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This paper discusses a Bayesian approach to regularizing hidden Markov

models and demonstrates an application of this scheme to Bioinformatics.

1 Introduction

Hidden Markov models (HMMs) are close relatives of neural networks (NNs) in many

respects. Both models are composed of a network of visible and hidden nodes connected

by edges, which can be described in the more general framework of probabilistic graphical

models [5]. The forward-backward algorithm for training HMMs [10] shows striking

resemblance to the backpropagation algorithm for NNs. Finally, many applications,

especially in signal processing [2] and bioinformatics [1], employ hybrid schemes which

combine HMMs and NNs. This article focuses on a problem common to both models.

For sparse data, the classical training algorithms (mentioned above), which derive from

a maximum likelihood (ML) approach, are sub-optimal due to overfitting. Following [6],

much research on NNs in the last few years has explored Bayesian methods as a possible

remedy in this respect. The objective of this article is to take a similar route and test

if the generalization performance of HMMs can be improved by Bayesian free energy

minimization.

2 Classical HMMs

Consider a vector of observations, yt, where t represents some ordered label, e.g., time

in signal processing, or the site of a DNA strand in bioinformatics (see below). Corre-
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Figure 1: Left: HMM drawn as a probabilistic graphical model, where nodes repre-
sent random variables and arcs indicate conditional dependencies between these nodes.
Empty circles show hidden states, filled circles represent vectors of observations. The pa-
rameters of the model are shown as squares. Right: A Bayesian approach to parameter
adaptation. The parameters of the model, ν and w, are themselves treated as random
variables, whose prior distribution depends on further so-called hyperparameters (shown
as squares).

lations between these observations are assumed to be indirect via unobserved, discrete

hidden states st ∈ {1, . . . , K}. The model is characterized by two sets of conditional

independence relations [10]: (1) The observation at time or site t, yt, is independent

of all other observations and states given st. (2) The state at t, st, is independent of

the previous sequence of states given st−1. Using these independence relations, the joint

probability for the sequence of states and observations can be factored as

P (Y, s) = P (y1, . . . ,yN , s1, . . . , sN) = P (s1)
N
∏

t=2

P (st|st−1)
N
∏

t=1

P (yt|st) (1)

The corresponding graphical model is shown in Figure 1. In general, the transition

probabilities P (st|st−1) and the emission probabilities P (yt|st) depend on some model

parameters ν andw. A standard training scheme is to optimize these parameters so as to

maximize the likelihood L = P (Y|ν,w) =
∑

s
P (Y, s|ν,w). This can be accomplished

with the forward-backward and the Baum-Welch algorithm, as described in [10].
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3 A Bayesian approach

3.1 General outline of the methodology

A possible shortcoming of the maximum likelihood (ML) method is its susceptibility to

overfitting when the data are sparse. We therefore adopt a Bayesian approach, which

has proven to improve the generalization performance of neural networks [6], [9], and

treat the parameters ν and w as random variables. Starting from some prior distribu-

tion P (ν,w), the ultimate objective of learning is to determine the posterior distribution

P (s,w, ν|Y). As this is analytically intractable, we need to make certain approxima-

tions. We can sample from the posterior distribution numerically with Markov chain

Monte Carlo (MCMC). A good overview of this method can be found in [4]. Alterna-

tively, we can assume a simpler, analytically tractable distribution Q(s,w, ν) and adapt

its parameters so as to minimize the Kullback-Leibler divergence between Q and the

true posterior. This so-called method of variational free energy minimization has be-

come very popular in the context of learning in graphical models [5]. A first application

to HMMs can be found in [7].

We will constrain our approximating distribution to be separable, such that1

Q(s,w, ν) = Q(s)Q(w)Q(ν) (2)

The closeness of this distribution to the true posterior is measured by the Kullback-

Leibler divergence

F (Q) =
∑

s

∫

dw

∫

dνQ(s,w, ν) ln

[

Q(s,w, ν)

P (Y, s,w, ν)

]

(3)

where

P (Y, s,w, ν) =
N
∏

t=2

P (st|st−1, ν)
N
∏

t=1

P (yt|st,w)P (s1)P (ν)P (w) (4)

and we have introduced P (ν) and P (w) as priors on ν and w. Our objective is to opti-

mize Q(s,w, ν) so as to minimize F . This can be accomplished in an iterative scheme,

where each of the marginal distributions Q(s), Q(w), Q(ν) is optimized separately while

keeping the remaining two distributions fixed.

