
Copyright © 2013 IEEE

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

The content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/85851/

Deposited on: 16 September 2013
Investigation of the RTN Distribution of Nanoscale MOS Devices From Subthreshold to On-State

Salvatore M. Amoroso, Member, IEEE, Christian Monzio Compagnoni, Member, IEEE, Andrea Ghetti, Member, IEEE, Louis Gerrer, Alessandro S. Spinelli, Senior Member, IEEE, Andrea L. Lacaita, Fellow, IEEE, and Asen Asenov, Fellow, IEEE

Abstract—This letter presents a numerical investigation of the statistical distribution of the random telegraph noise (RTN) amplitude in nanoscale MOS devices, focusing on the change of its main features when moving from the subthreshold to the on-state conduction regime. Results show that while the distribution can be well approximated by an exponential behavior in subthreshold, large deviations from this behavior appear when moving toward the on-state regime, despite a low probability exponential tail at high RTN amplitudes being preserved. The average value of the distribution is shown to keep an inverse proportionality to channel area, while the slope of the high-amplitude exponential tail changes its dependence on device width, length, and doping when moving from subthreshold to on-state.

Index Terms—Flash memories, MOSFETs, random telegraph noise, semiconductor-device modeling.

I. INTRODUCTION

R ANDOM telegraph noise (RTN) represents one of the most important reliability issues for modern decananometer MOS technologies, attracting many research efforts devoted to the understanding of its statistical features [1]–[5]. In particular, the statistical distribution of the RTN amplitude has been widely investigated [4], [6], [7], due to its importance in determining the RTN impact on the operation of digital devices, such as Flash memories and SRAM cells [8], [9]. So far, results have shown an exponential behavior for this statistical distribution [2], [4], coming from a dominant contribution of percolative channel conduction on the threshold-voltage shift (ΔVT) obtained after electron capture/emission in the RTN trap [4], [10]. However, these results have been obtained extracting ΔVT at low currents (subthreshold or near threshold regime), and only few attempts have been made to investigate the ΔVT distribution in the on-state [11]. Moreover, the validity of the exponential behavior in deeply-scaled devices with channel dimensions of just a few tens of nanometer has never been verified.

In this letter, we show that the statistical distribution of the RTN amplitude deviates from a pure exponential when moving from the subthreshold to the on-state regime and when severely scaling device dimensions, preserving, however, an exponential tail at high ΔVT. Results reveal that while the average value of the distribution ⟨ΔVT⟩ keeps an inverse proportionality to channel area both in subthreshold and on-state conditions, the slope of the high-ΔVT tail moves from an inverse proportionality to the square root of device width (W) and length (L) in subthreshold to an inverse proportionality to W and L in the on-state regime, also reducing its dependence on substrate doping. This is interpreted in terms of a more uniform conduction when moving from subthreshold to on-state, with a lower impact of atomistic doping on ΔVT.

II. SIMULATION METHODOLOGY

We performed 3-D numerical simulations of a Flash cell with a 6 nm tunnel oxide, a 70-nm polysilicon floating gate, and a 4/3/5 nm oxide-nitride-oxide interpoly dielectric. Source and drain doping have a peak concentration of 10^20 cm^-3 at the silicon surface and a Gaussian vertical profile with a junction depth of 25 nm. Substrate is uniformly doped with a boron concentration equal to N_A = 5 × 10^17, 2 × 10^18 or 4 × 10^18 cm^-3. Three possible values of cell W and L were assumed, namely, 32, 64, and 128 nm, leading to nine cell geometries. Further details on the device can be found in [12], where the cell is referred to as “rounded edges.”

The statistical distribution of the RTN amplitude was calculated by means of a Monte Carlo procedure [12], where a large number of cells having a different atomistic configuration of substrate doping and a different position of a single RTN trap over the channel area were simulated. From each simulation, ΔVT was obtained as the change of the floating-gate potential allowing the same current to flow in the cell for the empty (neutral) and the filled (negatively charged) RTN trap. A read current of 100 nA × W/L, 2 μA × W/L, and 8 μA × W/L was assumed for ΔVT evaluation in the subthreshold, near threshold and on-state regime, respectively, as shown in Fig. 1, where the drain current versus gate voltage (I_D – V FG) curves are shown for many atomistically different devices in the case of W = L = 32 nm and N_A = 2 × 10^18 cm^-3. Simulations were carried out by means of the drift-diffusion module of the gold standard simulations (GSS) atomistic simulator GARAND [13], activating density-
gradient quantum corrections to correctly reproduce the electrostatic effect of dopants and quantum confinement in the channel. Note that, when referring to the on-state regime, these simulations underestimate the effect of localized point charges on device current, due to the lack of a correct implementation of the impact of these charges on carrier transport [14], [15]. As a consequence, these simulations underestimate variability in the drain current coming from atomistic doping [15] and the reduction of this current following the filling of RTN traps [16] in the on-state. This means that the on-state ΔV_T here reported are representative only of the electrostatic effect of RTN traps, with the additional contribution given by mobility modulation around the traps neglected.

