
Copyright © 2014 The Authors

http://eprints.gla.ac.uk/94710/

Deposited on: 25 June 2014
Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies

Dominique J. Tobler a,⁎, Mark O. Cuthbert b,c, Vernon R. Phoenix a

a School of Geographical and Earth Sciences, University of Glasgow, Gregory Building, Glasgow G12 8QQ, UK
b Water Sciences (Hydrogeology), School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
c Connected Waters Initiative Research Centre, The University of New South Wales, 110 King St., Manly Vale, NSW 2093, Australia

A R T I C L E I N F O
Article history:
Received 23 August 2013
Accepted 8 January 2014
Available online 18 January 2014

A B S T R A C T
The development of microbially mediated technologies for subsurface remediation and rock engineering is steadily increasing; however, we are lacking experimental data and models to predict bacterial movement through rock matrices. Here, breakthrough curves (BTCs) were obtained to quantify the transport of the ureolytic bacterium, Sporosarcina pasteurii, through sandstone cores, as a function of core length (1.8–7.5 cm), bacterial density (4 × 10⁶ to 9 × 10⁷ cells/ml) and flow rate (5.8–17.5 m/s). S. pasteurii was easily immobilised within the homogeneous sandstone matrix (>80%) in comparison to a packed sand column (<20%; under similar experimental conditions), and percentage recovery decreased almost linearly with increasing rock core length. Moreover, a decrease in bacterial density or flow rate enhanced bacterial retention. A numerical model based on 1D advection dispersion models used for unconsolidated sand was fitted to the BTC data obtained here for sandstone. Good agreement between data and model was obtained at shorter rock core lengths (<4 cm), suggesting that physicochemical filtration processes are similar in homogeneous packed sand and sandstones at these lengths. Discrepancies were, however, observed at longer core lengths and with varying flow rates, indicating that the attributes of consolidated rock might impact bacterial transport progressively more with increasing core length. Implications of these results on microbial mineralisation technologies currently being developed for sealing fluid paths in subsurface environment is discussed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The transport of microorganisms through porous rock media is a crucial factor for a variety of subsurface remediation and engineering technologies including in situ bioremediation of contaminants (e.g., Li et al., 2011), microbially enhanced oil recovery (Shabani et al., 2011) and microbially induced mineral precipitation for pore space and fracture plugging to control fluid flow (e.g., Cuthbert et al., 2013; Ferris et al., 1996; Phillips et al., 2013; Tobler et al., 2012), soil stabilization (e.g., van Paassen et al., 2010 and reference therein) and solid-phase capture of pollutants (e.g., Fujita et al., 2010; Lauchnor et al., 2013; Mitchell and Ferris, 2005). Moreover, accurate prediction of bacterial transport is valuable for risk assessment of pathogenic organisms (e.g., viruses, protozoa, or bacteria) introduced to the subsurface environment by infiltrating wastewaters (e.g., Pachepsky et al., 2006).

There is an extensive literature on the transport of bacteria in saturated packed columns (e.g., Bradford et al., 2006; Ding, 2010; Liu et al., 2011; Olson et al., 2005; Stevik et al., 2004; Stumpp et al., 2011; Torkzaban et al., 2008) where breakthrough curve analysis and in some cases magnetic resonance imaging were used to determine the impact of physical, chemical and biological parameters on bacterial retardation, dispersion and diffusion under both static and advective flow conditions. Transport of bacteria can vary considerably between different bacterial strains even when they exhibit similar cell morphologies and surface characteristics (Liu et al., 2011; Stumpp et al., 2011). This suggests that transport parameters cannot be generalised and need to be determined for each organism individually. A disadvantage of packed column experiments is that they lack the porosity, permeability, hydrodynamics and heterogeneities of consolidated rock systems: factors that have a marked impact on transport in the subsurface.