1We use the convention that different arguments indicate different probability distributions.
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3.2 Explicit form of the update scheme

We here assume a specific form for the transition probabilities, first suggested in [8]:

P (st|st−1) = νδ(st, st−1) +
1− ν

K − 1
[1− δ(st, st−1)] (5)

This choice is motivated by the phylogenetic problem of detecting recombinations in

DNA sequence alignments, where 1−ν can be interpreted as a recombination probability

(see below). Since ν is a binomial random variable, the natural conjugate prior is a beta

distribution:

P (ν) = D(ν|α, β) :=
1

Z
να−1(1− ν)β−1 (6)

where α, β > 0 are hyperparameters that determine the mean and the dispersion of the

distribution, while Z is a normalization factor. The resulting model is depicted on the

right of Figure 1.

First, we consider F (Q) as a functional of Q(ν) with Q(s) and Q(w) fixed. Introducing

the definitions

Ψ =
∑

s

N
∑

t=2

Q(s)δ(st, st−1) α̃ = α+Ψ β̃ = β +N − 1−Ψ (7)

and dropping terms that are independent of ν, this gives

F [Q(ν)] =
∫

dνQ(ν)

[

lnQ(ν)−
∑

s

Q(s)
N
∑

t=2

lnP (st|st−1, ν) − lnD(ν|α, β)

]

=
∫

dνQ(ν) [lnQ(ν)−Ψ lnν − (N − 1−Ψ) ln(1− ν)− lnD(ν|α, β)]

=
∫

dνQ(ν) ln

[

Q(ν)

D(ν|α̃, β̃)

]

+ C (8)

This expression is minimized for

Q(ν) = D(ν|α̃, β̃) (9)

where D(.) denotes the beta distribution, defined in (6). Second, we have to optimize

Q(w) with Q(s) and Q(ν) fixed. At the current stage this has not been made explicit,

though, and we rather assume a simple delta distribution located at the ML estimate

ŵ: Q(w) = δ(w − ŵ). Finally, the optimal distribution over the hidden states st for
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fixed Q(w) and Q(ν) is given, after some algebra2, by:

Q(s) =
1

Zs
P (s1)

∏

t

a(st+1, st)
∏

t

P (yt|st, ŵ) (10)

in which Zs is a normalization constant, and where we have defined:

ln a(st, st−1) = δ(st, st−1)Υ(α̃)−Υ(α̃+ β̃) + [1− δ(st, st−1)]
(

Υ(β̃)− ln(K − 1)
)

(11)

Υ(x) =
d

dx
ln Γ(x) =

d

dx
ln
∫

∞

0

ux−1 exp(−u)du (12)

Note that, after a sufficient number of iterations,Q(s) converges to the optimal posterior

distribution P (s|Y), and the most likely state sequence is given by maximizing eqn.(10).

4 Simulation experiments

4.1 A synthetic toy problem

Consider a rogue casino in which a fair die is occasionally replaced by a loaded one.

The latter has probability 0.5 of a six and probability 0.1 for the numbers one to five.

The visitor to the casino observes a sequence of rolls, Y = (y1, . . . ,yN), but he does

not know which rolls used a loaded (L) die and which used a fair (F) one. The nature

of the die in the tth roll is represented by the hidden state st ∈ {L, F}, and the

objective is to infer the true sequence of states s = (s1, . . . , sN) from the sequence of

observations. We parameterized the transition probabilities according to eqn.(5) with

a value of ν = 0.9, and generated 20 training sets of length Ntrain = 50 from the true

model. The emission parameters were kept at their correct values, while three different

training schemes were applied for adapting the transition parameter (always starting

from a neutral value of ν = 0.5): (1) ML, (2) the Bayesian scheme with a fairly vague

prior on ν (α = 2.5, β = 1.5, corresponding to a mean of µ = 0.625 and a standard

deviation of σ = 0.22), (3) the Bayesian scheme using a more narrow prior with a higher

probability mass in the region around the correct value (α = 17, β = 3, corresponding to

µ = 0.85, σ = 0.08). The prediction performance of the 20 ensuing models was assessed

on an independent test set of length Ngen = 1000. The results are shown in Figure 2

and suggest that both Bayesian training schemes lead to a significant improvement over

results obtained with ML.

