|_{r=R} \]

(32)

Also, for constant and uniform heat flux boundary condition, the mean temperature of a fluid flowing through a circular pipe is expressed as

\[T_m(x) = T_{m,i} + \frac{\dot{q}_s \pi D_h}{\dot{m} C_p} x \]

(33)

where \(\dot{q}_s \) and \(\dot{m} \) are the heat flux of the pipe and mass flow rate of the fluid, respectively.

From the above equations, the average Nusselt number is defined as

\[\overline{Nu} = \frac{1}{L} \int_0^L Nu(x) \, dx \]

(34)

This numerical integration has been performed by using the Simpson’s 1/3 rule.

10.2 Al\(_2\)O\(_3\)-Water nanofluid

From the comparisons presented in the section above, we can conclude that our computational model is producing the correct outcomes; hence Al\(_2\)O\(_3\)-H\(_2\)O nanofluid flow in a circular pipe with different \(\chi = 0.01, 0.04 \) and 0.06 is now investigated for different \(Re = 10 \times 10^3 \) to \(100 \times 10^3 \) with \(7.04 < Pr < 10.0 \). Also, in the present analysis, heat flux \(\dot{q}_s = 50 \times 10^3 \) W/m\(^2\) is considered [26, 27] which is applied on the pipe wall. Then a comparison is made between the present computed Nusselt number and the Pak and Cho [52] correlation. Also, for the validation purpose, the following correlations are used to model the dynamic viscosity as well as thermal conductivity of Al\(_2\)O\(_3\)-H\(_2\)O nanofluid.

\[\mu_{nf} = \mu_f (123 \, \chi^2 + 7.3 \, \chi + 1) \]

(35)

\[\lambda_{nf} = \lambda_f (4.97 \, \chi^2 + 2.72 \, \chi + 1) \]

(36)

Eq. (35) is derived from the experimental data of Masuda et al. [41], Lee et al. [53] and Wang et al. [54] by using least square curve fitting. Other classical models like Einstein [55] or Brinkman [56] can be used but it is found that these models underestimate the dynamic viscosity of nanofluid as shown by Maiga et al. [57]. Also, Eq. (36) is developed using the model suggested by Hamilton and Crosser [58] with the assumption that nanoparticles are spherical in size and shape and then implemented in this work because of its simplicity.

Pak and Cho [52] investigated experimentally the heat transfer behaviours of nanofluids in a circular pipe under turbulent flow regime. Investigation was carried out for Al\(_2\)O\(_3\)-H\(_2\)O and TiO\(_2\)-H\(_2\)O nanofluids, \(Re \) and \(Pr \) were varied in the ranges from \(10^4 \) to \(10^5 \) and 6.5 to 12.3 respectively. They have established the following correlation only depending on \(Re \) and \(Pr \) and this correlation does not depends on \(\chi \) as well as nanoparticles size diameter.

\[\overline{Nu} = 0.021 Re^{0.8} Pr^{0.5} \]

(37)

In Figure 6, a comparison between the present result and that of Pak and Cho [52] is shown graphically for the Al\(_2\)O\(_3\)-H\(_2\)O nanofluid and \(\chi = 0.01, 0.04 \) and 0.06. It is found that the present numerical findings are in very good agreement with the results of Pak and Cho [52] which is completely empirical referred by Buongiorno [38]. Although Eq. (37) developed using Al\(_2\)O\(_3\)-H\(_2\)O
and TiO$_2$-H$_2$O nanofluids, this correlation should be applicable in general (Das et al. [59]). It is also crucial to note that Eq. (37) was valid for relatively low nanoparticle volume concentration, say e.g. when $\chi \leq 3.2\%$ but we considered the trend and apply this for higher χ by assuming the higher standard deviation of error.