III. SIMULATION RESULTS

Fig. 2(a) shows the simulated ΔV_T distributions at $I_D = 100$ nA in the case of $W = L = 64$ nm and $W = L = 32$ nm, with $N_A = 2 \times 10^{18}$ cm$^{-3}$. Both of the distributions can be reasonably approximated with an exponential trend, in agreement with what reported in [2] and [4], with a slope λ (units: [mV/dec]) increasing with device scaling. Fig. 2(b) and (c) reveal, instead, that the distributions significantly deviate from a pure exponential behavior when increasing the read current to 2 μA (b) and 8 μA (c). In particular, moving to the on-state regime makes the distributions broader at high probabilities with respect to subthreshold case, but narrower at low probabilities, which are of more interest for technology reliability. This narrowing is the result of steeper distribution tails in the graph, which, however, can still be approximated with an exponential behavior with slope λ.

In order to understand these results in more detail, Fig. 3 shows that the simulated $\langle \Delta V_T \rangle$ increases as cell dimensions are scaled keeping an inverse proportionality to the channel area $W \times L$, with small reductions when moving from the on-state to the subthreshold regime [17], [18]. Fig. 4 shows, instead, that the slope of the high-ΔV_T tail of the distributions of Fig. 2 displays a different dependence on W and L in the (a) subthreshold, (b) near-threshold, and (c) on-state regimes; while λ is inversely proportional to $\sqrt{W \times L}$ in the first case [2], an inverse proportionality to $W \times \sqrt{L}$ appears in the second case [4] and to $W \times L$ in the third [7]. This change comes with a reduction of the absolute values of λ and reflects a reduction of the impact of atomistic doping and percolative channel conduction on ΔV_T when moving from the subthreshold to the on-state regime [19]. From the different dependences of $\langle \Delta V_T \rangle$ and λ on W and L appearing from Figs. 3 and 4(a), we expect deviations from the exponential behavior even in subthreshold as cell scaling proceeds.

Fig. 5 shows that the $\langle \Delta V_T \rangle$ and λ scaling trends are also affected by a different dependence on N_A; while the
former parameter has only a weak increase when increasing \(N_A \), the latter displays a much stronger growth, being nearly proportional to \(N_A^{0.62} \) at 100 nA [2], to \(N_A^{0.5} \) at 2 \(\mu \)A [4], and to \(N_A^{0.2} \) at 8 \(\mu \)A. This lower dependence of \(\lambda \) on \(N_A \) when increasing the read current represents a further proof of the lower impact of atomistic doping and percolative conduction on \(\Delta V_T \) when moving from subthreshold to on-state.

IV. CONCLUSION

A detailed numerical investigation of the statistical distribution of the RTN amplitude of nanoscale MOS devices from the subthreshold to the on-state regime was presented. Results showed that the \(\Delta V_T \) distribution has significant deviations from the purely exponential trend moving to the on-state, with device scaling giving the possibility of nonexponential behaviors even in subthreshold. The drain current dependence of the \(\Delta V_T \) distribution was interpreted in terms of a lower dependence of \(\lambda \) on \(N_A \). The stronger \(\lambda \) dependence on \(W \) and \(L \) in on-state than in subthreshold should be considered in all those devices exploiting the strong inversion condition, such as SRAM and NOR Flash memories.

ACKNOWLEDGMENT

The authors would like to thank S. Markov, F. Adamu-Lema, and G. Roy from the University of Glasgow, Glasgow, U.K., for helpful discussions, and A. Benvenuti, A. Mauri, and A. Marmiroli from Micron Technology Inc., Agrate Brianza, Italy, for their support.

REFERENCES

