Aaij, R. et al. (2013) *Observation of the decay* $B_{0s} \rightarrow D_0 \phi$. *Physics Letters B*, 727 (4-5). pp. 403-411. ISSN 0370-2693

Copyright © 2013 CERN for the benefit of the LHCb Collaboration

http://eprints.gla.ac.uk/93893/

Deposited on: 19 May 2014
Observation of the decay $B_s^0 \to \bar{D}^0 \phi$ ∗

LHCb Collaboration

A R T I C L E I N F O
Article history:
Received 23 August 2013
Received in revised form 10 October 2013
Accepted 25 October 2013
Available online 31 October 2013
Editor: L. Rolandi

A B S T R A C T
First observation of the decay $B_s^0 \to \bar{D}^0 \phi$ is reported using pp collision data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. The significance of the signal is 6.5 standard deviations. The branching fraction is measured relative to that of the decay $B_s^0 \to \bar{D}^0 K^{*0}$ to be

$$\frac{B(B_s^0 \to \bar{D}^0 \phi)}{B(B_s^0 \to \bar{D}^0 K^{*0})} = 0.069 \pm 0.013 \text{ (stat)} \pm 0.007 \text{ (syst)}.$$

The first measurement of the ratio of branching fractions for the decays $B_s^0 \to \bar{D}^0 K^{*0}$ and $B^0 \to \bar{D}^0 K^{*0}$ is found to be

$$\frac{B(B_s^0 \to \bar{D}^0 K^{*0})}{B(B^0 \to \bar{D}^0 K^{*0})} = 7.8 \pm 0.7 \text{ (stat)} \pm 0.3 \text{ (syst)} \pm 0.6 \left(\frac{f_s}{f_0}\right),$$

where the last uncertainty is due to the ratio of the B^0_s and B^0 fragmentation fractions.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

Measurements of the decay $B^0 \to \bar{D}^0 \phi$ are of particular interest because they provide information that can be used to determine the CKM angles $\gamma \equiv \arg(-V_{ud} V^*_{ub} / (V_{cd} V^*_{cb}))$ and $\beta_s \equiv \arg(-V_{ts} V^*_{tb} / (V_{cs} V^*_{cb}))$ without theoretical uncertainties [1]. Knowledge of these CP-violating phases is crucial to search for new sources of CP violation and unravel subtle effects of physics beyond the Standard Model, which may appear in flavour-changing interactions. Their precise measurements are among the most important goals of flavour physics experiments.

To date, the angle γ is the least well-determined angle of the Unitarity Triangle with an uncertainty of about 10° [2–4]. The current precision is dominated by measurements of time-integrated $B^+ \to DK^+$ decay rates, where D indicates a superposition of D^0 and \bar{D}^0 decays to a common final state. In these decays, sensitivity to γ arises from direct CP violation in the interference between the $b \to c\bar{c}s$ and $b \to u\bar{c}s$ tree-level amplitudes. As there are no loop contributions to the decay amplitudes, no theoretical uncertainties arise. The main limitation is due to the size of the data samples collected by the experiments. To improve on the precision, it is important to perform additional measurements from other channels with small theoretical uncertainties.

The large production cross-section of B^0_s mesons in pp collisions at the LHC opens new possibilities for measuring both γ and β_s. For example, the decay $B^0_s \to D\bar{s}K^+$ is sensitive to $\gamma + \beta_s$ through measurements of time-dependent decay rates [5,6]; although the determination of γ from this mode requires an independent measurement of the mixing phase β_s.

The decay $B^0_s \to \bar{D}^0 \phi$, first proposed in 1991 by Gronau and London for measuring γ [7], can also probe β_s via measurements of time-dependent decay rates. Nandi and London have shown [1] that both γ and β_s can be determined without theoretical uncertainties and ambiguities, using the known sign of ΔI, the decay-width difference between the two B^0_s mass eigenstates [8].

An alternative method to measure γ using $B^0_s \to D\phi$ decays was proposed in Refs. [9,10], where it was shown that γ can be determined from time-integrated decay rates, in a similar way as from $B^+ \to DK^+$ decays, even if $B^0_s \to D\phi$ is not a self-tagged decay mode. The only requirement for the determination is that a sufficient number of different D final states are included in the measurement. The time-integrated method does not require flavour-tagging, and hence makes optimal use of the statistical power of the large bb production at LHC. An estimation of the sensitivity with this method shows that the mode $B^0_s \to D\phi$ has the potential to make a significant impact on the determination of γ at LHCb [11].

