Human and animal trypanosomes in Côte d'Ivoire form a single breeding population

Capewell, P. , Cooper, A., Duffy, C.W., Tait, A., Turner, C.M.R., Gibson, W., Mehlitz, D. and MacLeod, A. (2013) Human and animal trypanosomes in Côte d'Ivoire form a single breeding population. PLoS ONE, 8(7), e67852. (doi:10.1371/journal.pone.0067852) (PMID:23844111) (PMCID:PMC3699513)

[img]
Preview
Text
87763.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Background: Trypanosoma brucei is the causative agent of African Sleeping Sickness in humans and contributes to the related veterinary disease, Nagana. T. brucei is segregated into three subspecies based on host specificity, geography and pathology. T. b. brucei is limited to animals (excluding some primates) throughout sub-Saharan Africa and is non-infective to humans due to trypanolytic factors found in human serum. T. b. gambiense and T. b. rhodesiense are human infective sub-species. T. b. gambiense is the more prevalent human, causing over 97% of human cases. Study of T. b. gambiense is complicated in that there are two distinct groups delineated by genetics and phenotype. The relationships between the two groups and local T. b. brucei are unclear and may have a bearing on the evolution of the human infectivity traits.<p></p> Methodology/Principal Findings: A collection of sympatric T. brucei isolates from Côte d’Ivoire, consisting of T. b. brucei and both groups of T. b. gambiense have previously been categorized by isoenzymes, RFLPs and Blood Incubation Infectivity Tests. These samples were further characterized using the group 1 specific marker, TgSGP, and seven microsatellites. The relationships between the T. b. brucei and T. b. gambiense isolates were determined using principal components analysis, neighbor-joining phylogenetics, STRUCTURE, FST, Hardy-Weinberg equilibrium and linkage disequilibrium.<p></p> Conclusions/Significance: Group 1 T. b. gambiense form a clonal genetic group, distinct from group 2 and T. b. brucei, whereas group 2 T. b. gambiense are genetically indistinguishable from local T. b. brucei. There is strong evidence for mating within and between group 2 T. b. gambiense and T. b. brucei. We found no evidence to support the hypothesis that group 2 T. b. gambiense are hybrids of group 1 and T. b. brucei, suggesting that human infectivity has evolved independently in groups 1 and 2 T. b. gambiense.<p></p>

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Cooper, Dr Anneli and MacLeod, Professor Annette and Turner, Professor Charles and Capewell, Dr Paul
Authors: Capewell, P., Cooper, A., Duffy, C.W., Tait, A., Turner, C.M.R., Gibson, W., Mehlitz, D., and MacLeod, A.
College/School:College of Medical Veterinary and Life Sciences > Institute of Biodiversity Animal Health and Comparative Medicine
College of Medical Veterinary and Life Sciences > Institute of Infection Immunity and Inflammation
Journal Name:PLoS ONE
Publisher:Public Library of Science
ISSN:1932-6203
ISSN (Online):1932-6203
Copyright Holders:Copyright © 2013 The Authors
First Published:First published in PLoS ONE 8(7):e67852
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
371796The Wellcome Centre for Molecular Parasitology ( Core Support )Andrew WatersWellcome Trust (WELLCOME)085349/Z/08/ZIII - PARASITOLOGY