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ABSTRACT

A sediment core from the northeast North Atlantic contains high-resolution co-registered
foraminiferal 8'*0 and IRD record for the last deglaciation. These reveal a distinct ice-rafting
event that occurred at the time of Greenland Interstade 1d (GI-1d), a feature also seen in other
high-resolution cores from the North Atlantic. The occurrence of a geographically widespread
peak in ice rafted detritus (IRD) at ice distal sites at a time when increased freshwater flux to
the surface ocean is inferred to have caused rapid cooling suggests a mechanistic link between
the processes, analogous to the Younger Dryas (GS-1) cooling episode. The general absence
of IRD at southern locations at other times during GI-1 when the flux of icebergs from
surviving ice sheets to northern locations continued, suggests that the GI-1d IRD peak
represents a time of hyrdrographic reorganisation which changed IRD dispersal. While
numerous studies have suggested freshwater flux as a major driver of rapid climate
oscillations observed around the North Atlantic during the last deglaciation, the evidence

presented here both supports that mechanism and highlights the potential for rapid and major
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reorganisation of the of the North Atlantic’s surface hydrography to explain changes in IRD

flux independently of ice sheet calving dynamics.
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1. Introduction

High-resolution records spanning the Last Glacial-Interglacial Transition (LGIT) have
consistently revealed a climate system punctuated by numerous abrupt climate transitions
(Severinghaus and Brook, 1999; Alley et al., 2003; Steffensen et al., 2008). Several of these
events have been linked to changes in Atlantic Meridional Overturning Circulation (AMOC)
and its associated heat flux because of its sensitivity to increased freshwater input (Clark et al.,
2001; Clark et al., 2002a; McManus et al., 2004). To firmly establish freshwater forcing as an
underlying causal mechanism of these abrupt climate transitions requires firstly, well
constrained chronostratigraphies such that events can be correlated between records with
confidence and, secondly, widespread geological evidence that links the North Atlantic’s

surface conditions to changes in the deep and intermediate ocean.

The occurrence of Ice Rafted Detritus (IRD) within marine sediments has long been
used to investigate the links between climate, oceans and ice sheets (Heinrich, 1988; Bond et
al., 1993; Elliot et al., 2001; Knutz et al., 2001; Hemming, 2004; Peck et al., 2007; Hendy and
Cosma, 2008; Scourse ef al., 2009). In order to fully understand these links, it is not only
important to understand how variations in IRD relate to ice sheet advance and/or retreat
(McCabe and Clark, 1998; Marshall and Koutnik, 2006) but also to develop an understanding
of the way hydrographic controls can influence the dispersal of IRD within an oceanic basin.
There has been relatively little work relating hydrographic factors to IRD records, although
some authors have argued for minimal hydrographic control in parts of the sub-polar North
Atlantic (Elliot et al., 2001) and in relation to the first occurences of Heinrich like events in
the earlier Pleistocene (Naafs ef al., 2011). One situation where hydrographic controls have
been cited as influencing the pattern of IRD deposition is in regards to the location of the IRD

Belt (Figure 1) (Ruddiman, 1977; Ruddiman and Mclntyre, 1981; Scourse ef al., 2009).

http:/mc.manuscriptcentral.com/jgs



O©oOoONOOPAWN =

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Journal of Quaternary Science

Potential hydrographic controls include the pattern of oceanic surface currents which
affect the dispersal of icebergs and thus IRD and, potentially more importantly, sea surface
temperature (SST). Palaeoclimatic records indicate that large and abrupt changes to AMOC
during the last glacial period were associated with changes in climate (Vidal et al., 1997,
Austin and Kroon, 2001; Clark et al., 2002a; Rahmstorf, 2002; McManus et al., 2004;
Thornalley et al., 2010). Freshwater input to the North Atlantic is suggested to be one of the
major drivers of changes to AMOC and attendant climatic impacts (Broecker, 1994). This
link is supported by proxy data (Elliot et al., 2002; McManus et al., 2004) and modeling
studies (LeGrande et al., 2006; Clarke et al., 2009; Liu et al., 2009; He et al., 2013), which
demonstrate that a weakening of AMOC is associated with cooling and lower SSTs. SSTs
influence the melt rates of icebergs and hence their longevity in the open ocean; as such,
icebergs are more likely to travel large distances across ocean basins during times of lower
SSTs. IRD peaks in ice distal sites at these times may reflect the increased persistence and
dispersal of icebergs, relating to hydrographic conditions, rather than an increased total flux of
icebergs related to ice sheet dynamics. Comparing IRD records from distal sites with records
relating to temporal variations in iceberg flux (both proximal and distal) can allow these links

to be investigated.