The observation of the $B^0_s \to \bar{D}^0 \phi$ decay and the measurement of its branching fraction, described in this Letter, are the first steps towards a programme of CP violation studies with this channel. The branching fraction is measured relative to the
topologically similar decay $B^0 \rightarrow D^0 \overline{K}^{*0}$, that was previously observed by LHCb [12]. In addition, the first measurement of the branching fraction of the $B^0 \rightarrow D^0 K^{*0}$ decay relative to the $B^0 \rightarrow \overline{D}^0 K^{*0}$ decay is reported and used to improve on the knowledge of the branching fraction of the $B^0 \rightarrow \overline{D}^0 K^{*0}$ decay. The Feynman diagrams corresponding to the $B^0 \rightarrow D^0 \phi$ and $B^0 \rightarrow D^0 \phi$ decay amplitudes are shown in Fig. 1. The Feynman diagrams for the leading $b \rightarrow c$ amplitudes in $B^0 \rightarrow D^0 K^{*0}$ and $B^0 \rightarrow \overline{D}^0 K^{*0}$ decays are also shown in Fig. 1. Since only $D^0 \rightarrow K^+ \pi^+$ decays are considered in this study, all of the measured quantities for the $B^0 \rightarrow D^0 \phi$, $B^0 \rightarrow \overline{D}^0 K^{*0}$, and $B^0 \rightarrow D^0 K^{*0}$ channels include contributions from the $B^0 \rightarrow D^0 \phi$, $B^0 \rightarrow \overline{D}^0 K^{*0}$, and $B^0 \rightarrow D^0 K^{*0}$ modes, respectively, through the doubly-Cabibbo-suppressed decay $D^0 \rightarrow K^+ \pi^-$.

2. Event selection

The study reported here is based on pp collision data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. The LHCb detector [13] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream. The combined tracking system provides a momentum (p) measurement with relative uncertainty that varies from 0.4% at 5 GeV/c to 0.6% at 100 GeV/c, and impact parameter (IP) resolution of 20 μm for tracks with large transverse momentum (p_T). Charged hadrons are identified using two ring-imaging Cherenkov detectors [14]. Photon, electron and hadron candidates are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [15]. The trigger [16] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

Simulated signal samples and data control channels are used to optimise the selection criteria. In the simulation, pp collisions are generated using Pythia 6.4 [17] with a specific LHCb configuration [18]. Decays of hadrons are described byEvtGen [19], in which final state radiation is generated using PHOTOS [20]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [21] as described in Ref. [22].

Selected events fulfill one of two hardware trigger requirements: either a particle from the signal decay deposits enough energy in the calorimeter system, or one of the particles in the event, not originating from the signal decay, fulfills any of the trigger requirements (e.g., events triggered by one or more particles coming from the decay of the other B meson in the $pp \rightarrow bbX$ event). The software trigger requires a two-, three- or four-track secondary vertex with a large scalar sum of the tracks p_T and significant displacement from the associated primary pp interaction vertex (PV). At least one track should have $p_T > 1.7$ GeV/c and a value of χ^2 per degree of freedom, χ^2_{IP}, is defined as the difference between the χ^2 of the PV reconstructed with and without the considered particle. A multivariate algorithm identifies secondary vertices consistent with the decay of a b hadron.

Reconstructed tracks are selected with criteria on their p_T, track χ^2 per degree of freedom, χ^2_{IP} and particle identification (PID). Tracks identified as muons are discarded.

The D^0 mesons are reconstructed in the decay mode $D^0 \rightarrow K^+ \pi^-$. Particle identification criteria used to select the daughters require the difference between the log-likelihoods of the kaon and pion hypotheses ($\Delta LKL_{p\pi}$) to be larger than 0 for the kaon and smaller than 4 for the pion. The D^0 meson χ^2_{IP} is required to be larger than 2 to separate mesons originating from a B decay and those produced at the PV. In addition, for the $D^0 K^{*0}$ ($\overline{D}^0 K^{*0}$) final states, the charm meson flight distance with respect to the B^0 vertex is required to be larger than 0 with a significance of at least 2 standard deviations in order to suppress background from B^0 decays without an intermediate charm meson, such as the mode $B^0 \rightarrow K^- \pi^+ K^{*0}$. There is no corresponding requirement in the $\overline{D}^0 \phi$ final state, since the charmless background is negligible. The D^0 candidates with invariant mass within ± 20 MeV/c^2 of the known mass [23] are retained.

