Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

Erfani, R., Zare-Behtash, H. and Kontis, K. (2012) Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance. Journal of Physics D: Applied Physics, 45(22), p. 225201. (doi: 10.1088/0022-3727/45/22/225201)

84621.pdf - Accepted Version



Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma.

Item Type:Articles (Editorial)
Glasgow Author(s) Enlighten ID:Zare-Behtash, Dr Hossein and Kontis, Professor Konstantinos
Authors: Erfani, R., Zare-Behtash, H., and Kontis, K.
College/School:College of Science and Engineering > School of Engineering > Autonomous Systems and Connectivity
Journal Name:Journal of Physics D: Applied Physics
Publisher:Institute of Physics
ISSN (Online):1361-6463
Copyright Holders:Copyright © 2012 Institute of Physics
First Published:First published in Journal of Physics D: Applied Physics 45(22):225201
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher

University Staff: Request a correction | Enlighten Editors: Update this record