High resolution records spanning the LGIT are punctuated by numerous IRD events
which some authors have linked directly to changes in ice sheet dynamics (eg: Knutz et al,
2001), given the potential influence of SST variations highlighted above it is imperative to
establish if making such inferences is valid. Such an understanding will aid attempts to
integrate records of oceanic changes with ice sheet behaviour and explore the two-way forcing
relationship that exists (Clark et al, 2001). Here we present a new, high resolution IRD record
from the northeast North Atlantic and use it to identify a distinct and widespread LGIT ice

rafting event. It’s timing, as indicated by a major change in the co-registered foraminiferal
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8'%0, coincides with the cold interval of GI-1d (Lowe et al., 2008). Episodic freshwater input
to the North Atlantic has been proposed as the cause of such cold intervals that punctuate the
LGIT (Thornalley et al., 2010).  Establishing the effects of such input has important
implications for our understanding of rapid climate change during the last deglaciation as it

provides a linking mechanism between ice sheets and changes in oceanic circulation.

2. Study site and methods.

2.1. Study site
Giant Piston Core MD95-2007 was collected in 1995 from the RV Marion Dufresne in

the St Kilda basin on the Hebridean shelf, Northwest Scotland (57° 31.057° N, 08° 23.171’ W,
158 m water depth, 19.35m recovery; Figure 1). The St Kilda basin is a glacially over-
deepened basin that is within the limits of the last British-Irish Ice Sheet (BIIS) (Davies ef al.,
1984; Peacock et al., 1992; Stoker et al., 1993). This conclusion is supported by a '*C date of
22,480+300 '*C a BP (27.1 cal ka BP [OxCal v4.1 (Bronk-Ramsey, 2009), MARINEO9
(Reimer et al., 2009)]) on marine shell material to the west of morainal banks marking the
aforementioned BIIS limit and of ‘basal’ ages <16 '*C ka BP (<19 cal ka BP) within those
same limits (Peacock ef al., 1992; Austin and Kroon, 1996). These ages demonstrate that this
sector of the BIIS was at its maximum extent prior to 20 ka. As MD95-2007 is located within
these ice limits it is thought to record nearly the entire deglacial sequence following initial

deglaciation of the shelf edge.

The potential for cores recovered from the St Kilda basin to record high-resolution
records of the LGIT was initially demonstrated from two vibrocores VE57/-09/89 and VE57/-

09/46 (Austin, 1991, Peacock et al., 1992; Austin and Kroon, 1996). These cores showed an
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expanded LGIT sedimentary sequence but a poorly resolved Holocene sequence. From the
variety of sedimentary, micropalacontological and isotopic evidence recorded in these cores it
was proposed that the St Kilda basin deglaciated at 15.2 '*C ka BP (17.6 cal ka BP) after
which its waters remained cold with low salinity until 13.5 C ka BP (15.6 cal ka BP).
Following this time, mostly warm interstadial conditions prevailed until a major cooling
associated with the onset of GS-1 was observed at 11.6 '*C ka BP (13.0 cal ka BP). The
return to warm temperatures at the beginning of the Holocene occurred prior to 10 '*C ka BP

(11 cal ka BP) (Austin and Kroon, 1996).