11. Results and discussion

The numerical investigations are performed using Al$_2$O$_3$-H$_2$O and TiO$_2$-H$_2$O nanofluids, with the subsequent choices of parameters: the Reynolds number from $Re = 10 \times 10^3$ to 100×10^3, Prandtl number from 7.04 to 20.29, the particle volume concentration of 4% and 6% and diameter of the nanoparticles of 10, 20, 30 and 40 nm. The outcomes are presented hereafter focusing on the impacts of nanoparticle volume concentration, Brownian motion and size diameter of Al$_2$O$_3$ and TiO$_2$ nanoparticles and different Reynolds number on the hydrodynamic flow and thermal performance of the nanofluids under the turbulent flow condition.

11.1 Fully developed velocity profile

Figure 7 displays the effect of various volume concentrations, different nanoparticles size diameter of Al$_2$O$_3$-water nanofluid on the fully developed velocity profile for $Re = 100 \times 10^3$. In general, the kinematic viscosity of nanofluid is always higher than the base fluid and hence the velocity of nanofluid always possesses higher value compared to the base fluid. Similarly, as the nanoparticle size decreases from 40 to 10 nm, the kinematic viscosity increases with the nanoparticle volume concentration. From this observation, it can be observed that the maximum peak value of the velocity found is highest for $d_p = 10$ nm and $\chi = 6\%$ then decreases with the increase of mean diameter of nanoparticles. Similar behaviour is observed for all the Reynolds numbers as well as the TiO$_2$-water nanofluid. It should be noted that for different nanoparticles size diameter and volume concentration, the maximum velocity varies significantly at the centreline position.

11.2 Turbulent kinetic energy profile

Figure 8 shows the effect of various volume concentrations, different nanoparticle size diameters of Al$_2$O$_3$-water nanofluid on the turbulent kinetic energy for $Re = 100 \times 10^3$. It can be seen that when the particle volume concentration is changed from 4% to 6% of the Al$_2$O$_3$-water nanofluid, the radial location at which the highest value of the turbulent kinetic energy appears does not differ considerably for the different nanoparticles size diameter and the maximum peak value of κ is observed for $d_p = 10$ nm. Similar behaviour is observed for all the Reynolds numbers as well as for the TiO$_2$-water nanofluid. It should be noted that as the Reynolds numbers increase from 10 to 40 nm, the maximum peak value of κ rapidly decreases which shows the lower turbulent intensity near the surface and therefore, the turbulent strength in the flow tends to reduce. This result further indicates that the smaller diameter of nanoparticle plays an important role in turbulence generation compared to that by the large diameter of nanoparticle. The reason behind this fact may be due to the Brownian motion as well as the shape and size of the nanoparticles.
11.3 Average shear stress coefficient ratio

Figure 9 shows the effect of various nanoparticle volume concentrations, different nanoparticle size diameters of water based Al$_2$O$_3$ and TiO$_2$ nanofluids on the average shear stress ratio, defined as the ratio of the average shear stresses, $\bar{\tau}_r = \bar{\tau}_{nf}/\bar{\tau}_f$. From this investigation, it is found that the average shear stress ratio has increased with the increase of nanoparticle volume concentration and decrease of nanoparticle size diameter of 40 to 10 \textit{nm} and such enhancement is independent to the Reynolds number. In particular, for $Re = 20 \times 10^3$ and Al$_2$O$_3$-water nanofluid, $\bar{\tau}_r$ has a value of 2.0, 2.19, 2.54 and 3.58 for $\chi = 4\%$ and $d_p = 40, 30, 20$ and 10 \textit{nm} respectively. Also, for higher particle volume concentration, e.g. $\chi = 6\%$, $\bar{\tau}_r$ has a value of 3.42, 4.13, 5.79 and 14.63 for $d_p = 40, 30, 20$ and 10 \textit{nm} respectively. Similar performances have also been noticed for the TiO$_2$-water nanofluid. From the above findings, it is possible to conclude that the increase of the average shear stress ratio with respect to the nanoparticle volume concentration as well as the nanoparticle size diameter emerge to be noticeably more significant for both the water based Al$_2$O$_3$ and the TiO$_2$ nanofluids. Such enhancement of the average shear stress ratio may be due to the adverse effects of increase frictional force or pressure.