The ϕ mesons are reconstructed in the mode $\phi \rightarrow K^+ K^-$. The p_T of the kaon daughters is required to be larger than 350 MeV/c and the $\Delta LKL_{p\pi}$ of both daughters to be larger than 3. Candidates are retained if their invariant mass is within ± 10 MeV/c^2 of the known ϕ mass [23].

The K^{*0} mesons are reconstructed in the mode $K^{*0} \rightarrow K^+ \pi^-$. The p_T of the kaon (pion) is required to be larger than 350 (250) MeV/c. In addition, to reduce the cross-feed from $B^0 \rightarrow D^0 \rho^0$ and $B^0 \rightarrow D^0 K^+ K^-$ decays, the $\Delta LKL_{p\pi}$ of the kaon must be larger than 3 and that of the pion smaller than 3. Possible background from protons in the kaon sample, for example from the decay $A^0 \rightarrow D^0 p \pi^-$, is suppressed by selecting kaon candidates with a difference between the log-likelihoods of proton and kaon hypotheses, ΔLL_{pK^+}, smaller than 10. Candidate K^{*0} mesons with invariant mass within ± 50 MeV/c^2 of the known mass [23] are kept.

Neutral B meson candidates are formed from D^0 and ϕ (or K^{*0}) candidates, which are fitted to a common vertex with the D^0 constrained to its known mass. In order to reduce contributions from non-resonant decays, $B^0 \rightarrow D^0 K^+ K^-$, $B^0 \rightarrow D^0 K^- \pi^+$, and
The two samples are fitted simultaneously with a sum of probability density functions (PDFs) modelling signal and background contributions.

A boosted decision tree (BDT) [26] suppresses the residual background. Nine variables are input to the BDT: the decay vertex \(\chi^2 \) of the reconstructed \(B^0 \) and \(D^0 \) mesons; the \(\chi^0_5 \) of the \(B^0 \), \(D^0 \), \(\phi \) (\(K^{\pm 0} \)) mesons, and of both the \(D^0 \) daughters; and the \(p_T \) of the \(D^0 \) and \(\phi \) (\(K^{\pm 0} \)) mesons. The BDT is optimised and tested using simulated signal events and events outside of the \(D^0 \) mass signal region for background. Events with BDT response larger than 0.2 are retained, resulting in a rejection of 74% of the background, while retaining 84% of the signal. The working point maximises \(N_s/\sqrt{N_s + N_b} \). Here, \(N_s \) is the expected \(B^0 \to D^0 \phi \) signal yield, computed using simulated events and assuming that the branching fraction is equal to that of the \(B^0 \to D^0 K^{\pm 0} \) decay (as expected under SU(3) flavour symmetry), and \(N_b \) is the background yield estimated using data events in the sidebands outside the \(B^0 \to D^0 \phi \) signal region \((\pm 50 \text{ MeV}/c^2 \) around the \(B^0 \) known mass [23]. No multiple candidates are found for the \(D^0 \phi \) final state. The fraction of events with more than one candidate is 0.6% in the \(D^0 K^{\pm 0} \) or \(D^0 K^{0} \) invariant mass range of 5150–5600 MeV/c^2, and the candidate is retained randomly.

3. Signal yield

Signal yields are determined with an unbinned maximum likelihood fit to the \(D^0 \phi \) and the sum of the \(D^0 K^{\pm 0} \) and \(D^0 K^{0} \) invariant mass (\(M \)) distributions in the range 5150 < \(M < 5600 \) MeV/c^2. The two samples are fitted simultaneously with a sum of probability density functions (PDFs) modelling signal and background contributions.

The \(B^0 \) and \(B^0 \) signals are described by a modified Gaussian distribution of the form

\[
 f(M; \mu, \sigma, \alpha_1, \alpha_2) \propto \exp\left(-\frac{(M - \mu)^2}{2\sigma^2 + \alpha_1(M - \mu)^2} + \frac{-\alpha_2(M - \mu)^2}{2\alpha_2}
ight),
\]

where \(\mu \) is the peak position, \(\sigma \) the width, and \(\alpha_1 (M < \mu) \) and \(\alpha_2 (M > \mu) \) parameterise the tails. The width and the tail parameters depend on the final state, but are common to the \(B^0 \) and \(B^0 \) decays. The \(B^0 \) peak position and width are left free to vary in the fit with the difference between \(B^0 \) and \(B^0 \) peak positions fixed to the current world-average value [23]. The tail parameters are fixed to values determined from simulated events and are considered among the sources of systematic uncertainty.