2.2. A revised chronostratigraphy for MD95-2007
The original age model for MD95-2007 (Wilson, 2004) was based on 16 AMS e

ages calibrated using Calib4 2 (Stuiver and Reimer, 1993; Stuiver et al., 1998), following a
reservoir correction (R()) reflecting the modern values of seawater (i.e. AR=0). The
availability of a 580 record (6180f0ram), measured in the epi-benthic foraminifera Cibicides
lobatulus (originally reported in Austin et al., 2011), provides an additional means of
improving the age-depth relationship. Given the rapid and abrupt nature of the GI-1 climate
oscillations, the high resolution of the MD95-2007 SlgOforam record and inherent uncertainty
about the variable marine reservoir effect during this period (Austin ef al., 1995; 2011), it is
important to determine the timing of particular climatic episodes during GI-1 vis a vis the
candidate cold episodes GI-1d or GI-1b (Figure 3). This is done by constraining the 8'*Oforam
record using recalibrated AMC '*C ages (OxCal v4.1, MARINEO9 (Bronk-Ramsey, 2009;
Reimer et al., 2009) with three different values for R): the modern value 400 years (AR = 0),
the commonly cited GS-1 value 700 years (AR = 300) and a maximum value of 1,100 years

(AR =700) (Waelbroeck et al., 2001). This approach provides a good first order constraint to
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the age of the interstadial 6180foram excursion (Austin et al., 2011). In order for this excursion
to correlate with GI-1b (13.3-13.1 ka b2k) the reservoir age correction would need to exceed
1000 years (Figure 3). A reconstruction of Ry at this time from MD95-2007 indicates that it
was lower than the GS-1 value of ~1000 years (Austin et al, 2011) thus the 8"*Ogram

excursion is correlated with GI-1d (Figure 3).

Based upon this interpretation of the climate event-stratigraphy, the &"*Ogam
stratigraphy can be tuned to the NGRIP 8"0jcc record using the GICCOS5 chronology
(Rasmussen et al., 2006). For the rapid SISOforam changes at the onset and end of GS-1 and
GI-1d the tie-point was assigned to the mid-point of the transition. The Vedde Ash has been
indentified within MD95-2007 and more widely across the St Kilda basin (Austin et al., 1995;
Peters et al., 2010; Austin et al., 2011). This tephra occurs at a core depth of 281 cm and has
been assigned an age of 12,171 a b2k (Rasmussen et al., 2006). Table 2 summarizes the tie-
points, their core depths and the ages assigned to them. During this interval the age
uncertainty within the GICCO05 timescale is 100-200 years (Rasmussen et al., 2006) however
as we are comparing tuned records this has no influence on our conclusions. This age model
follows the INTIMATE protocols (Lowe et al., 2008; Austin and Hibbert, 2012). It must be
noted that this approach assumes synchroneity and therefore any information about time

leads/lags is lost and conclusions based on the results must respect this limitation.

One complicating factor in the use of the tuning method to construct an age model for
MD95-2007 is that there is no obvious structure to the local climate event-stratigraphy beyond
the cold excursion GI-1d. As a result age control in the lower section of the core is difficult,
further dating may improve this but would be hampered by a general scarcity of suitable
material in the lower core (Austin pers. Comm). To anchor the base of the record it is

therefore necessary to use the basal radiocarbon determination (13,950=130 “CaBP)ata

http:/mc.manuscriptcentral.com/jgs
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depth of 1821 cm. This subsequently introduces an uncertainty related to the choice of Ry
used in the correction and then calibration of this age. The differences in the basal age
calculated using the various corrections are significant and would affect any interpretations
based on the timing of events in the lower 0.6 m of our record. For this reason we avoid
making interpretations based on data from the un-tuned section of the age model which must
be considered tentative. The effects of a variable correction are, however, restricted to this
basal section of the core and are not a key factor when considering the tuned section to which

this study relates.

2.3. A new IRD record from MD95-2007

IRDqux is calculated from the IRD concentration and bulk mass accumulation rate

(BMAR), such that:

IRD . =IRD,,, * BMAR

conc

The BMAR in turn is calculated using a linear sedimentation rate (LSR) derived from the age

model and the dry bulk density (pDB) of the sediment such that:
BMAR = LSR* pDB

Calculation of the LSR involves linear interpolation between the tie points used in
construction of the core’s age model. pDB is calculated using the wet and dry mass of known
volumes of sediment assuming sediment particle and pore water densities of 2650 and 1025 kg

m” and pore water salinity of 35 g kg™

Lithic counts were carried out on the coarse (>250 um) fraction. Traditionally, grains

coarser than 150 um are considered to be ice rafted (Hemming, 2004), but we use a coarser
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fraction because of the possibility that the shelf was a higher energy environment compared to

the deep ocean, especially at times, such as the LGIT, when sea level was lower.