11.4 Heat transfer analysis

Figure 10 shows the effect of various volume concentrations, different nanoparticles size diameter of water based Al$_2$O$_3$ and TiO$_2$ nanofluids along with the results of the base fluid on the average Nusselt number. It can be seen that the average heat transfer rate increases with the increase of Reynolds number, nanoparticle volume concentration when the nanoparticle size diameter changes from 40 \textit{nm} to 10 \textit{nm}. Also it is found that the average heat transfer rate of the water based Al$_2$O$_3$ and TiO$_2$ nanofluids is higher than that of the base fluid at any Reynolds number. The explanation for such augmentation in the average heat transfer rate may be associated to different aspects such as enhancement of thermal conductivity, nanoparticle size and shapes, Brownian motion of particles, decrease in boundary layer thickness and delay in boundary layer growth.

The average Nusselt number is very responsive to types and diameter of the nanoparticles, as observed. From our investigation, it is examined that the effect of average heat transfer rate increases with the decrease of nanoparticle size diameter. For example, for the Al$_2$O$_3$-water nanofluid and $\chi = 4\%$ and 6\% with $d_p = 10 \textit{nm}$, the maximum enhancement is approximately 21.75\% and 59.83\% respectively while for $d_p = 20 \textit{nm}$, the maximum enhancement is approximately 14.34\% and 33.60\% respectively. However, for the TiO$_2$-water nanofluid and $\chi = 4\%$ and 6\% with $d_p = 10 \textit{nm}$, the maximum enhancement is approximately 21.28\% and 58.79\% respectively while for $d_p = 20 \textit{nm}$, the maximum enhancement is approximately 13.80\% and 32.79\% respectively. Similar trend is observed as nanoparticle size diameter increases from 20 \textit{nm} to 30 \textit{nm} or 30 \textit{nm} to 40 \textit{nm}. In order to achieve a higher heat transfer rate, 10 \textit{nm} diameter size particles is best for both water based Al$_2$O$_3$ and TiO$_2$
nanofluids. It can also be observed that Al_2O_3–H_2O nanofluid gives us slightly better heat transfer rate than the TiO_2–H_2O nanofluid for all the Reynolds numbers, nanoparticle volume concentration as well as nanoparticles size diameter. Values of maximum increment in the average heat transfer rate of water based Al_2O_3 and TiO_2 nanofluids are shown in Table 2 for different nanoparticles size diameter and volume concentration.

From Figure 10, it is observed that smaller diameter and Brownian motion of nanoparticles assist to increase the viscosity for same particle volume concentration and hence make an impact on the Nusselt number enhancement. This is quite reasonable because smaller nanoparticles with higher velocity move faster than the large particles thus reduce the possibility of collision with each other. Also, smaller diameter of nanoparticles will be more in number compare to large diameter of nanoparticles and will make a contact with the neighbouring fluid over a greater surface area. It will help in increasing the viscosity and thermal conductivity of water based Al_2O_3 and TiO_2 nanofluids which result in the enhancement of heat transfer.

Table 2: Maximum increment (%) of average Nusselt number for different nanofluids

<table>
<thead>
<tr>
<th>d_p (nm)</th>
<th>$\chi = 4%$</th>
<th>$\chi = 6%$</th>
<th>$\chi = 4%$</th>
<th>$\chi = 6%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21.75</td>
<td>59.83</td>
<td>21.28</td>
<td>58.79</td>
</tr>
<tr>
<td>20</td>
<td>14.34</td>
<td>33.60</td>
<td>13.83</td>
<td>32.79</td>
</tr>
<tr>
<td>30</td>
<td>11.27</td>
<td>25.14</td>
<td>10.75</td>
<td>24.30</td>
</tr>
<tr>
<td>40</td>
<td>09.45</td>
<td>20.63</td>
<td>08.90</td>
<td>19.78</td>
</tr>
</tbody>
</table>