The helicity angle distribution of the \(\phi \) candidates for the \(B^0 \) and \(B^0 \) signal is investigated. The sPlot [29] technique is adopted to assign a weight to the events and determine the signal components, using the \(D^0 \phi \) invariant mass as the discriminating variable. For this purpose, the requirement on \(\cos \theta_\phi > 0.4 \) has been lifted prior to the computation of the signal weights. The data distributions of \(\cos \theta_\phi \), shown in Fig. 3, are compared to the expected distribution of \(B^0 \to D^0 \phi \) decays from simulation. The distribution observed for the \(B^0 \to D^0 K^{\pm 0} \) decay candidates is consistent with the expectation that this decay is not dominated by a pseudoscalar-vector quasi-two-body final state.

The signal yield ratios are corrected for two residual backgrounds that peak at the mass of the \(B^0 \) or \(B^0 \) meson and are distributed as the signal. The fit of the two backgrounds is the...
charmless background due to the decays $B_s^0 \rightarrow K^+\pi^-\phi$ and $B^0 \rightarrow K^+\pi^-K^{*0}$ proceeding without the presence of an intermediate D_s^0 meson. There is no evidence of such background in the $B_s \rightarrow D_s^0\phi$ channel. A large fraction of the charmless background in the $D_s^0K^{*0}$ final state is rejected with the requirement of a minimal D_s^0 flight distance introduced in Section 2. The remaining charmless background is evaluated using candidates from the D_s^0 sidebands. The B yields in the D_s^0 sidebands above a linear background are extrapolated to the D_s^0 signal region and used to correct the signal. The uncorrected signal yields and the background contributions are given in Table 1. The other source of peaking background is due to higher mass resonances and non-resonant $B_s^0 \rightarrow D_s^0 K^+ K^-$, $B^0 \rightarrow D^0 K^-\pi^+$, and $B^0 \rightarrow D^0 K^+\pi^-$ decays that fall in the $B_s^0 \rightarrow D_s^0\phi$, $B^0 \rightarrow D^0\phi$, and $B^0 \rightarrow D^0 K^*0$ signal regions, respectively. This contribution is evaluated with fits to the ϕ and K^{*0} background-subtracted mass distributions in a wider range than the signal window. The background subtraction is performed using the sPlot technique, with the $D_s^0\phi$ and $D^0 K^*0$ (or $D^0 K^{*0}$) mass as discriminating variables. A linear (PDF) describes the S-wave background in the $D_s^0\phi$ final state. A spin-one Breit–Wigner distribution convolved with a Gaussian resolution function describes the signal, and an S-wave PDF the non-resonant background. The S-wave component in the $B_s^0 \rightarrow D_s^0 K^*0$ and $B^0 \rightarrow D^0 K^{*0}$ channels takes into account non-resonant and $K^{*0}(1430)$ resonance contributions and uses experimental input from the LASS experiment [30]. It is approximately linear in the region of interest, ±200 MeV/c^2 around the K^{*0} nominal mass. Potential interference effects between the S-wave and the P-wave components are covered by the assigned systematic uncertainty. The ϕ and K^{*0} mass distributions are shown in Fig. 4. The background yields, after extrapolation to the K^{*0} and ϕ signal mass windows, are listed in Table 1.

A likelihood ratio test is employed to assess the statistical significance of the $B_s^0 \rightarrow D_s^0\phi$ signal, which is given by $\sqrt{2\ln(L_{m,0}/L_0)}$ and found to be 7.1 standard deviations. Here $L_{m,0}$ and L_0 are the maximum values of the likelihoods for the signal-plus-background and background-only hypotheses, respectively.

The ratios of branching fractions are evaluated from the uncorrected signal yields, N, and the sum of the charmless and non-resonant background yields, N_{bkg}, as

$$R_{\phi} \equiv \frac{B(B_s^0 \rightarrow D_s^0\phi)}{B(B_s^0 \rightarrow D_s^0\phi^0)} = \frac{N_{B_s^0 \rightarrow D_s^0\phi}}{N_{B_s^0 \rightarrow D_s^0\phi^0}} \cdot \frac{1 - \frac{N_{B_s^0 \rightarrow D_s^0K^{*0}}}{N_{B_s^0 \rightarrow D_s^0\phi^0}}}{1 - \frac{N_{B_s^0 \rightarrow D_s^0K^{*0}}}{N_{B_s^0 \rightarrow D_s^0\phi^0}}} \cdot \frac{\epsilon_{B_s^0 \rightarrow D_s^0\phi}}{\epsilon_{B_s^0 \rightarrow D_s^0\phi^0}} \cdot \frac{f_1}{f_0},$$