3. Results

The IRDgyy record from core MD95-2007, plotted against the benthic 8180foram record
(Figure 4), shows 3 periods of increased IRD flux to the core site. The initial, and highest,
period of increased flux occurs near the base of the core. IRDyy,x during this time consistently
exceeds 150,000 grains cm?a’l. This period corresponds to the missing part of the SISOfomm
stratigraphy such that age-control is poor and resultant IRD flux uncertainty relatively high.
Following this there is a period of near zero IRDgy which lasted until ~14.1 ka. The
subsequent peak in IRD corresponds to a significant 8'*Ogam excursion correlated to GI-1d
(see section 2.2). After this brief (12144 a; NGRIP/GICCOS5 timescale) period IRDg,x returns
to the very low background levels observed prior to GI-1d. This low rate continues until a
slow increase in IRDgy prior to the onset of GS-1 that is marked by a distinct increase in the
IRDgyx to the core site. Following the end of GS-1, as defined in the SISOfomm stratigraphy,

IRDgyx rates are zero.

4. Discussion

The period of increased IRDg,x centered on 14.1 ka coincides with a 8180f0ram
excursion that has been correlated with the cold oscillation GI-1d observed within the NGRIP
81801Ce record (Rasmussen et al., 2006). Recent provenance work using U-Pb dating of detrital
minerals identifies a distinct distal component to the IRD found within MD95-2007, inferred
to be sourced from north eastern Canada, Baffin Island or East Greenland (Small et al., 2013).

The provenance data presented by Small ez al. (2013) do not preclude a contribution from

http:/mc.manuscriptcentral.com/jgs
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local sources (i.e. the BIIS) and the abundance of coarse (>250 um) is suggestive of a local
source given the relationship between IRD grain size and transport distance (Andrews, 2000).
However, it is doubtful that the BIIS had marine margins capable of supplying IRD to the
offshore environment at this time (Bradwell ez al., 2008; Ballantyne and Stone, 2012). It is
possible that grain-specific provenance studies may be biased particularly if the analysed
grains come from a particular size fraction. Despite this potential limitation the distinct distal
signal identified within the IRD provenance data provides clear evidence that IRD was

transported some distance across the North Atlantic during the short cold oscillation GI-1d.

The IRDqg,x and benthic SISOfomm records from MD95-2007 are shown in comparison
to proxy records from several other North Atlantic cores (DAPC-2, RAPid-15-4P, TTR-451;
Figure 5). The highlighted peak in IRDg. observed at 14.1 ka, which is co-registered with a
8" Oforam €xcursion within MD95-2007, also coincides with distinct increases in the IRD
records in both DAPC-2 and RAPid-15-4P indicating some common mechanism is
responsible. However, it should be pointed out that the IRD record from RAPid-15-4P is
concentration rather than flux however the consistent pattern between this and the flux records

(MD-95-2007, DAPC-2) gives us confidence that it records the same event.

The IRD peak in RAPid-15-4P corresponds to the occurrence of an Icelandic tephra
interpreted as being the Katla Ash. This tephra is also observed within the NGRIP record and
can thus be assigned a precise age of 14.02 ka b2k (Thornalley et al., 2010; Rasmussen et al,
2006). The age model of DAPC-2 was constructed by visual tuning of the Nps% record with
the GISP2 '®0 record (Knutz et al., 2007) which results in an age offset compared to the
cores tuned to the NGRIP record (Figure 10 in Rasmussen et al., 2006). The availability of
AMS radiocarbon dates within this core is not sufficient to independently verify the tuning in

this part of the stratigraphy. However, the stratigraphic position of the IRD peak suggests that

http:/mc.manuscriptcentral.com/jgs

Page 10 of 31



Page 11 of 31

O©oOoONOOPAWN =

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

Journal of Quaternary Science

it is correlative to GI-1d as it occurs at the same time as the earliest recorded peak in Nps%
during GI-1. This strongly indicates that the IRD peak represents the same event that is seen

in MD95-2007 and RAPid-15-4P.