2See http://www.bioss.sari.ac.uk/∼dirk/ for a complete derivation.
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Figure 2: Comparison between training simulations with ML (horizontal axis) and the
variational Bayesian approach (vertical axis). Two different prior distributions were
chosen. Top row: Informative prior, α = 17, β = 3. Bottom row: Vague prior,
α = 2.5, β = 1.5. The methods were compared with three performance criteria. Left
column: Percent correct classification of hidden states, as predicted by the mode of the
joint distribution P (s|Y) = P (s1, . . . , sN |Y) (Viterbi path). Middle column: Percent
correct classification based on the single-site mode, P (st|yt). Right column: Generaliza-
tion performance in terms of the normalized test-set log likelihood, Egen =

1

N
lnP (Y).

The crosses compare the performance of the ML (horizontal axis) and the Bayesian
approaches (vertical axis) for the various training sets. The diagonal line indicates an
equal performance of the two methods. Crosses above this line represent simulations for
which the Bayesian approach outperforms the ML method.

4.2 Detection of recombination in DNA sequence alignment

The second study is related to the bioinformatics problem of estimating phylogenetic

trees from DNA sequence alignments. A phylogenetic tree is a directed acyclic graph,

whose topology conveys information about evolutionary relatedness between different

species, whereas the edge lengths indicate evolutionary time in terms of the average

number of mutations per site. Standard training methods aim to optimize the topology

and the edge lengths by maximizing the likelihood of a given DNA sequence alignment

[1], [3]. This approach, however, cannot deal with recombination, which is the exchange

of DNA subsequences between different strains or species and, as discussed in [8], cor-

responds to a change of the tree topology in the affected region. We here follow [8] and

model the process with an HMM, where each state st represents a different topology,
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Figure 3: Comparison of the sensitivities (left) and specificities (right) obtained with the
ML (horizontal axis) and the Bayesian (vertical axis) training schemes. Each cross or
circle represents a different combination of training and test sets, where the difference in
the symbols is related to the different lengths of the recombinant regions in the respective
test set (crosses: 200, 200; circles: 50, 250). The diagonal dashed line indicates an equal
performance of the ML and the Bayesian scheme, symbols above this line indicate a
performance improvement as a result of applying the Bayesian scheme (and vice versa).

while the emission parameters are given by the branch lengths of the tree.

In our experiment, we simulated the evolution and recombination processes in a 4-

species tree according to the way described in [3] and [8]. All synthetic DNA sequence

alignments contained 1000 sites and two recombinant zones, but varied in the edge

lengths of the true tree and the locations and lengths of the recombinant regions. Each

of the data sets in turn was used for training an HMMwith either ML or according to the

Bayesian scheme described above [using two different settings of the hyperparameters:

(α, β) = (10, 10), (150, 50)]. The prediction performance was subsequently assessed on

the remaining data sets not used for training, where we chose two performance measures.

From the Viterbi path (that is, the mode of P (s|Y) = P (s1, . . . , sN |Y)) we determined

the true prediction rate for detecting recombinant sites (the sensitivity) as well as the

true prediction rate for non-recombinant sites (the specificity). A comparison of the

performance between training with ML and the Bayesian scheme is shown in Figure 3.3

3This comparison is based on the more informative prior, (α, β) = (150, 50). For the vaguer prior,
(α, β) = (10, 10), the pattern in the plots is similar, but less pronounced.
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5 Discussion

While the Bayesian approach clearly outperformed ML on the synthetic toy problem,

the results on the phylogenetic data sets are less clear-cut. The simulations suggest that

the Bayesian approach improves the sensitivity for detecting recombinations at the cost

of a slight degradation in the specificity. Since the values for the latter are usually quite

high (over 95%), the improvement in the former seems to be more relevant for practical

applications. Further simulation studies are required to clarify this issue.
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