and

$$R_{K^{*0}} \equiv \frac{B(B_s^0 \rightarrow D_s^0 K^{*0})}{B(B_s^0 \rightarrow D_s^0 K^{*0})} = \frac{N_{B_s^0 \rightarrow D_s^0 K^{*0}}}{N_{B_s^0 \rightarrow D_s^0 K^{*0}}} \cdot \frac{1 - \frac{N_{B_s^0 \rightarrow D_s^0\phi}}{N_{B_s^0 \rightarrow D_s^0 K^{*0}}}}{1 - \frac{N_{B_s^0 \rightarrow D_s^0\phi}}{N_{B_s^0 \rightarrow D_s^0 K^{*0}}}} \cdot \frac{\epsilon_{B_s^0 \rightarrow D_s^0 K^{*0}}}{\epsilon_{B_s^0 \rightarrow D_s^0\phi}} \cdot \frac{f_0}{f_1},$$

where the ratio of the B_s^0 and B^0 fragmentation fractions is $f_1/f_0 = 0.256 \pm 0.020$ [31], the value of the $\phi \rightarrow K^+K^-$ branching fraction is 0.489 ± 0.005 [23], and $B(K^{*0} \rightarrow K^+\pi^-) = 2/3$. The total efficiencies, ϵ, account for the geometrical acceptance of the detector, the reconstruction, the event selection, the PID, and the trigger efficiencies. All efficiencies are computed from simulated events, except for the PID and hardware trigger efficiencies, which are obtained from data, using a high-purity calibration sample of $D_s^+ \rightarrow D_s^0(\rightarrow K^+\pi^-)\pi^+$ decays. The resulting ratios of branching fractions are $R_\phi = 0.069 \pm 0.013$ and $R_{K^{*0}} = 7.8 \pm 0.7$, where the uncertainties are statistical only.

4. Systematic uncertainties

Several sources of systematic uncertainties are considered. Those associated to the trigger and PID selection affect only R_ϕ and are mainly due to systematic uncertainties. The ratios of the efficiencies of the decays $B_s^0 \rightarrow D_s^0\phi$ and $B_s^0 \rightarrow D_s^0 K^{*0}$ for the trigger and PID are found to be 0.97 ± 0.05 and 1.08 ± 0.03, respectively, where the errors are propagated as systematic uncertainties to R_ϕ.

Similarly, the uncertainty on the efficiencies of the charm meson flight distance selection affects only R_{ϕ}, where different criteria are chosen for the $B_s^0 \rightarrow D_s^0\phi$ and $B_s^0 \rightarrow D_s^0 K^{*0}$ modes. The ratio of the corresponding efficiencies is found to be 1.27 ± 0.03, where the uncertainty includes a contribution from the difference between data and simulation. In order to estimate the efficiency in data, the fit to the invariant mass of the B candidates is performed to data samples selected with all criteria except that on the flight distance. For this sample, the charmless background contribution is estimated using events in the upper D mass sideband and subtracted from the signal yields.

The ratio of the efficiencies for the decays $B_s^0 \rightarrow D_s^0\phi$ and $B^0 \rightarrow D^0 K^{*0}$ of the remaining selection criteria is found to be 1.21 ± 0.03, where the deviation from unity is mainly due to the different widths and mass windows for the ϕ and K^{*0} resonances. The ratio of the efficiencies for the decays $B_s^0 \rightarrow D_s^0 K^{*0}$ and $B^0 \rightarrow D^0 K^{*0}$ is found from simulation to be 1.04 ± 0.01. The uncertainties on these efficiencies are propagated as systematic uncertainties due to the selection.

The fit procedure is validated using simulated pseudo-experiments. The fit bias, relative to the fitted ratio, is evaluated to be
The uncertainty on the fragmentation fraction background model. The uncertainty is determined from the bias in the results obtained by fitting those parameters are free to vary. The background shape uncertainty between data and simulation, as determined by a fit where fixed signal parameters by 10%, which is about three times the difference. The signal model uncertainty is evaluated by varying the uncertainties on the S-wave background yields are propagated to the associated systematic uncertainty. Similarly, the statistical uncertainties on the S-wave background yields are propagated to as the non-resonant correction.