11.5 Thermal performance factor

Thermal performance factor is defined as follows (Suresh et al. [60]):

$$\xi = \left(\frac{\overline{Nu}_{nf}}{\overline{Nu}_f}\right)\left(\frac{f_{nf}}{f_f}\right)^{\frac{1}{3}} \quad (38)$$

Figure 11 shows the thermal performance factor which is investigated with the use of various volume concentrations of 4% and 6%, different nanoparticle size diameters of 10 to 40 nm and water based Al_2O_3 and TiO_2 nanofluids. It is observed that the value of the thermal performance factor remains greater than one for all the possible cases considered and it is very close to the ratio of the average heat transfer rate of nanofluid and base fluid. Also, it is further observed that the ratio of Darcy friction factor of nanofluid and base fluid is approximately close to 1. Hence it is possible to make a conclusion that the heat transfer enhancement is possible with little or without penalty in the pumping power. This may lead to less energy cost and more efficient for practical application. From the above investigation, it is also evident that the thermal performance factor increases as the nanoparticle volume concentration increases and higher values of ξ is achieved for smaller nanoparticle size diameter for water based Al_2O_3 and TiO_2 nanofluids. Another reason might be that as the nanoparticles size diameter decreases from 40 to 10 nm, the dynamic viscosity and thermal conductivity of nanofluid increases with the increase of nanoparticle volume concentration. Hence the higher viscosity directs to a diminution of boundary layer thickness resulting in the enhancement of
heat transfer whereas the higher thermal conductivity directs to an intensification of thermal performance factor.

11.6 Correlations

In the present analysis, the following correlations have been proposed for the calculation of average Nusselt number using the non-linear regression analysis and the average Nusselt number is the function of Reynolds number, Prandtl number and nanoparticles size diameter. It is to be noted that these correlations are valid when the Brownian motion of nanoparticles is taken into account. Also, the values of maximum standard deviation of error are 7.35% and 7.25% for Al₂O₃ and TiO₂ nanofluids respectively. Further, comparisons between the numerical results of average Nusselt number and computed by the proposed correlations are presented in Fig. 12. This Figure shows a good agreement between the numerical results and the proposed correlations.

\[
\begin{align*}
\text{Al}_2\text{O}_3\cdot\text{H}_2\text{O} \text{ nanofluid} & : \quad \overline{Nu} = 0.01272 \cdot Re^{0.85861} Pr^{0.42986} \left(\frac{dI}{dp} \right)^{-0.00017} - 0.5 \\
\text{TiO}_2\cdot\text{H}_2\text{O} \text{ nanofluid} & : \quad \overline{Nu} = 0.01259 \cdot Re^{0.85926} Pr^{0.43020} \left(\frac{dI}{dp} \right)^{-0.00068}
\end{align*}
\]

where

\[10 \times 10^3 \leq Re \leq 100 \times 10^3, \quad 8.45 \leq Pr \leq 20.29, \quad 10 \leq d_p (nm) \leq 40, \quad 4 \leq \chi(\%) \leq 6.\]

12. Conclusion

In this research work, numerical investigations have been carried out to understand the flow and heat transfer behaviour of different nanofluids in a horizontal circular pipe under turbulent flow condition. The effects of Reynolds number and Prandtl number, two different nanofluids, nanoparticle volume concentration, diameter size and Brownian motion of nanoparticles on flow and heat transfer are investigated. According to our findings, following conclusion can be made and summarised as follows:

(a) It was found that for \(\chi = 4\% \) and 6\%, water based Al₂O₃ and TiO₂ nanofluids with 10 to 40 nm particles size diameter with Brownian motion of nanoparticles, average Nusselt number and shear stress ratio are significantly higher compared to the base fluid.

(b) It was investigated that the water based Al₂O₃ and TiO₂ nanofluids with 10 nm and \(\chi = 6\% \) show higher thermal performance factor for any Reynolds number and nanoparticles size diameter.