Considering the evidence for a distal contribution of IRD during GI-1d (Small et al.,
2013) it can be hypothesised that, if the overall flux of icebergs to the North Atlantic from
these distal sources is the fundamental control on the occurrence of IRD within MD95-2007,
then the MD95-2007 IRDq, record should reflect variations in this flux. A similar
relationship should exist during GI-1 for DAPC-2, which is inferred to have been
predominantly supplied with BIIS sourced IRD for most of its history (Knutz et al., 2007).
Obtaining comparable provenance data from DAPC-2 would allow this assumption to be

tested.

The IRD peaks during GI-1 seen within DAPC-2 and RAPid-15-4P occur during times
of low SST indicated by relative high abundance of the planktonic foraminifera N.
pachyderma sinistral (Nps%) (Knutz et al., 2007; Thornalley et al., 2010). The correlation
between IRD peaks and peaks in Nps% indicates that they occurred during times when the
sites were located north of the Polar Front (Scourse et al., 2009). If the observed GI-1d IRD
peaks simply reflected an increased flux of IRD to the North Atlantic, then it would be
expected that they would record IRD at other times when it is recorded in ice proximal core
sites. Core TTR-451 from the Eirik Drift (Stanford et al., 2011) shows increased IRD flux
throughout GI-1. It can be inferred from this that significant amounts of icebergs were calved
from the Greenland Ice Sheet (GIS) at times when no IRD was reaching the distal core sites.
Furthermore, models suggest that the GIS would have maintained calving margins for a large
part of GI-1, providing a persistent possible source for icebergs (Simpson et al., 2009). This
implies that some other control was acting to prevent deposition at the ice distal sites at times

of continuing iceberg flux to higher latitudes.
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A series of rapid variations in SST are observed in the Nps% records from cores
DAPC2 and RAPid-15-4P (Knutz et al., 2007; Thornalley et al., 2010). In each core one of
these variations is correlated with GI-1d and is coincident with the GI-1 IRD peak. Nps%
peaks indicating cooler periods of SST during GI-1 are also seen in core MD95-2006, taken
from the Barra fan, <100 km south west of MD95-2007 (Wilson et al., 2002; Peters et al.,
2010; Hibbert et al., 2010). It is reasonable to assume that one of the peaks corresponds to
GI-1d given the widespread and simultaneous nature of climate change in the North Atlantic
at this time (Bjorck et al., 1996; Broecker, 2000; Rohling ef al., 2003). An additional record
from the Barra Fan based on the planktonic foraminiferal assemblages in core VE56/-10/36
also shows a variation in SST around the time of GI-1d (Kroon et al., 1997). The occurrence
of these brief periods of lower SST would favour the southerly penetration of icebergs calved
from the surviving North Atlantic ice sheets because of the fundamental control SST has on
the survival of icebergs in the ocean (Dowdeswell and Murray, 1990). Given the absence of
IRD at times of higher SST’s when there was a continuing flux of icebergs from the same
potential sources, it is likely that it is SST which was the fundamental control on IRD
dispersal to the sub-polar North Atlantic during GI-1. The occurrence of a peak in IRD flux
associated with GI-1d is inferred to be the result of the attendant reduction in SST’s associated

with this climatic oscillation.

SST’s in the North Atlantic depend strongly on AMOC, with a weaker AMOC
associated with lower SST’s at higher latitudes (Schmittner ef al., 2005; Barker et al.,
2009). Rerouting events have been identified that correspond to the abrupt climate
reversals of the last deglaciation (Clark et al., 2001) and one such release of freshwater is
proposed as the cause of GI-1d and its concomitant cooling that is seen across the North
Atlantic (Rasmussen et al., 2006; Thornalley et al., 2010). This freshwater input, likely

caused an AMOC slowdown with an associated decrease in SST’s, visible in the
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palacorecords and sufficient to allow icebergs (and IRD) to reach MD95-2007 and other ice

distal sites.