To date, there are very few studies that have investigated bacterial transport in rock. These included laboratory studies in fractured volcanic tuff and Berea sandstone (Jang et al., 1983; Story et al., 1995), and field investigations in fractured crystalline bedrock (Becker et al., 2003; Champ and Schroeter, 1988). Again, variations in transport behaviour were observed for different bacterial species, with one study also reporting substantial blocking of pore throats with an increase in injected bacterial density (Jang et al., 1983). In these studies, no model fits for the experimental
breakthrough curves were presented, and thus little information on transport parameters was given. This knowledge however, is important to develop realistic models to predict bacterial transport through subsurface rock as needed for the various applications listed above. Some information could certainly be transferred from transport studies of viruses and colloids through rock, but these investigations focussed mainly on fractured rock systems both at field (e.g., McKay et al., 1997) and laboratory scale (e.g., Mondal and Sleep, 2013; Ojha et al., 2011). The hydraulic regime in fractures is very different from that associated with matrix flow and grain porosity. In fact, it is difficult to immobilise bacteria onto fracture surfaces, as has been observed in field studies on microbial mineralisation for fracture sealing (Cuthbert et al., 2013). This complicates transfer of transport parameters from fractured to porous systems.

The literature on bacterial transport through porous rock is thus limited, particularly with regards to transport modelling. Here, we determined breakthrough curves of Sporosarcina pasteurii in Bentheimer sandstone as a function of core length, bacterial density, and flow rate. A bacterial transport model was developed to fit the breakthrough curve data from S. pasteurii in Bentheimer sandstone and to infer the dominant transport processes.

We focussed on S. pasteurii as it is being extensively utilised in the development of technologies for pore space and fracture plugging to control fluid flow and prevent leaks in CO2 storage reservoirs, nuclear waste repositories, or oil recovery sites. These technologies utilise the bacteria’s ability to precipitate large quantities of calcite via urea hydrolysis. Pore space plugging using this process has been successful at various scales (e.g., Cuthbert et al., 2013; Ferris et al., 1996; Phillips et al., 2013; Sham et al., 2013; Tobler et al., 2012; van Paassen et al., 2010). However, a re-occurring challenge is to avoid enhanced cementation near the injection area. It is well accepted that this issue occurs because the injected bacteria do not get distributed evenly throughout the entire length of the porous system before calcite precipitation is induced. This demonstrates the need for a detailed understanding of how S. pasteurii is transported through porous systems. Critically, ureolysis-driven calcite precipitation is being developed for application in subsurface rock environments, thus we cannot rely on breakthrough data from unconsolidated columns and must enhance our understanding of bacterial transport in consolidated rock systems.

2. Methodology

2.1. Bacterial culturing

Transport studies were conducted with the soil-inhabiting, urease-positive bacterial strain S. pasteurii (ATCC 11859). S. pasteurii was grown at 30°C in brain heart infusion broth supplemented with urea (20 g L\(^{-1}\)). Cells were harvested by vacuum filtration once they reached the stationary phase, i.e., all nutrients were used up and no further cell divisions occurred. S. pasteurii suspensions were prepared in deionised water at the desired optical density and adjusted to pH 7.5 (see details in Tobler et al., 2011). The tested bacterial densities of 0.1, 0.5 and 1.0 OD\(_{600}\) correspond to approximately 3.7 \times 10^6, 3.3 \times 10^7, 8.6 \times 10^7 cells ml\(^{-1}\), respectively (based on the S. pasteurii OD/Cell number conversion, Ramachandran et al., 2001). Note that the OD of the injected bacterial suspensions remained constant over the course of the experiments (between 30 and 90 min) showing that no additional cell divisions occurred. Moreover, the viability of S. pasteurii cells was not greatly affected by their exposure to deionised water and transport through the sandstone matrix as verified by measuring similar ureolytic activity in the influent and effluent (approximately 10 mM min\(^{-1}\) OD\(^{-1}\)).

2.2. Experimental details

Experiments were conducted with Bentheimer sandstone cores (3.6 cm diameter; Kocurek Industries). Bentheimer sandstone is a fairly homogeneous rock, consisting mainly of quartz (\(~95\%) with a small fraction of feldspars and clays (\(<5\%\)) and trace amounts of calcite and dolomite (Maloney et al., 1990). It lacks sedimentary structures and is characterised by irregular grains and a wide grain size distribution (diameters between 80 and 600 µm, average ~190 µm), which is slightly screwed to larger grains (Dautriat et al., 2009; Maloney et al., 1990). The porosity of the sandstone was 23% and the permeability was 2.4 \times 10^{-8} cm\(^2\).