(c) It was observed that the friction factor of nanofluids has no significant effect compared to the base fluid and hence induce no extra penalty in pump power.

Furthermore, we have found that the Al₂O₃·H₂O nanofluid shows slightly better heat transfer performance than that of the TiO₂·H₂O nanofluid. But since TiO₂ nanoparticles are more environment-friendly and eco-friendly [61] than the Al₂O₃ nanoparticles, hence it is better to use TiO₂-water nanofluid in real life application. Also, it was seen that the heat transfer performance is more influenced by the Brownian motion and size diameter of nanoparticles than the thermal conductivity of nanofluid.
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0, A_1, C_i</td>
<td>Model constant</td>
</tr>
<tr>
<td>C_p</td>
<td>Specific heat capacity ($J/kg K$)</td>
</tr>
<tr>
<td>D</td>
<td>Einstein diffusion coefficient</td>
</tr>
<tr>
<td>D_h</td>
<td>Diameter of a pipe (m)</td>
</tr>
<tr>
<td>d_f</td>
<td>Fluid molecular diameter (m)</td>
</tr>
<tr>
<td>d_p</td>
<td>Diameter of nanoparticle (nm)</td>
</tr>
<tr>
<td>f</td>
<td>Darcy friction factor</td>
</tr>
<tr>
<td>f_μ</td>
<td>Dumping function</td>
</tr>
<tr>
<td>G_k</td>
<td>Generation of turbulent kinetic energy</td>
</tr>
<tr>
<td>I</td>
<td>Turbulent intensity</td>
</tr>
<tr>
<td>L</td>
<td>Length (m)</td>
</tr>
<tr>
<td>M</td>
<td>Molecular weight of the base fluid</td>
</tr>
<tr>
<td>m</td>
<td>Mass flow rate (kg/s)</td>
</tr>
<tr>
<td>N</td>
<td>Avogadro number</td>
</tr>
<tr>
<td>N_s, N_r</td>
<td>Number of grid distribution in axial and radial directions</td>
</tr>
<tr>
<td>Nu</td>
<td>Local Nusselt number</td>
</tr>
<tr>
<td>\bar{Nu}</td>
<td>Average Nusselt number</td>
</tr>
<tr>
<td>p</td>
<td>Pressure (N/m^2)</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>\dot{q}_s</td>
<td>Heat flux of the pipe (W/m^2)</td>
</tr>
<tr>
<td>R</td>
<td>Radius of a pipe (m)</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>r</td>
<td>Radial coordinate (m)</td>
</tr>
<tr>
<td>S</td>
<td>Modulus of the mean rate of strain tensor</td>
</tr>
<tr>
<td>T</td>
<td>Temperature (K)</td>
</tr>
<tr>
<td>T_{fr}</td>
<td>Freezing point of the base fluid (K)</td>
</tr>
<tr>
<td>T_w</td>
<td>Temperature at the wall (K)</td>
</tr>
<tr>
<td>T_m</td>
<td>Mean temperature of a fluid (K)</td>
</tr>
<tr>
<td>u_B</td>
<td>Nanoparticle particle mean Brownian velocity (m/s)</td>
</tr>
<tr>
<td>u_c</td>
<td>Friction velocity (m/s)</td>
</tr>
<tr>
<td>V_m</td>
<td>Mean fluid velocity (m/s)</td>
</tr>
</tbody>
</table>