The LGIT was punctuated by periods of increased meltwater input from the decaying
ice sheets (Fairbanks, 1989; Hanebuth et al., 2000; Bard et al., 2010). These meltwater pulses
had various sources but their effects, both in terms of sea level rise and climate, were
widespread (Stanford et al., 2006; Stanford et al, 2010). The largest of the identified
meltwater pulses is MWP-1a, whose initial contributor is thought to be the Antarctic Ice Sheet
(AIS), where partial collapse released freshwater into the Southern Ocean (Clark et al,
2002a). Resumption in NADW formation forced by a Southern injection of meltwater and
resulting in warming in the Northern Hemisphere (Weaver et al., 2003) would explain the
Bolling warming that marks the end of the LGM and the start of GI-1 (Lowe et al., 2008).
This warming would have favoured melting of the Northern Hemisphere ice sheets which
would have made a subsequent contribution to MWP-1a (Carlson et al., 2012), in turn
diminishing the vigour of AMOC. This interaction produces a feedback between ice sheets
and climate (Clark et al., 2001; McManus et al., 2004; Meissner and Clark, 2006; Clarke et
al., 2009; Thomalley et al., 2010; He et al, 2013). The evidence presented in this study
demonstrates a rapid alteration to the North Atlantics surface hydrography during the last

deglaciation, in agreement with this proposed feedback mechanism.

5. Conclusions and Implications

The co-registered, high-resolution IRDgy, and 8"Ogram records from MD95-2007
provide evidence of an IRD peak during GI-1 that is coincident with a period of lower
8" Oforam values. The timing of this event is constrained using '*C dates and tuning of the
record to NGRIP and is correlated with the short-lived cooling episode GI-1d (14,075-13,954

a b2k). Given our knowledge of the distribution of the pan-North Atlantic ice sheets and IRD
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provenance fingerprinting using U-Pb dating of detrital minerals (Small ez al/, 2013) it has
been established that the IRD peak in MD95-2007 reflects input of distally sourced material.
The absence of IRD in southerly (ice distal) cores at times when its flux at a northerly (ice
proximal) core was continuing suggests that IRD flux to the wider North Atlantic from the
surviving ice sheets is not the primary control. To explain this pattern of IRD occurrence it is
necessary to invoke a hydrographic control that prevents IRD deposition at ice distal sites

except during a defined cold interval, namely lowered SST.

The release of freshwater into the North Atlantic is proposed as the driving mechanism
of the short-lived and abrupt climate variations such as GI-1d. The effects of freshwater input
to the North Atlantic are primarily manifested through a slowdown of AMOC that reduces
SST’s. A reduction in SST’s favours the survival of icebergs and their wider dispersal. As
such we suggest that it is by this mechanism that IRD was deposited within these sub-polar
cores during GI-1d. The widespread effects of meltwater input to the North Atlantic during
the LGIT are clearly documented, but our evidence is some of the first that does not rely on

planktonic foraminiferal 'O alone.

Our conclusion that the GI-1 IRD peak within MD95-2007 contains distal material
(Small et al., 2013) and that hydrographic conditions are important controls on sub-polar IRD
dispersal has far reaching implications. IRD has regularly been used to infer fine scale
behaviour of individual ice sheets. For example, IRD deposited during the last glacial cycle in
the sub-polar North Atlantic records sub-Milankovitch (millennial) scale climatic changes that
have been linked to the abrupt calving dynamics of marine ice-sheet margins (eg: Knutz et al.,
2001; Scourse et al., 2009; Hibbert et al., 2010). By combining geographically distinct IRD
records, information regarding IRD flux to the wider ocean, and IRD provenance studies it is
possible to demonstrate that hydrography may be an important additional control on IRD

occurrence. Our results highlight, particularly at the millennial and sub-millennial scale, that
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IRD flux records may reflect a complex interplay between changes to oceanic conditions and

ice sheet calving dynamics.
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Figure Caption

Figure 1. Map of the North Atlantic showing the location of MD95-2007 (red star) and other
cores mentioned in the text. Also shown is the IRD belt of Ruddiman, (1977) and the
approximate location of the polar front (dashed red line) at various times in the past after

McManus et al., (1994).