Rock cores were, encased in a silicon tube sleeve (3.6 cm inner diameter) with PTFE in- and outlet plugs. The silicon tubing provided a tight fit around the cores and plugs ensuring that the injected solution passed through the core and not along the sides. Prior to any experiments, air was pumped from the sandstone cores, which were then saturated and flushed with deionised water. Flow-through experiments were carried out in vertical position, with bottom to top flow. The transport of S. pasteurii through Bentheimer sandstone was examined as a function of varying rock core length (1.8, 3.8 and 7.5 cm), bacterial density (0.1, 0.5 and 1.0 optical density at 600 nm), and injection rate (1 and 3 ml min\(^{-1}\)).

The hydraulic conductivity of the sandstone was determined from mathematical modelling detailed below.

Table 1

<table>
<thead>
<tr>
<th>Injected media</th>
<th>Core length (cm)</th>
<th>Flow rate (ml min(^{-1}))</th>
<th># Replicas</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 mM NO(_3) (Tracer)</td>
<td>1.8</td>
<td>1</td>
<td>3</td>
<td>100 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>1</td>
<td>3</td>
<td>100 ± 1.4</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>1</td>
<td>3</td>
<td>100 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>3</td>
<td>3</td>
<td>100 ± 0.0</td>
</tr>
<tr>
<td>0.1 OD S. pasteurii</td>
<td>3.8</td>
<td>1</td>
<td>2</td>
<td>360 ± 8.0</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>3</td>
<td>1</td>
<td>16.3</td>
</tr>
<tr>
<td>0.5 OD S. pasteurii</td>
<td>1.8</td>
<td>1</td>
<td>3</td>
<td>63.9 ± 17.9</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>1</td>
<td>3</td>
<td>34.6 ± 11.0</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>3</td>
<td>1</td>
<td>19.5</td>
</tr>
<tr>
<td>1.0 OD S. pasteurii</td>
<td>1.8</td>
<td>1</td>
<td>3</td>
<td>74.5 ± 9.4</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>1</td>
<td>3</td>
<td>43.6 ± 13.9</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>1</td>
<td>3</td>
<td>10.3 ± 5.7</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>3</td>
<td>1</td>
<td>24.2</td>
</tr>
</tbody>
</table>

a Pore volumes for 1.8, 3.8 and 7.5 cm cores were 4.5, 9.4 and 18.4 cm\(^3\), respectively.

b Flow rates of 1 and 3 ml min\(^{-1}\) correspond to interstitial velocities of 5.8 and 17.5 m/day.
dispersion equation (ADE) modified with mass transfer terms in account for attachment/detachment/straining of bacteria and/or decay terms due to bacterial inactivation, grazing or death (Tufenkji, 2007). For this study we used COMSOL Multiphysics (v. 4.3a) to test a variety of model structures based on existing 1-D ADE approaches for packed columns in the literature in order to test which processes needed to be included to reasonably match the observations made in a homogeneous sandstone rock. The best model formulation included an irreversible attachment process (kC) as well as a kinetic reversible attachment process (dS/dt) in the form of a Langmuir isotherm (bilinear adsorption model; Fetter, 1998) as follows:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x} - kC - \frac{\partial S}{\partial t}$$

(1)

$$\frac{\partial S}{\partial t} = K_i (K_d (S_{\text{max}} - S) - S)$$

(2)

where C is the concentration of bacteria (OD) or solute in the aqueous phase at distance x and time t, S is the concentration of reversibly attached bacteria (OD) up to a maximum of S_{max}, v is the average linear velocity (equal to the fluid flux divided by the porosity), K_i and K_d are partition and Langmuir coefficients respectively, and D is the coefficient of hydrodynamic dispersion defined as:

$$D = \alpha v + D_0$$

(3)

where α is the hydrodynamic dispersivity and D_0 is the coefficient for molecular diffusion or bacterial motility. The irreversible attachment coefficient k may include terms for both straining (physical filtration) and attachment (physicochemical filtration), but if the former is assumed to be insignificant (see later discussion), it may be defined using the classical colloid filtration theory (CFT) equation as:

$$k = k_{\text{att}} = \frac{3(1 - \varepsilon) \eta_0 x_c}{2d_c}$$

(4)

where x_c is the attachment efficiency, d_c is average grain size, ε is the porosity, η_0 is single collector contact efficiency (Liu et al., 2011). Despite the physical theory behind Eq. (4), not all the parameters are able to be determined a priori and thus k remains a model calibration parameter.

