The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms

Pedley, T.J., Hill, N.A. and Kessler, J.O. (1988) The growth of bioconvection patterns in a uniform suspension of gyrotactic micro-organisms. Journal of Fluid Mechanics, 195, pp. 223-237. (doi: 10.1017/S0022112088002393)

88746.pdf - Published Version


Publisher's URL:


‘Bioconvection’ is the name given to pattern-forming convective motions set up in suspensions of swimming micro-organisms. ‘Gyrotaxis’ describes the way the swimming is guided through a balance between the physical torques generated by viscous drag and by gravity operating on an asymmetric distribution of mass within the organism. When the organisms are heavier towards the rear, gyrotaxis turns them so that they swim towards regions of most rapid downflow. The presence of gyrotaxis means that bioconvective instability can develop from an initially uniform suspension, without an unstable density stratification. In this paper a continuum model for suspensions of gyrotactic micro-organisms is proposed and discussed; in particular, account is taken of the fact that the organisms of interest are non-spherical, so that their orientation is influenced by the strain rate in the ambient flow as well as the vorticity. This model is used to analyse the linear instability of a uniform suspension. It is shown that the suspension is unstable if the disturbance wavenumber is less than a critical value which, together with the wavenumber of the most rapidly growing disturbance, is calculated explicitly. The subsequent convection pattern is predicted to be three-dimensional (i.e. with variation in the vertical as well as the horizontal direction) if the cells are sufficiently elongated. Numerical results are given for suspensions of a particular algal species (Chlamydomonas nivalis); the predicted wavelength of the most rapidly growing disturbance is 5–6 times larger than the wavelength of steady-state patterns observed in experiments. The main reasons for the difference are probably that the analysis describes the onset of convection, not the final, nonlinear steady state, and that the experimental fluid layer has finite depth.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Hill, Professor Nicholas
Authors: Pedley, T.J., Hill, N.A., and Kessler, J.O.
College/School:College of Science and Engineering > School of Mathematics and Statistics > Mathematics
Journal Name:Journal of Fluid Mechanics
Journal Abbr.:J. Fluid Mech.
Publisher:Cambridge University Press
ISSN (Online):1469-7645
Copyright Holders:Copyright © 1988 Cambridge University Press
First Published:First published in Journal of Fluid Mechanics 195:223-237
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher

University Staff: Request a correction | Enlighten Editors: Update this record