Figure 2. Final age model for MD95-2007. Tuning of the MD95-2007 benthic SISOfomm
record (Austin et al., 2011) to the NGRIP §'*0 record on the GICC05 timescale (Rasmussen
et al., 2006). a) MD95-2007 benthic 8'*0 against core depth; b) NGRIP §'*0; ¢) MD95-2007
benthic 8'°0 tuned using basal AMS '*C date corrected for AR =300 . The solid lines show
the tie points based on major climate transitions visble in both records, the dashed line

indicates the basal radiocarbon age. Black dots on top axis are available '*C dates. The

Vedde Ash isochron is labelled.

Figure 3. MD95-2007 8"*Oforam plotted using 3 ‘preliminary’ age models constrained by the
available AMS '*C dates (Table 1) calibrated using OxCal v4.1 and MARINE09 (Bronk
Ramsey, 2009; Reimer et al, 2009) and three different values for AR; 0, 300 and 700. The

tuned age model is shown for comparison.

Figure 4. MD95-2007 IRDgyy record plotted against 8'*Ogyam record using the tuned age

model (Figure 2). The stratigraphic divisions are as recommended by INTIMATE (Lowe et
al., 2008).

Figure 5. Composite stratigraphic plot of the IRD records discussed in the text plotted on their
original timescales. The tuned proxies from MD95-2007 (this study; Austin et al., 2011),
DAPC-2 (Knutz et al., 2007) and RAPid-15-4P (Thornalley et al., 2010) are shown alongside
the IRD records. The NGRIP 8'0 record (Rasmussen et al., 2006) is shown alongside the
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IRD record from TTR-451 (Stanford et al., 2011). The age offset between DAPC-2 and the
other records is the result of this record being tied to GISP2 8'%0 (Groots and Stuiver, 1997);
the other records were tied to NGRIP §'*0 on the GICCO05 timescale (Rasmussen et al., 2006).
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Table 1. *C Ages from MD95-2007

Radiocarbon

Calibrated Age (cal a BP)

14
Sample  geothem)  sisigma) AR=0 AR=300  AR=700 poer
AA-41753 21 2279+36 2285462 1537£56  1140%51 1879
AA-41754 121 1066465 12601461  11304%143  10926+121  11825%*
AA-41762  375.5 11353462 13231465 1258381  11987%137 12907
AA-41755  396.5 11299466 13195472 12512488  11873%158 12890
AAR-2602 425 11500490 13355897  12689%96  12249%164 13000
AA-41763 4425 11296+77 13192485 12494398  11861£183 12889
AA-41756  556.5 11471462 13331467 12657467 122024128 12990
AA-41757 7415 12353474 14396£247 135024101  13152#98 13832
AAR-2603 826 126304100 148804275 137774127 13379111 14109
AAR-2604  974.5 127904120 15235£352  13949+194  13545£120 14289
AA-41758  1008.5 12789488 152114271 13926£121  13542+108 14289
AA-41759  1345.5 12953474 15526£318  14133#229  13695%105  14721%*
AAR-2605 1663 138104170 16925198 158904416 150284457 15995
AA-41760 1674 130204110 15721#366  14356£280 13765137  14739%
AAR-2606  1815.5 142504150  17346£222 16664279  15058£402 16502
AA-41761 1821 139504130 170294170 161524385 15384374 16157

Ages calibrated using OxCal v4.1, MARINEOS. AR =0, 300 & 700 (Bronk
Ramsey, 2009; Reimer et al., 2009)
*Ages from Wilson (2004) calibrated using Calib4_2 AR =0, uncertainties not reported.

** Average of 3 ages from shell fragments

Table 2. Tie points used in construction of tuned age model.

Tie Point Core depth Age assigned Reference
cm) (a b2k)
End of GS-1 101 11703 Lowe et al. 2008
Vedde Ash 281 12171 Rasmussen et al. 2006
Start of GS-1 521 12896 Lowe et al. 2008
End of GI-1d 941 13954 Lowe et al. 2008
Start of GI-1d 1016 14075 Lowe et al. 2008
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