Decay terms were not included in the model as the viability and activity of the bacteria was not affected by the experimental procedure (see above). Fixed flux flow boundary conditions were used to control the advective flow velocity and the upstream transport boundary was defined using a concentration flux condition. The downstream transport boundary flux was set equal to the sum of the advective and diffusive flux components at a sufficient distance downstream to ensure the results at the column outlet distance were not sensitive to its position. The total mass flux at the distance from the upstream boundary corresponding with the length of the experimental column was output from the models for comparisons to the observed breakthrough curves.

Models were initially run using parameters for the conservative tracer to calibrate the hydrodynamic dispersivity term (α) for each column, which was left unaltered for the refinement of the bacterial transport model. D_0 was then omitted since it is negligible at the flow velocities and α values in this study. Our approach for refining the bacterial transport model was to keep parameters constant across all models to avoid ‘overtuning’ at the expense of losing information about the generalisation of our results with regard to process understanding. First the value of k was set to produce acceptable mass balances with regard to the bacterial mass retained in the columns by altering the value of x_c. Then, in order to fit the shapes of the breakthrough curves, the remaining unconstrained parameters (S_{max}, K_d and K_l) were varied to produce an acceptable fit across all models. It is worth noting that the sharp peaks, i.e., sudden increase in recovery followed by a quick decrease in recovery over 2–4 data points (in particular at rock core lengths of 1.8 and 3.8 cm, Figs. 1B and 2) were visually ignored during the manual refinement of the applied model. This was justified by the timing of the onset of the peaks coinciding with the short interruption in fluid flow (<5 s) during fluid changeover, which then led to a sudden increase in release of bacterial cells.

3. Results and discussion

The conservative tracer nitrate yielded 100% recovery under all tested conditions (Table 1, Fig. 1A) indicating that no tracer molecules attached to the mineral surfaces of the sandstone (consists mainly of quartz). This confirmed the assumption of elastic

![Fig. 1. Breakthrough curves of (A) the conservative tracer (0.3 mM nitrate) and (B) S. pasteurii (1.0 OD) as a function of rock core length (both at 1 m min$^{-1}$ flow rate). C/Co = normalised solute concentration in effluent. The dashed lines show the best fits of the mathematical transport model. (C) Total recovery of S. pasteurii cells (as determined from the area under the breakthrough curve) as a function of rock core length. The solid line shows an almost linear decrease ($R^2 = 0.98$) in % recovery with increasing core length for S. pasteurii at 1.0 OD. All data points represent the average of triplicate experiments with associated standard deviation ($\sigma = 1$, shown as error bars).](image-url)
collisions between nitrate molecules and sandstone grains (i.e., \(k = 0 \)). Initial modelling of the tracer experiments provided an estimate of the hydrodynamic dispersivity, \(\alpha = 0.75 \), and this value was then used for modelling of bacterial BTCs (Table 2).

Bacterial breakthrough curves exhibited considerably lower recovery values compared to the tracer experiments, ranging from 10% to 75% (Table 1). This indicated that S. pasteurii cells became trapped within the sandstone. This effect was included in the numerical model using a first order rate equation for irreversible attachment (the term \(kC \) in Eq. (1)), and this proved effective in simulating the observed range of retention for the input concentrations and flow rates tested. This term alone, while effective at simulating retention quantity, poorly mimicked the shape of the bacterial breakthrough curves (data not shown). Subsequent modelling indicated that a reversible loss term with the applied Langmuir isotherm was needed to fit the shape of the breakthrough curves adequately (Figs. 1B and 2).

3.1. BTCs as a function of core length

Total bacterial cell recovery decreased almost linearly with increasing core length (Fig. 1B and C). This shows that the rate at which bacteria are immobilized within the rock matrix (i.e., % cells per cm core length) was very similar for the three different core lengths. This trend further indicates that if a 1.0 OD S. pasteurii suspension is injected into a Bentheimer sandstone core with length > 8 cm (under the conditions tested here), all the injected bacteria would be distributed over the first 8 cm (where the trendline intercepts the x-axis, Fig. 1C) and none immobilised in the remaining section of the core. Two mechanisms are most likely to be causing this effect – straining (physical filtration) and attachment (physiochemical filtration; Tufenkji, 2007). If straining was a significant mechanism, this effect should be more pronounced in the first part of the rock core and lead to distance, potentially leading to hyper-exponential retention profiles as observed previously in unconsolidated column studies (Kasel et al., 2013 and references therein). Although the bacterial distribution along the core seems fairly homogeneous, slightly more bacteria were trapped within the 0–3.8 cm section (– 54%) compared to the 3.8–7.5 cm section (– 40%, Fig. 1C). Older studies have relied on geometric consideration to elucidate the presence of straining, where straining was considered likely to occur if the bacterial cell diameter is >5% of the average grain size of the medium (Ginn et al., 2002). In this study, the ratio of the S. pasteurii cell (average 2.8 \(\mu \)m in size) to average quartz grain diameter (190 \(\mu \)m) has a value of 1.5%, which suggests that straining should not be important here. However, we also note that unconsolidated sand studies (e.g., Tufenkji, 2007 and references therein) have shown that straining is also observed at ratios < 1.5% and that this is caused by irregular grain shapes. The sandstone used here exhibits irregular grains and a wide distribution in grain size, pore space and pore throats (Dautriat et al., 2009; Maloney et al., 1990), suggesting that some straining likely occurred.