Greek symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>Velocity (m/s)</td>
</tr>
<tr>
<td>x</td>
<td>Axial coordinate (m)</td>
</tr>
<tr>
<td>ρ</td>
<td>Density (kg/m^3)</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity ($kg/m s$)</td>
</tr>
<tr>
<td>λ</td>
<td>Thermal conductivity ($W/m K$)</td>
</tr>
<tr>
<td>κ</td>
<td>Turbulent kinetic energy (m^2/s^2)</td>
</tr>
<tr>
<td>ξ</td>
<td>Thermal performance factor</td>
</tr>
<tr>
<td>σ_i</td>
<td>Constant of turbulent Prandtl number</td>
</tr>
<tr>
<td>σ_c</td>
<td>Effective Prandtl number for turbulent kinetic energy</td>
</tr>
<tr>
<td>σ_e</td>
<td>Effective Prandtl number for rate of dissipation</td>
</tr>
<tr>
<td>τ_0</td>
<td>Time (s)</td>
</tr>
<tr>
<td>$\bar{\tau}$</td>
<td>Ratio of average shear stresses</td>
</tr>
<tr>
<td>Γ</td>
<td>Exchange coefficient for general transport</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>Inlet</td>
</tr>
<tr>
<td>nf</td>
<td>Nanofluid</td>
</tr>
<tr>
<td>p</td>
<td>nanoparticle</td>
</tr>
<tr>
<td>w</td>
<td>Wall</td>
</tr>
<tr>
<td>m</td>
<td>Mean</td>
</tr>
<tr>
<td>eff</td>
<td>Effective</td>
</tr>
</tbody>
</table>
References

Figure 1: Schematic diagram of the geometry under consideration

\[\dot{q}_s = 50 \times 10^3 \text{ W/m}^2 \]

\[L \]

\[D_h \]

Figure 2: Variation of radial turbulent kinetic energy at the fully developed location near the outlet using different $\kappa-\epsilon$ models for $Re = 21800$

- Schildknecht (1979)
- Launder and Sharma (1974)
- Fan et al. (1993)
- Realizable $\kappa-\epsilon$ model
- Standard $\kappa-\epsilon$ model
- RNG $\kappa-\epsilon$ model
Figure 3: Variation of radial (a) velocity, (b) temperature and (c) turbulent kinetic energy at the fully developed location near the outlet.
Figure 4: Variation of radial (a) velocity and (b) turbulent kinetic energy at the fully developed location near the outlet for $Re = 21800$ and $Pr = 7.04$.

(a) $\frac{v(r, x)}{u_r}$

(b) $\frac{\kappa}{u_r^2}$
Figure 5: Comparison of the (a) Darcy friction factor, f and (b) average Nusselt number, \overline{Nu} with the different correlations for different Re.

Figure 6: Comparison of the average Nusselt number for Al_2O_3-H_2O nanofluid with the Pak and Cho [52] correlation for different Re.

Blasius (1908)
Petukhov (1970)
--- water

-- Pak and Choi ($\chi = 1\%$)
-- Pak and Choi ($\chi = 4\%$)
-- Pak and Choi ($\chi = 6\%$)

--- $\chi = 1\%$
--- $\chi = 4\%$
--- $\chi = 6\%$
Figure 7: Variation of fully developed radial velocity profile for Al₂O₃-water nanofluids, nanoparticle volume concentration of 4% and 6%, \(Re = 100 \times 10^3 \) and nanoparticles size diameter of 10, 20, 30 and 40 nm.

Figure 8: Variation of radial turbulent kinetic energy for Al₂O₃-water nanofluids, nanoparticle volume concentration of 4% and 6%, \(Re = 100 \times 10^3 \) and nanoparticles size diameter of 10, 20, 30 and 40 nm.
Figure 9: Variation of average shear stress ratio with Reynolds number for Al₂O₃-water and TiO₂-water nanofluids, nanoparticle volume concentration of 4% and 6% and nanoparticles size diameter of 10, 20, 30 and 40 nm.
Figure 10: Variation of average Nusselt number with Reynolds number for Al₂O₃-water and TiO₂-water nanofluids, nanoparticles volume concentration of 4% and 6% and nanoparticles size diameter of 10, 20, 30 and 40 nm
Figure 11: Variation of thermal performance factor with Reynolds number for Al₂O₃-water and TiO₂-water nanofluids, nanoparticles volume concentration of 4% and 6% and nanoparticles size diameter of 10, 20, 30 and 40 nm
Figure 12: Comparisons of the proposed correlations with the numerical results for Al₂O₃-water and TiO₂-water nanofluids.