5. Results and conclusions

From \(R_{K^{*0}} \) and the value of the \(B^0 \to D^0 K^{*0} \) branching fraction from Ref. [23], the \(B_s^0 \to D^0 K^{*0} \) branching fraction is calculated to be

\[
B(B^0_s \to D^0 K^{*0}) = \left[3.3 \pm 0.3 \text{ (stat)} \pm 0.1 \text{ (syst)} \pm 0.3 \left(f_s / f_d \right) \right] \times 10^{-4}.
\]

This result is consistent with and improves on the previous determination by LHCb [12], which is based on an independent data sample. Using the above results for \(R_\phi \), \(R_{K^{*0}} \) and the \(B^0 \to D^0 K^{*0} \) branching fraction, the branching fraction for \(B_s^0 \to D^0 \phi \) is calculated to be

\[
B(B_s^0 \to D^0 \phi) = \left[2.3 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.2 \left(f_s / f_d \right) \right] \times 10^{-5}.
\]

which takes into account the correlation in the statistical uncertainties between \(R_\phi \) and \(R_{K^{*0}} \) of \(-13.6\). The correlation between the corresponding systematic uncertainties is negligible. The central value is about a factor two smaller than the branching fraction for \(B^0 \to D^0 K^{*0} \) decay and supports the observation of SU(3) breaking effects in other colour suppressed \(B^0 \to D^0 K^{*0} \) decays [12], where \(V \) is a vector meson. With larger data samples, the \(B_s^0 \to D^0 \phi \) decay will contribute to the measurements of the CP violating phases \(\gamma \) and \(\beta_s \).

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinEES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.
Open access

This article is published Open Access at sciedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[2] BaBar Collaboration, J. Lees, et al., Observation of direct CP violation in the measurement of the Cabibbo–Kobayashi–Maskawa angle \(\gamma\) with \(B^0 \to D^{*0} K^{*+}\) and \(D^0 \to D^{*0} \pi^0, D^0 \to D^{*0} \pi^+\) decays, Phys. Rev. D 87 (2013) 052015, arXiv:1301.1029.

[3] Belle Collaboration, R. Aaij, et al., Observation of direct CP violation in \(B^0 \to D^{*0} K^0 K^-\) and a measurement of the ratio of branching fractions \(B(D_s^+ \to D^0 K^0) / B(D_s^- \to D^- K^0)\), Phys. Rev. D 87 (2013) 052015, arXiv:1301.1029.

[6] R. Fleischer, New strategies to obtain insights into CP violation through \(B^0 \to D^{*0} K^0 K^-\) and \(D^0 \to D^{*0} \pi^0, D^0 \to D^{*0} \pi^+\) decays, Nucl. Phys. B 671 (2003) 459, arXiv:hep-ph/0304027.

[7] R. Aaij, D. London, How to determine all the angles of the unitarity triangle from \(B^0 \to D K^0\) and \(B^0 \to D \phi\), Phys. Lett. B 253 (1991) 483.

[11] S. Ricciardi, Measuring the CMK angle \(\gamma\) at LHCb using untagged \(B_s^0\) to \(D\phi\) decays, CERN-LHC-PUB-2010-005.

[12] LHCb Collaboration, R. Aaij, et al., First observation of the decay \(B^0 \to D^0 K^0\) and a measurement of the ratio of branching fractions \(B(D_s^+ \to D^0 K^0) / B(D_s^- \to D^- K^0)\), Phys. Lett. B 706 (2011) 32, arXiv:1110.3676.

LHCb Collaboration

[24] LHCb Collaboration, R. Aaij, et al., Observation of the decay \(B^0 \to D^0 K^0 K^-\) and evidence of \(B^0 \to D^0 K^0 K^-\) and \(B^0 \to D^0 K^0 K^0\), Phys. Lett. B 109 (2012) 131801, arXiv:1207.5991.

[30] D. Asto, et al., A study of \(K^-\pi^+\) scattering in the reaction \(K^- p \to K^-\pi^+\pi^-n\) at \(11 \text{ GeV/c}\), Nucl. Phys. B 296 (1988) 493; BaBar Collaboration, B. Aubert, et al., Time-dependent and time-integrated angular analysis of \(B \to e\nu\pi^\pm\pi^0\) and \(e\nu\pi^0\pi^\pm\), Phys. Rev. D 78 (2008) 092008, arXiv:0808.5586.