If straining played a minor role then the effect of enhanced retention with increasing core length should be due to physiochemical filtration (attachment), i.e., an increase in contact time between bacterial cells and mineral surfaces with increasing core length. The numerical model accounts for this via Eq. (4) and simulates the data well, as shown by \(R^2 \) (coefficient of determination) values of 0.89 for 1.8 cm and 0.80 for 3.8 cm (Fig. 1B). The only exception is the model fit for the 7.5 cm core experiment (at 1 ml min\(^{-1}\), \(R^2 = -1.65 \)) where bacterial retention is underestimated (Fig. 1B, dashed line, grey squares). The relatively high filtration for the longer consolidated cores could thus not be accurately described with the set of model parameters, which achieved good fits at shorter lengths. The slight discrepancy between the 7.5 cm data and model may not be surprising as there is possibly some straining taking place (a process not explicitly accounted for in the model) which leads to slightly higher retention. Moreover, the presence of other minerals (~5% of clays, feldspars, and trace amounts of calcite and dolomite) and their different surface properties may further aid bacterial immobilisation. Thus overall, the attributes of consolidated (sandstone) versus unconsolidated (sand) porous media might explain the observed discrepancies with scale.

3.2. BTCs as a function of bacterial density (OD)

S. pasteurii recovery at 1.0 OD appeared to be higher than at 0.5 OD for both 1.8 cm and 3.8 cm core experiments (Figs. 1C and 2).
3.3. BTCs as a function of flow rate

An increase in *S. pasteurii* recovery was observed with an increase in flow rate from 1 to 3 ml min\(^{-1}\) (5.8 and 17.5 m/d, respectively) in 1.0 OD experiment as shown in Fig. 3 and Table 1. This trend is in agreement with colloid filtration theory and has been observed repeatedly in packed column studies (Ding, 2010; Ginn et al., 2002; Hendry et al., 1999). It is explained by a decrease in number of collisions with increasing bulk fluid velocity (i.e., convection becomes the dominant transport process). As a result, bacterial contact with grain surfaces decreases and thus the possibility for adsorption and bacterial retention reduces. While a difference in breakthrough was observed experimentally, the model failed to simulate this difference (Fig. 3). This shows that the applied model is not very sensitive to variations in flow velocity and thus suggests the simple relationship between CFT irreversible attachment and fluid velocity (Eqs. (1) and (4)) is not entirely adequate to simulate the experimental results in this regard for the sandstone tested here. Indeed, the presence of some straining could partly explain this discrepancy. Straining is predicted to increase with decreasing flow rate (Cushing and Lawler, 1998), and this has also been shown in bacterial transport studies in unconsolidated material (e.g., Bradford et al., 2006). Thus, we speculate that the larger difference in bacterial recovery observed in the experimental data is likely due to straining having a higher impact at the lower flow velocity (5.8 m/d), while at 17.5 m/d straining is less noticeable, and hence we observe a better agreement between the lower flow velocity (5.8 m/d), while at 17.5 m/d straining is mental data is likely due to straining having a higher impact at dated material (e.g., Bradford et al., 2006). Thus, we speculate that partly explain this discrepancy. Straining is predicted to increase stone tested here. Indeed, the presence of some straining could to simulate the experimental results in this regard for the sandstone cores follows similar laws as in unconsolidated sand columns (i.e., CFT theory combined with blocking).

3.4. Comparison between consolidated and unconsolidated material

This study aimed to enhance our limited understanding of bacterial transport in consolidated rock by providing experimental breakthrough data combined with numerical modelling. Results showed that bacterial trapping in homogeneous sandstone is similar to transport through unconsolidated sand, however, there are discrepancies that are difficult to explain with existing models for unconsolidated sand.

At velocities of 5.8–17.5 m/d, rates that are comparable to those used for subsurface field injections (e.g., oil recovery, pump and treat approach), less than 20% of the biomass was recovered at the end of a 7.5 cm long sandstone core. In sand columns, with equivalent dimensions and at identical flow rates, a recovery greater than 80% is observed (e.g., Liu et al., 2011). Indeed, sandstone exhibits a considerably lower porosity (23%) and a lower permeability (2.4 × 10\(^{-8}\) cm\(^2\)) compared to a packed column (38% and 4.5 × 10\(^{-8}\) cm\(^2\), respectively), and this certainly explains some of the observed differences in recovered biomass. The applied numerical model, which is based on 1D ADE models successfully used for unconsolidated sand, shows very good agreement for the short rock core experiments (i.e., 1.8 and 3.8 cm, Figs. 1B and 2). At longer distances (i.e., 7.5 cm) and under different flow rates, the agreement between data and model is however, less satisfactory, suggesting a ‘break down’ of the applied model. It is difficult to pinpoint the parameters responsible for this divergence, particularly in the absence of many other studies that quantified and modelled bacterial breakthrough in rock matrices. Possibly, attributes of this consolidated rock including a wider grain size distribution, smaller pore spaces and throats, along with higher abundance of dead-end pores (due to cementation) and irregular grains have contributed to some straining taking place. Moreover, the presence of other minerals will have certainly affected physicochemical filtration. The relationships between pore velocity and attachment in consolidated natural samples is thus not as simple as in unconsolidated, pure systems.

It is important to reiterate that Bentheimer sandstone is a fairly homogeneous rock, consisting mainly of quartz (95%) with a small fraction of feldspars and clay (<5%) and lacking sedimentary structures (Maloney et al., 1990). Many other natural porous rocks...
exhibit a smaller porosity and permeability, smaller pore throats, and in many cases they are also more heterogeneous in texture and mineralogy. Thus, to improve current transport models to allow prediction of bacteria injected into subsurface rock environments, as required for several subsurface technologies, more work needs to be focussed on characterisation and understanding bacterial transport through rock matrices. More BTC studies will increase understanding of bulk processes, but new approaches and techniques will also need to be developed to provide spatially resolved data to allow correlation of small-scale variations in rock structure and textue to bacterial attachment behaviour.

3.5. Implication for ureolysis-driven calcite precipitation

This study shows that S. pasteurii cells are easily trapped in sandstone (3.6 cm diameter, 1.8–7.5 cm length), even at relatively high velocities, i.e., 6.2 m/d. It is shown here and in previous studies that bacterial transport can be enhanced if injection rates and thus interstitial flow velocities are increased. Moreover, on mineral surfaces within a rock specimen are saturated with bacterial cells (as implied by the Langmuir kinetic model), an increase in bacterial breakthrough may be expected. It is, however, that continued bacterial injection will eventually lead to clogging of pore throats, and reduction of permeability, an aspect that should be investigated in future studies.

An interesting observation is that although slightly more bacteria were trapped within the first few cm (~54% in 0–3.8 cm section compared to ~40% in 3.8–7.5 cm section), bacterial distribution along the core was fairly homogeneous (Fig. 1C). With regards to the use of bacteria to induce mineral precipitation for pore space filling, we thus assume that cells get relatively evenly distributed along the rock core during the initial bacterial injection (under the tested conditions). This even distribution of cells would, at least in the first instance, be advantageous as it would help to ensure a more even spread porosity reduction. It is therefore important to understand what happens thereafter. In most cases, a solution of CaCl₂ and urea is injected to induce calcite precipitation. This will lead to the formation of new mineral surfaces within a rock specimen are saturated with bacterial cells, thus interstitial flow velocities are increased. Moreover, once mineral surfaces within a rock are exposed to aqueous fluids and bacteria, surface reactivity and flow dynamics. Furthermore, the presence of new calcite surfaces is more favourable for the application of microbial induced carbonate precipitation by S. pasteurii biolimns and limits due to bacterial encapsulation. Ecol. Eng. 41, 32–40.

